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Quantum Fluids



Γ = ∮!𝐯 ⋅ 𝑑𝐥 ∈ ℝ Γ = ∮!𝐯 ⋅ 𝑑𝐥 =
2𝜋ℏ
𝑚

𝑛

Onsager, 1949



Kuchemann:
“vortices are the sinews and muscles of fluid motions”



If this is true then Quantum Turbulence 
represents the ‘skeleton’



Complex structures in quantum 
hydrodynamics?

Feynman, 1955

n.b. Term “Quantum Turbulence” 
due to Donnelly & Swanson (1986)

AWB et al, 2015
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Experimental/Physical Systems

• Helium is an intimate mix of  inviscid 
superfluid component and a viscous normal 
fluid.

Andronikashvili [1946]

Superfluid Helium (4He/3He3)



Experimental/Physical Systems
Superfluid Helium (4He/3He3)

Guo et al., PRL, 2010



Experimental/Physical Systems
Superfluid Helium (4He/3He3)

Varga et al., 2015

Salort at al., 2012



Experimental/Physical Systems
Atomic BECs Seo, Shin et al., 2017

Henn, Bagnato et al., 2009



Experimental/Physical Systems
Atomic BECs

Serafini et al, PRX, 2017



Experimental/Physical Systems
Neutron Stars

Graber et al., 2016



Stagg et al., 2017
Muller, 2022

Roche & Barenghi, 2008

Vinen Kolmogorov
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Classical (viscous) turbulence
• In a 3D classical turbulent flow, 

large scale eddies break up into 
smaller eddies, these into smaller 
ones and so on...(Richardson 
Cascade)

• If there is a large inertial range 
between the forcing and dissipation 
scale (i.e. high Re) then the flow of 
energy through scales is 
characterized by a constant energy 
flux .

• Dimensional analysis leads to a 
power-law scaling for the energy 
spectrum,

E(k) = C✏2/3k�5/3

@v

@t
+ (v ·r)v = �1

⇢
rp+ ⌫r2v



Classical (viscous) turbulence
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Sp(r) = h(�u(r))pi, �u(r) = u(x+ r)� u(x)

Self similarity K41:
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Maurer	&	Tabeling,	
EPL, 1998



Batchelor & Townsend, Proc RS A, 1949

Flatness factor:

K41 implies a constant, 
independent of Reynolds 
number…

…problem

Interestingly it was 
probably Batchelor who 
introduced K41 to the west 
in his 1947 paper:

“Like a prospector going 
through a load of crushed 
rock, I suddenly came 
across rushed rock, I 
suddenly came across two 
articles about four pages in 
length, whose quality was 
immediately clear.”
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Prophetic words
Measurements describing the probability 
distribution of ∂u/∂x, ∂2u/∂x2 and 
∂3u/∂x3 are also described. These, and 
oscillograms of the velocity derivatives, 
show that the energy associated with 
large wave-numbers is very unevenly 
distributed in space. There appear to be 
isolated regions in which the large 
wave-numbers are ‘activated’, 
separated by regions of comparative 
quiescence. This spatial inhomogeneity 
becomes more marked with increase in the 
order of the velocity derivative, i.e. with 
increase in the wave-number. It is suggested 
that the spatial inhomogeneity is produced 
early in the history of the turbulence by an 
intrinsic instability, in the way that a vortex 
sheet quickly rolls up into a number of 
strong discrete vortices. Thereafter the 
inhomogeneity is maintained by the 
action of the energy transfer.



Siggia, JFM, 
1981, 323 

She et al., 
Nature, 1990, 
963

Ishihara et al.
40963

Numerical age
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Importance?

Roussel, Schneider & Farge, 2005

6 O. Roussel et al.

3. Comparison for vorticity and velocity

We apply the coherent vortex extraction algorithm to DNS data computed for a statistically
stationary 3D homogeneous isotropic turbulent flow, forced at the largest scale, and whose
turbulence level corresponds to a microscale Reynolds number Rλ = 150 [15]. This dimen-
sionless number is defined as

Rλ = λVrms
ν

where λ = (E/Z )1/2 denotes the Taylor microscale, Vrms the root-mean-square velocity, and
ν the kinematic viscosity.
The initial conditions are random and the boundary conditions are periodic. The flow was

computed using a pseudo-spectral code at resolution 2403 [15], upsampled to 2563. Although
this flow is statistically homogeneous and isotropic, vortex tubes are formed during the flow
evolution (see figure 3).
The coherent vortex extraction algorithm is applied to the vorticity field shown in figure 3

using either Coifman 12 or Harten 3 wavelets. In figures 3 and 4, the modulus of the total,
coherent, and incoherent vorticities resulting from the coherent vortex extraction are displayed
for Coifman 12 and Harten 3 wavelet decompositions. In both cases, the isosurfaces, from
light to dark, correspond to ||ω⃗|| = 3σ , 4σ , and 5σ for the total and coherent vorticities, and
||ω⃗|| = 3

2σ , 2σ , and
5
2σ for the incoherent vorticity. Here σ =

√
2Z denotes the variance of

the vorticity fluctuations, Z being the total enstrophy.
By observing the coherent vorticity (figure 4(a) and (c)), we see that both decomposi-

tions, using either orthogonal or biorthogonal wavelets, retain the coherent vortices present
in the total vorticity (figure 3). We find, however, that the incoherent vorticity is different
for both decompositions: the incoherent vorticity obtained from the orthogonal decompo-
sition (figure 4(b) and (d)) is structureless, whereas some coherent structures remain in the
incoherent vorticity when one uses the biorthogonal decomposition.
The statistics of the resulting fields are given in table 1. We observe that, for both decom-

positions, only 3% wavelet modes retain about 99% of the total energy, while the remaining
97%modes contain less than 1% of the energy. Let us note that the loss of total energy for both
decompositions (see explanation in section 2) remains small: 0.4% for the orthogonal case and

Figure 3. Modulus of the vorticity for the total field. Zoom of the top-left-front sub-cube of size 643. The surfaces,
from light to dark, correspond to ||ω⃗|| = 3σ , 4σ , and 5σ , with σ =

√
2Z .

Coherent vortex extraction in 3D homogeneous turbulence 7

Figure 4. Comparison between orthogonal wavelet (a) and (b) and biorthogonal wavelet decompositions (c) and
(d): Modulus of the vorticity for the retained (a) and (c) and discarded modes (b) and (d). Zoom of the top-left-
front sub-cube of size 643. The surfaces, from light to dark, correspond to ||ω⃗|| = 3σ , 4σ , and 5σ on the left side,
||ω⃗|| = 3

2σ , 2σ , and
5
2σ on the right side.

0.7% for the biorthogonal. We have shown [6] that for the orthogonal wavelet decomposition
the energy lost only affects the dissipative scales, and can thus be neglected.
Concerning the enstrophy,weobserve a significant difference betweenbothmethods: the 3%

largest coefficients retain 75.5% of the total enstrophy with the orthogonal wavelets, whereas
they retain only 69% for the biorthogonal wavelets. Moreover, 3.7% of the total enstrophy
is lost in the biorthogonal decomposition, whereas it is fully conserved in the orthogonal
decomposition.
Figure 5 shows the probability distribution function (PDF) of vorticity in semi-logarithmic

coordinates. For both decompositions, the coherent vorticity shows a similar stretched
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Figure 6. Comparison between orthogonal (a) and biorthogonal (b) wavelet decompositions: PDF of velocity.

energy spectrum of the coherent flow is identical to that of the total flow all along the inertial
range, whereas it differs for k ≥ 30, which is in the dissipative range. For the incoherent flow,
we observe that E(k) is close to k2, which corresponds to an equipartition of energy, that is
the velocity is decorrelated in physical space.

4. Comparison for helicity and Lamb vector

Coherent structures encountered in turbulent flows correspond to regions where the nonlin-
earity of Navier–Stokes equations is depleted [2, 6, 16]. For 2D incompressible flows this
leads to a theoretical prediction stating that vorticity and stream function are related by a
monotonous function, called the coherence function. In [6] we used wavelets to extract co-
herent vortices out of a 2D turbulent flow and checked a posteriori that our algorithm was
successful by comparing the coherence function for the total, coherent, and incoherent flows.
Such a simple criterion as the coherence function cannot be used for 3D flows since the stream
function can no longer be uniquely defined in this case. In [2] we proposed to consider the
local Beltramization of the flow to characterize coherent vortices that correspond to regions

Figure 7. Comparison between orthogonal (a) and biorthogonal (b) wavelet decompositions: energy spectrum.

Frisch, 1995



Faller et al., 2021

Vorticity                                      Local Energy Transfer



Vinen tangle – unstructured quantum turbulence

Course-grained (HVBK) picture: 
<latexit sha1_base64="zvrqOCGVVeLHUFV7GW0K7njDK2A=">AAAB+XicbVDJSgNBEO1xjXEb9eilMQiewoy4HYNePEYwC2SG0NPpSZr0RndPMAz5Ey8eFPHqn3jzb+wkc9DEBwWP96qoqpcoRo0Ngm9vZXVtfWOztFXe3tnd2/cPDptGZhqTBpZM6naCDGFUkIallpG20gTxhJFWMryb+q0R0YZK8WjHisQc9QVNKUbWSV3fjyQnfQQjpJSWTzDo+pWgGswAl0lYkAooUO/6X1FP4owTYTFDxnTCQNk4R9pSzMikHGWGKISHqE86jgrEiYnz2eUTeOqUHkyldiUsnKm/J3LEjRnzxHVyZAdm0ZuK/3mdzKY3cU6FyiwReL4ozRi0Ek5jgD2qCbZs7AjCmrpbIR4gjbB1YZVdCOHiy8ukeV4Nr6qXDxeV2m0RRwkcgxNwBkJwDWrgHtRBA2AwAs/gFbx5uffivXsf89YVr5g5An/gff4Ay3qTIA==</latexit>

! ⇡ 0
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Coherent structures in QT?

• Do coherent structures exist in 
quantum turbulence?

• What are these structures, bundles? 
How do they form and evolve?

• Would allow a mechanism for 
vortex stretching, i.e. stretch the 
bundle.

D!

Dt
= (! ·r)v + ⌫r2!





Modelling approach
3 distinct scales/numerical approaches

Gross-Pitaevskii Point Vortex/VFM              Course-Grained
HVBK

Barenghi et al. (2014)



Vortex filament method
Biot-Savart Integral

Model reconnections 
algorithmically ‘cut and paste’



Mutual friction

Normal viscous fluid coupled to 
inviscid superfluid via mutual 
friction.

Superfluid component extracts 
energy from normal fluid 
component via Donelly-Glaberson 
instability, amplification of Kelvin 
waves.

 Kelvin wave grows with 
amplitude 

Counterflow Turbulence

vext
n (s, t) = (c, 0, 0)



A surprising result

Roche et al., EPL, 2007 



A surprising result
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Expectation, in K41 picture

Thus (naively),
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vexts

But how can we measure spatial spectrum with one probe?
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A surprising result

Roche et al., EPL, 2007 

• Fluctuations of  vortex line 
density scale as         .

• Contradiction of  the 
classical scaling of  vorticity 
expected from K41.

• Roche & Barenghi (EPL, 
2008) - vortex line density 
field is decomposed into a 
polarised component, and a 
random component.

• Random component 
advected as a passive scalar 
explaining -5/3 scaling. 

f −5/3



Quantum turbulence at finite temp.

vext
n (s, t) =

m=MX

m=1

(Am ⇥ km cos�m +Bm ⇥ km sin�m)
Drive turbulence in superfluid 
component to a steady state with 
imposed normal ‘fluid turbulence’.

Identify regions of  high course-
grained vorticity

AWB, Laurie & Barenghi, 2012



Decomposition of a tangle
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Numerical results
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Experimental detection

Presence of coherent structures 
inferred from intermittent pressure 
drops, HVBK:

E. Rusaouen et al.

To detect coherent vortex structures, we look for the low
pressure appearing in their core due to centrifugal force.
This pressure depletion can be assessed from the Poisson
equation for pressure p in an incompressible flow [20], de-
rived by taking the divergence of Navier-Stokes equation
(a generalization for compressible flow is proposed in [21]):

∆p =
ρ

2
(ω2 − σ2), (1)

where ρ are the fluid density, ω, and σ are the flow vorticity
and rate of strain defined as

ω2 =
1
2

∑

i,j

(∂ivj − ∂jvi)2, (2)

σ2 =
1
2

∑

i,j

(∂ivj + ∂jvi)2. (3)

By analogy with electrostatics, eq. (1) shows that a
localized region of high vorticity is a (negative) source
term for pressure1. The technique of tracking low-pressure
spikes to detect coherent structures has been widely used
in classical turbulent flows, in particular the von Kármán
geometry (e.g., see refs. [23–28]). In practice, a pres-
sure transducer is imbedded in the sidewall of the cell;
when a vortex filament passes by the probe, the result-
ing negative spike greatly exceeds in magnitude the stan-
dard deviation of the pressure fluctuations generated by
the “background” turbulence. Thus, the vortex filament
can be detected.

Generalization of this equation in a quantum fluid at
finite temperature is straightforward in the framework of
HVBK equations, discussed in [29]. In this approach, the
superfluid tangle is coarse-grained into continuous veloc-
ity v⃗s and vorticity ω⃗s fields. The detail of individual vor-
tices is lost but the resulting equation for the superfluid
can account for fluid motion at scales much larger than
the typical inter-vortex distance. The HVBK equations
are an Euler equation for the superfluid (subscript s) and
a Navier-Stokes equation for normal fluid (subscript n),
both coupled together:

ρs [(∂v⃗s/∂t) + (v⃗s · ∇)v⃗s] = −ρs

ρ
∇p+ρsS∇T − F⃗ , (4)

ρn

[
(∂v⃗n/∂t) + (v⃗n · ∇)v⃗n

]
= −ρn

ρ
∇p−ρsS∇T

+ F⃗ + µ∇2v⃗n, (5)

where µ is the dynamic viscosity, S is the entropy, and
where the coupling term F⃗ accounts for mutual coupling.

Assuming incompressibility, and taking the divergence
of the sum of eqs. (4) and (5), one gets a generalized Pois-
son equation in the two-fluid model:

∆p =
ρs

2
(ω2

s − σ2
s) +

ρn

2
(ω2

n − σ2
n). (6)

1Contrary to a frequent assumption, ω2 and σ2 do not balance
each other on average in closed flows [22].

Pumped He bath

Pressurized HeI / He II
          (Ø 780 mm cell)

Bottom propeller

Heat exchanger

70
2 

m
m

Parietal pressure probes
         ( Ø 1 mm tap holes
  34 mm below equator)

Transmission shaft

Top propeller

Mixing layer

Fig. 1: (Colour online) Schematic of the experiment.

The above equation shows that negative-pressure spikes
in a quantum fluid remain markers of high-vorticity re-
gions. Superfluid and normal fluid vorticities are probed
simultaneouly, and weighted in proportion of the density
of each fluid. Note that the low pressure on individual
quantum vortices has been invoked to explain the trap-
ping of light particles along vortices (see [16,30,31] and
references therein).

Experimental set-up. –
The von Kármán flow. The von Kármán flow used

for this experiment has been extensively described in a
dedicated paper [32]. We only recall below its main spec-
ifications, see fig. 1.

The liquid helium 4He used in this experiment was se-
quentially set to temperatures of 2.4 K, 2.1 K and 1.6 K,
that is both above and below the superfluid transition tem-
perature (Tλ ≃ 2.15 K at 3 bars). These three tempera-
tures correspond respectively to superfluid fractions of 0%,
19% and 80% at the pressures of interest (see table 1).
The pressurization of the flow prevents the occurrence of
cavitation for all flow conditions.

The flow is enclosed in a 780-mm-diameter cylindri-
cal vessel and it is mechanically stirred by two co-axial
bladed disks of radius R = 360 mm, located 702 mm away,
counter-rotating in this work. The 8 blades on each disk
are curved, and the direction of rotation is such that the
convex side of the blades moves into the fluid. This specific
direction is chosen because it results in a stable large-scale
circulation between the disks [32].

Such a stirring gives rise to two counter-rotating sub-
flows separated by a mixing layer, as depicted in, fig. 1.
The (mean) position of this mixing layer is determined by
the relative angular velocities Ωb and Ωt of the bottom
and top disks. For exact counter-rotation (Ωb = Ωt), the
mixing layer is located at mid-height. In this study, we set
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ρs/ρ = 0 % , Re = 6.6e7 [θ=0.12]
ρs/ρ= 19 %, Re = 8.6e7 [θ=0.12]
ρs/ρ= 83 %, Re = 8.9e7 [θ=0.11]

Fig. 2: (Colour online) Pressure time series at 3 temperatures
for roughly similar forcing. The superfluid fraction ranges from
0% to 84%. Time on the x-axis is rescaled by the mean rotation
time 2π/Ω of the disks. The sharp depressions are interpreted
as the signature of vortical coherent structures passing over the
pressure tap.

caused by an external noise source. Occasionally, depres-
sions are recorded by both probes with mean delays con-
sistent with the mean direction of the flow, which confirms
that the measured signal corresponds to localized coherent
structures carried in the fluid.

Assuming a passive transport of the coherent structures
between the two probes, the delay can be interpreted as a
“time of flight” and gives the local flow (azimutal) veloc-
ity V ⋆ using the 8 cm probe separation. It is found in the
m · s−1 range, as given in table 1. With V ⋆ = 1.6 m · s−1

and taking 160 Hz as the effective noise-free probe dynam-
ics, we find a noise-free effective probe resolution of 1 cm
but the wavelet analysis of the raw time series (without
the 160 Hz low-pass filter) allows to track the signature of
the depression nearly up to the ≃ 1 kHz probe resonance
frequency, showing that the coherent structures can be at
least as thin as 1.6 m · s−1/1 kHz ≃ 2 mm, to be compared
with the large scale L of such von Kármán flows [28],

L ≃ R/2 ≃ 200 mm, (9)

and to rough estimates of the Taylor and Kolmogorov dis-
sipative scales λ and η based on the homogeneous isotropic
turbulence equations,

λ ∼ L ·
√

10/Re⋆ ≃ 0.2 mm, (10)

η ∼ L/Re⋆3/4 ≃ 10−3 mm, (11)

where we took Re⋆ = LV ⋆ρ/µ ≃ 1.4 · 107. Surely, the
flow is neither homogeneous nor isotropic, but these equa-
tions can still provide useful orders of magnitude, and
show that the present probe is partly resolving the in-
ertial range of the turbulent cascade, which extends from
∼ L down to ∼ 10η.
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gaussian (standard deviation=1)

ρs/ρ= 0 %, Re=5.5e7 [θ=0.20]

Fig. 3: (Colour online) Probability density function (pdf) of the
pressure fluctuations normalized to unity standard deviation.

We now address the superfluid regime. Figure 2 illus-
trates two typical times series with superfluid fractions of
ρs/ρ = 19% and 83% acquired at Reynolds numbers sim-
ilar to the classical regime (Re = 7.107 ± 16%). As in the
classical case, sharp depressions are found. No qualitative
difference is found between the classical and superfluid
regimes when all the acquired time series are scrutinized.

To the best of our knowledge, this is the first experimen-
tal evidence of coherent structures detected in a turbulent
superfluid. We present below a quantitative analysis of
the strength, density spatial distribution of those coher-
ent structures with respect to their classical counterpart.

Histogram of pressure: density and strength of coher-
ent structures. Figure 3 shows the probability den-
sity functions (pdf) of pressure time series normalized by
the standard deviation of their positive pressure fluctua-
tions. The pdf shape is compatible with the description
given in classical turbulence literature for von Kármán
flows [23,24,26–28]. It can be approximated as Gaus-
sian complemented with a long exponential tail associated
to the rare but intense negative pressures spikes associ-
ated with the coherent structures. Such skewed pressure
pdf have been reported in a number of classical turbu-
lent flows, for instance in homogeneous isotropic turbu-
lence [35,36], along the centerline of pipes [37] and in
jets [38]2. One advantage of the von Kármán geometry
over these other flows is the efficient generation of vortex
filaments in its mixing layer, and the resulting significant
enhancement of the pressure skewness compared to the
background skewness resulting from the quadratic veloc-
ity dependence of pressure [40].

Whatever the superfluid fraction and Reynolds num-
ber, all the pdf corresponding to a given θ are found
to collapse, up to our statistical uncertainty. In other
words, the density and strength of coherent structures are

2In boundary layers more symmetrical pdf can be found, see,
e.g., [37,39].
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Fig. 2: (Colour online) Pressure time series at 3 temperatures
for roughly similar forcing. The superfluid fraction ranges from
0% to 84%. Time on the x-axis is rescaled by the mean rotation
time 2π/Ω of the disks. The sharp depressions are interpreted
as the signature of vortical coherent structures passing over the
pressure tap.

caused by an external noise source. Occasionally, depres-
sions are recorded by both probes with mean delays con-
sistent with the mean direction of the flow, which confirms
that the measured signal corresponds to localized coherent
structures carried in the fluid.

Assuming a passive transport of the coherent structures
between the two probes, the delay can be interpreted as a
“time of flight” and gives the local flow (azimutal) veloc-
ity V ⋆ using the 8 cm probe separation. It is found in the
m · s−1 range, as given in table 1. With V ⋆ = 1.6 m · s−1

and taking 160 Hz as the effective noise-free probe dynam-
ics, we find a noise-free effective probe resolution of 1 cm
but the wavelet analysis of the raw time series (without
the 160 Hz low-pass filter) allows to track the signature of
the depression nearly up to the ≃ 1 kHz probe resonance
frequency, showing that the coherent structures can be at
least as thin as 1.6 m · s−1/1 kHz ≃ 2 mm, to be compared
with the large scale L of such von Kármán flows [28],

L ≃ R/2 ≃ 200 mm, (9)

and to rough estimates of the Taylor and Kolmogorov dis-
sipative scales λ and η based on the homogeneous isotropic
turbulence equations,

λ ∼ L ·
√

10/Re⋆ ≃ 0.2 mm, (10)

η ∼ L/Re⋆3/4 ≃ 10−3 mm, (11)

where we took Re⋆ = LV ⋆ρ/µ ≃ 1.4 · 107. Surely, the
flow is neither homogeneous nor isotropic, but these equa-
tions can still provide useful orders of magnitude, and
show that the present probe is partly resolving the in-
ertial range of the turbulent cascade, which extends from
∼ L down to ∼ 10η.
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We now address the superfluid regime. Figure 2 illus-
trates two typical times series with superfluid fractions of
ρs/ρ = 19% and 83% acquired at Reynolds numbers sim-
ilar to the classical regime (Re = 7.107 ± 16%). As in the
classical case, sharp depressions are found. No qualitative
difference is found between the classical and superfluid
regimes when all the acquired time series are scrutinized.

To the best of our knowledge, this is the first experimen-
tal evidence of coherent structures detected in a turbulent
superfluid. We present below a quantitative analysis of
the strength, density spatial distribution of those coher-
ent structures with respect to their classical counterpart.

Histogram of pressure: density and strength of coher-
ent structures. Figure 3 shows the probability den-
sity functions (pdf) of pressure time series normalized by
the standard deviation of their positive pressure fluctua-
tions. The pdf shape is compatible with the description
given in classical turbulence literature for von Kármán
flows [23,24,26–28]. It can be approximated as Gaus-
sian complemented with a long exponential tail associated
to the rare but intense negative pressures spikes associ-
ated with the coherent structures. Such skewed pressure
pdf have been reported in a number of classical turbu-
lent flows, for instance in homogeneous isotropic turbu-
lence [35,36], along the centerline of pipes [37] and in
jets [38]2. One advantage of the von Kármán geometry
over these other flows is the efficient generation of vortex
filaments in its mixing layer, and the resulting significant
enhancement of the pressure skewness compared to the
background skewness resulting from the quadratic veloc-
ity dependence of pressure [40].

Whatever the superfluid fraction and Reynolds num-
ber, all the pdf corresponding to a given θ are found
to collapse, up to our statistical uncertainty. In other
words, the density and strength of coherent structures are

2In boundary layers more symmetrical pdf can be found, see,
e.g., [37,39].

14005-p4

<latexit sha1_base64="j3KsQ16cNmT5KXdvWCgxfDpc360="></latexit>

r2P =
⇢s
2
(!2

s � �2
s) +

⇢n
2
(!2

n � �2
n)



<latexit sha1_base64="yn72uj8s/DTU/8kMNFSQDJp4LEM=">AAAB6HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsW7APaQTLpnTY2kxmSjFCGfoEbF4q49ZPc+Tem7Sy09UDgcM655N4TJIJr47rfTmFldW19o7hZ2tre2d0r7x+0dJwqhk0Wi1h1AqpRcIlNw43ATqKQRoHAdjC6nfrtJ1Sax/LejBP0IzqQPOSMGis16g/lilt1ZyDLxMtJBXLY/FevH7M0QmmYoFp3PTcxfkaV4UzgpNRLNSaUjegAu5ZKGqH2s9miE3JilT4JY2WfNGSm/p7IaKT1OApsMqJmqBe9qfif101NeO1nXCapQcnmH4WpICYm06tJnytkRowtoUxxuythQ6ooM7abki3BWzx5mbTOqt5l9aJxXqnd5HUU4QiO4RQ8uIIa3EEdmsAA4Rle4c15dF6cd+djHi04+cwh/IHz+QOs2Yze</latexit>

P
<latexit sha1_base64="L69SK3XotyPVnTc2jTU24SwAGdY=">AAAB73icbVDJSgNBEO2JW4xb1KOXxiB4CjPidgx68RjBLJAMoadTkzTpZezuEcKQn/DiQRGv/o43/8ZOMgdNfFDweK+KqnpRwpmxvv/tFVZW19Y3ipulre2d3b3y/kHTqFRTaFDFlW5HxABnEhqWWQ7tRAMREYdWNLqd+q0n0IYp+WDHCYSCDCSLGSXWSe2uEjAgPdMrV/yqPwNeJkFOKihHvVf+6vYVTQVISzkxphP4iQ0zoi2jHCalbmogIXREBtBxVBIBJsxm907wiVP6OFbalbR4pv6eyIgwZiwi1ymIHZpFbyr+53VSG1+HGZNJakHS+aI45dgqPH0e95kGavnYEUI1c7diOiSaUOsiKrkQgsWXl0nzrBpcVi/uzyu1mzyOIjpCx+gUBegK1dAdqqMGooijZ/SK3rxH78V79z7mrQUvnzlEf+B9/gAg3pAL</latexit>!s

Baggaley. & 
Laurie, 2020



Take-home message



Collective motion in Quantum 
Hydrodynamics



MotivationWarszawski et 
al., 2012



Motivation
Lonnborn et al., 2019



Numerical setup

• Different approach/motivation from part I
• 3D → 2D
• Vortex filament → GPE

• Dissipative GPE with time dependent 
rotation (spin-down)
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V (r, t) = Vcon(r) + Vpin(r) + Ve↵(r, t)
cylindrically hard-
wall potential

Lattice of  Gaussian 
pinning potentials

Anti-centrifugal potential 
to ensure constant density
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Preliminary Results



Collective motion?
Vicsek & Zafeiris, 2012
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Thankyou for listening!
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