

Neural-network based optimisation of compliant mooring systems

Oscar Festa, PhD student from the University of Southampton

Professor Susan Gourvenec, RAEng Chair in Emerging Technologies for Intelligent & Resilient Ocean Engineering (IROE), University of Southampton **Professor Adam Sobey**, Data-centric Engineering lead, The Alan Turing Institute

May 10th & 11th & 12th 2023

Intro (1/3) – Background

- FOWT mooring systems hold high cost reduction potential
- Mooring system design involves striking a balance between stiffness and compliance
- Cheaper, safer designs could be achieved by optimising mooring system compliance

161 mm mooring chain (Maritime executive)

Hywind Tampen anchors (SEMAR)

May 10th & 11th & 12th 2023

Intro (2/3) – Load Reduction Devices (LRDs)

LRDs provide targeted compliance, offering high levels of extension without compromising breaking strength.

Intro (3/3) – Aim of research

Aim: Holistic and generalisable optimisation of taut compliant mooring systems including LRDs

Location-specific parameters, mooring system & LRD parameters, outputs

May 10th & 11th & 12th 2023

Method (1/2) – Description of numerical model

Model set-up:

- Fully-coupled aero-hydro-servo dynamic modelling, with commercial software Flexcom
- LRDs modelled as non-linear spring elements, with stiffness curves representative of TFI or Dublin Offshore devices

May 10th & 11th & 12th 2023

Model parameter ranges:

	Mooring & LRD parameters	Desig	n space	
	Mooring arrangement	Polyes	ster taut	
•	Pre-tension (kN)	500 - 2	2500	
	Polyester stiffness EA (MN)	30 - 1	120	
	Line angle to vertical (deg)	55 – 8	55 – 80	
	LRD rated load (MN)	2 – 7		
	LRD spring element length (m)	10 - 30	0	
	LRD curve types	Dublir	o Offshore, TFI	
	Water depth (m)	60-150		
	Load case parameters	Parked	Operating	
	Hub wind speed (m/s)	25 - 50	10.59 (rated)	
	Wave height (m)	10 - 25	2 – 15	
	Wave period (s)	8-18	6 - 16	
	Wind & wave direction (deg)	0	0	
	Current (m/s)	0.015 U_{hub}	0.015 <i>U_{hub}</i>	
/-	Γ_{2027} Conforma			

Method (2/2) – Neural network

Surrogate neural network trained from 50k dynamic analyses provides an **instantaneous input – output relationship**

Full finite

element model

Results (1/5) – Scenario A: location A, using Dublin Offshore LRD

Scenario A design space in parked load case

May 10th & 11th & 12th 2023

Results (2/5) – Scenario A single-objective optimisation

- Single-objective: to find the design which **minimises the max. fairlead tension**, within constraints
- Optimisation problem was solved with 2 different methods: 1. simple gradient-based method, 2. genetic algorithm (both provided similar results)

Performance of optimised design:

	Motion	Output/ Constraint	Constraint utilisation
ing	Surge (m)	7.47/7.5	99.6 %
eratı	Pitch (deg)	4.92 <mark>/5</mark>	98.4 %
do	Nacelle Acc. (g)	0.07 <mark>/0.18</mark>	38.9 %
q	Surge (m)	12.40 <mark>/15</mark>	82.7 %
arke	Pitch (deg)	1.50/7	21.4 %
d	Nacelle Acc. (g)	0.1/0.3	33.3 %

Maximum fairlead tension = 3.35 MN

51 % tension reduction and **71 % footprint reduction** vs. 'conventional' catenary mooring

May 10th & 11th & 12th 2023

Results (3/5) – Scenario B: location B, using TFI Seaspring

May 10th & 11th & 12th 2023

Results (4/5) – Scenario B single-objective optimisation

May 10th & 11th & 12th 2023

Results (5/5) – Multi-objective optimisation

- A genetic algorithm can be used to find combinations of design parameters (i.e. 'individuals') which optimise *multiple objectives* simultaneously
- Any of the non-dominated individuals represent an optimal compliant mooring system
- This can provide **more useful results** than a single-objective optimisation

11

Conclusions & contact info

Combining **load reduction devices** with taut mooring systems can provide significant **tension reduction** and seabed **footprint reduction**

Using a **neural network-based surrogate model** allows the usage of various optimisation procedures, without running iterative dynamic analyses

This enables us to **reverse the design question**: using typical outputs of dynamic analyses (tension, platform motions etc.) as inputs to the optimisation procedure.

NN-based Optimisation optimal mooring & LRD parameters

Any questions?

Feel free to get in touch by email: <u>o.g.festa@southampton.ac.uk</u>

May 10th & 11th & 12th 2023