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Possible gravitational wave sources…



… and current gravitational wave detectors

KAGRA



Gravitational waves from  
compact binary coalescences

Astrophysical 
questions about 

black holes:

are there mass 
gaps?

how (and where) are 
the binaries 

formed?

existence of 
intermediate mass 

black holes? Are there fundamental physics questions we can ask (and 
hopefully answer) about black holes?



Binary Black Hole Waveform:  
Inspiral-Merger-Ringdown

[Antelis et al. 2016]

[Abbott et al., 2016]

First Detection
GW150914 3 stages:

The ringdown can be well 
approximated by the quasinormal 

modes of the system



Linear Perturbation Theory  
in General Relativity

Perturbed black holes are basically mass-spring systems!

Rμν −
1
2

gμνR = 8πTμν

Einstein field equations:

In vacuum*: Rμν = 0

Perturbing it:

Rμν + δRμν = 0 ⇒ δRμν = 0
For a rotating black hole, this results in the Teukolsky equation.

quasinormal modes are solutions of 
the perturbation equations

*what about environmental effects? [Jaramillo, Macedo & Sheikh, 2021] 



Quasinormal modes

[Kokkotas & Schmidt, 1999]

• Characteristic modes of oscillation

• Independent of the initial 
perturbation: “fingerprint” from the 
source

• Infinite countable set of modes, but 
do not form a complete set

• Linear perturbation stability analysis

• Solution of the Teukolsky eq. with 
appropriate boundary conditions:

• outgoing at infinity

• ingoing at the horizon 

[Vishveshwara, 1970]

[Teukolsky, 1973; Andersson, 1997]



The no-hair theorem

Isolated black holes and their surrounding 
spacetime can be described by only 3 numbers. 
Astrophysically, only 2 are relevant!

ψℓm = ∑
n

Aℓmnei[ωℓmn(t−ti)+ϕℓmn]

ωℓmn ≡ ωr
ℓmn + iωi

ℓmn

In the ringdown, quasinormal mode 
frequencies depend only on M and a 
(if GR is the correct theory of gravity)

Alternative models may have 
extra hair

[Konoplya and Zhidenko, 2011]

First quasinormal modes for 
the Schwarzschild black hole

overtones  damp faster!(n > 0)
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theory

initial 
conditions

start of  the 
linear regime



Black hole alternatives

Non-singular black holes, black hole
mimickers, exotic compact objects, etc

What are the (possible) problems with the standard black hole 
model? Quantum gravity considerations?

Why bother? Haven’t we already seen 
evidence that black holes exist?

Another motivation: is it possible to give irrefutable proof of the 
existence of the event horizon?

If we aren’t detecting black holes, but 
something that looks very similar instead…

[EHT]

[Abramowicz et al., 2002]



Detecting Ringdowns

GW150914

[Abbott et al., 2020]

it is already possible to determine 
the frequency and damping time of the 

fundamental mode (2,2,0) in the ringdown

GW190521

[Abbott et al., 2016]

ψ22 ∼ A220ei[ω220(t−Δt0)+ϕ220]

 but this is not a test of the no-hair theorem!

 is the starting time of the ringdownΔt0 :

For some of the heaviest + 
strongest GW events, the 

frequency is low enough and the 
signal is strong enough that



Testing the no-hair theorem 

Black hole spectroscopy
or: can we detect more than one mode?

[Dreyer et al., 2004; Berti et al., 2006]

[Isi et al., 2019]

GW150914

[Abbott et al., 2020]

GW190521

“no strong evidence in favor of the presence 
of higher multipoles or overtones”

evidence for the 
 overtone?(2,2,1)

in both cases:
Δt0 = 0



Looking for a second mode

[Cotesta et al., 2018]

Looking for 
higher harmonics

higher harmonics are more 
relevant for unequal mass 

binaries
(l, m,0) ≠ (2,2,0)

[Abbott et al., 2020]
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Figure 6. Top: Initial times t0 (left) and amplitude ratio R = A221/A220 determined at t0 (right) as a function of the binary
mass ratio q, obtained with methods I and II (defined in Figure 3). The ringdown waveform is well described by the fundamental
mode and the first overtone at earlier times for higher mass ratios. Bottom: Amplitude ratio R(t) as defined before (left) and
amplitude ratio R`m = A`m0/A220 between the fundamental mode of the higher harmonic modes (`,m) = (2, 1), (3, 3) and (4, 4)
and the fundamental quadrupolar mode (2, 2), both evaluated at t = tpeak + 10M , as a function of the mass ratio. Methods I
and II show good agreement, once corrected to the same fiducial time. R`m is approximately independent of the initial time.
The first overtone has a higher amplitude than all harmonic mode for lower mass ratios (q . 5) and is comparable to the modes
(2, 1) and (3, 3) for higher mass ratios.
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Looking for 
overtones

R = A221/A220

(l, m, n) = (2,2,1)
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Figure 7. Top: Initial times t0 (left) and amplitude ratio R = A221/A220 determined at t0 (right) as a function of the binary
mass ratio q, obtained with methods I and II (defined in Figure 3). The ringdown waveform is well described by the fundamental
mode and the first overtone at earlier times for higher mass ratios. Bottom: Amplitude ratio R(t) as defined before (left) and
amplitude ratio R`m = A`m0/A220 between the fundamental mode of the higher harmonic modes (`,m) = (2, 1), (3, 3) and
(4, 4) and the fundamental quadrupolar mode (2, 2) (right), both evaluated at t = tpeak +10M , as a function of the mass ratio.
Methods I and II show good agreement, once corrected to the same fiducial time, and the green dotted curve shows the best
combined fit for an exponential decay function. R`m is approximately independent of the initial time. The first overtone has
a higher amplitude than all harmonic mode for lower mass ratios (q . 5) and is comparable to the modes (2, 1) and (3, 3) for
higher mass ratios.

the binary mass ratio q. We can see that the waveform
is well described by the fundamental mode and the first
overtone at earlier times for higher mass ratios: as the bi-
nary mass ratio increases, the linear perturbation regime
is approached closer to the merger and the contributions
of the overtones become less relevant.

In the upper right plot of Figure 7 we present the am-
plitude ratio R at t0 as a function of the binary mass ratio
q. The observed spread between the results of methods I
and II is mostly explained by the dependence of t0 on q,
and the results obtained with both methods can be nicely
unified when we present the expected values obtained
with eq. (8) at the same fiducial time t = tpeak + 10M
in the lower left plot. The green dotted curve is the best
fit for an exponential decay function, taking into account
the results from both methods I and II:

R(q, tpeak + 10M) = 0.4e�0.3q + 0.3, (11)

where the asymptotic amplitude ratio for large q (R !
0.3) is compatible with the point particle limit at t =
tpeak + 10M . (We thank Vitor Cardoso for pointing this
out.)

The lower right plot of Figure 7 shows the amplitude
ratio R`m between the fundamental mode of the higher
harmonic modes (`,m) = (2, 1), (3, 3) and (4, 4) and the
fundamental quadrupolar mode (2, 2) at t = tpeak+10M .
We can see that the first overtone (2,2,1) has a higher am-
plitude ratio R than all harmonic modes for lower mass

ratios q . 5. For higher mass ratios, the asymptotic value
of R is comparable to the (2, 1, 0) and (3, 3, 0) values. We
also note that R`m does not depend on the initial time
due to similar damping times between the fundamental
modes with di↵erent (`,m) (see Table II), and that our
results for the higher harmonics are in good agreement
with those of Fig. 1 of [16].

Table II. Ringdown frequencies of the fundamental mode
for the first harmonics of a remnant black hole with mass
Mf = 0.9540M and final spin a = 0.6556M , resulting from
the merger of an equal mass (q = 1) non-spinning binary.

(`,m, n) M!r
`mn M!i

`mn

(2, 2, 0) 0.5524 0.0852

(2, 1, 0) 0.4742 0.0865

(3, 3, 0) 0.8757 0.0874

(4, 4, 0) 1.1861 0.0889

The preliminary Fisher Matrix analysis presented in
subsection IIIA can be extended to the case of larger
mass ratios. The results reported in Figure 8 were ob-
tained by keeping the final mass of the remnant black
hole compatible with GW150914 and using the Advanced
LIGO design sensitivity noise curve. This analysis takes
into account the amplitude of the modes, reported in Fig-
ure 7, but also the di↵erence between the frequencies and

See also: [Giesler et al., 2019] [Bhagwat et al., 2020] 
[Forteza et al., 2020] and others



Methods I and II

method I

method II

method I: 
phase derivative

method II: 
full waveform

4-parameter fit: 
A220, A221, ϕ220, ϕ221

2-parameter fit: 
R ≡ A221/A220, ϕ ≡ ϕ220 − ϕ221

Mismatch 

4

Figure 2. Same as the upper plot of Figure 1, but for the time derivative of the waveform phases ✓21 (left), ✓33 (center) and
✓44 (right). Again we see that there is very good agreement (less than 0.2% di↵erence) between the values of !r

`m0 obtained
from the remnant parameters quoted in the NR simulation and our fitted values. ✓̇`m approaches !r

`m0 after the overtone
contributions and non-linearities have decayed (and before the late time numerical errors become too relevant).

given by Table I and we will determine the interval of
the waveform which is well described by the fundamental
mode and the first overtone 2.

To determine the initial time of this interval, we will
use two methods. In the first method we perform a
non-linear fit to the numerical waveform  22 of the 4-
parameter function

 22(t) = A220e
�!i

220t [cos(!r
220t� �220)+

+i sin(!r
220t� �220)]

+A221e
�!i

221t [cos(!r
221t� �221)+

+i sin(!r
221t� �221)] , (3)

where !(r,i)
22n are given by Table I, and the fitting parame-

ters are the initial amplitudes A22n and the initial phases
�22n of each mode (n = 0, 1). In our second method we
do a non-linear fit to the numerical ✓̇22 of the 2-parameter
function

✓̇22(t) =
n
!r
220 +R2e2(!

i
220�!i

221)t!r
221 +Re(!

i
220�!i

221)t

⇥ [(!r
220 + !r

221) cos((!
r
220 � !r

221)t� �)

+ (!i
221 � !i

220) sin((!
r
220 � !r

221)t� �)
⇤ o

⇥
h
2Re(!

i
220�!i

221)t cos((!r
220 � !r

221)t� �)

+R2e2(!
i
220�!i

221)t + 1
i�1

, (4)

where the fitting parameters are the ratio of the initial
amplitudes R ⌘ A221/A220 and the phase di↵erence be-
tween the modes � ⌘ �0 � �1. Since !i

221 > !i
220, we

have that e(!
i
220�!i

221)t ! 0 and ✓̇22 ! !r
220 as t ! 1.

The initial time t0 for the fits (3) and (4) is not treated
as a fitting parameter. We select the best initial time t0

2 It is important to notice that the initial times we obtained do
not necessarily represent the beginning of the post-merger lin-
ear regime (i.e., the ringdown) as non-negligible contributions
of higher overtones (n � 2) in the waveform are not taken into
account.

by minimizing the mismatch M between the NR data
fNR and the fitted function ffit, defined as

M = 1� hfNR, ffitip
hfNR, fNRihffit, ffiti

. (5)

where f represents either the waveform  22 or the phase
derivative ✓̇22. The mismatch M is a function of the ini-
tial time t0, as the inner products in the right-hand side
are computed starting at each t0. This procedure is sim-
ilar to the one used in [24]. Other approaches suggested
in the literature for finding the initial time of the ring-
down minimize the residuals of the fit of the fundamental
mode, see for example [20, 29, 30].
Following [38], the inner product can be defined in the

usual way:

hf1, f2istandard ⌘
����
Z

t0

f⇤
1 f2dt

����, (6)

where the star denotes the complex conjugate. However,
QNMs are not orthogonal and complete with respect to
the inner product defined above, which presents a prob-
lem for computing how much energy is contained in each
mode. To circumvent this problem, Nollert [38, 39] sug-
gested an energy-oriented inner product defined as

hf1, f2ienergy ⌘
����
Z

t0

(ḟ1)
⇤ḟ2dt

����, (7)

where the dot denotes the time derivative as before. We
will use both of the inner product definitions (6) and (7)
in our calculation of the mismatch (5). The mismatch
will be calculated for the fits (3) and (4), giving four
estimates for the time t0, as we will see below.
Again, here we will not determine the initial time of

the ringdown stage but the initial time t0 at which the
waveform is well described by the sum of the fundamen-
tal mode and the first overtone. Figure 3 shows the mis-
match of the simulation SXS:BBH:0305 as a function of
the initial time for the phase derivative ✓̇22 (black) and
for the waveform  22 (red). Solid (dashed) lines indi-
cate that the inner product was calculated with eq. (6)
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with 2 choices

(solid line) (dashed line)

or

[Ota and Chirenti, 2020]

Δt0 =



Rayleigh criterion

We require resolvability of both  and 

for an independent test of the no-hair theorem

f τ

Δf220,ℓmn ≡ | f220 − fℓmn | > max(σf220
, σfℓmn

)

Δτ220,ℓmn ≡ |τ220 − τℓmn | > max(στ220
, στℓmn

)

Detectability is not enough![hyperphysics.phy-astr.gsu.edu]

(an either/or criterion)

Detectability is not enough!

[Berti et al., 2006]

for the overtone,
damping times are more 
easily resolved: f220 ∼ f221

for the higher harmonics,
frequencies are more easily 

resolved: τ220 ∼ τℓm0

[Ota and Chirenti, 2021]



Bayesian inference and  
model comparison

Signal: s = ψ220 + ψℓmn + n

QNMs injected in the signal have 
parameters informed by NR simulations 

Models:  and M1 M2

: assumes one mode
 

: assumes two modes

M1
θ = {A220, ϕ220, f220, τ220}

M2
θ = {A220, ϕ220, f220, τ220, R, ϕℓmn, fℓmn, τℓmn}

test: signal with one mode

threshold: ln ℬ2
1 > 8



Future Detectors

Einstein Telescope (ET) and Cosmic 
Explorer (CE): proposed 3rd generation 

ground detectors (2030’s)

LISA: Laser Interferometer Space Antenna 
(estimated launch 2037)



Black hole spectroscopy horizons*TWO MODES BH SPECTROCOPY HORIZONS

[Ota and Chirenti, 2021]

11IARA OTA

[Ota and Chirenti, 2021]

LISA

LIGO

ET, CE

RAYLEIGH CRITERION BAYES FACTOR 

The Rayleigh criterion is too restrictive!

▸ the detection of 
the first overtone 
is favored for low 
mass ratios. 

▸ Higher harmonics 
are favored for 
high mass ratios

LIGO

CE

TWO MODES BH SPECTROCOPY HORIZONS

[Ota and Chirenti, 2021]

11IARA OTA

[Ota and Chirenti, 2021]

LISA

LIGO

ET, CE

RAYLEIGH CRITERION BAYES FACTOR 

The Rayleigh criterion is too restrictive!

▸ the detection of 
the first overtone 
is favored for low 
mass ratios. 

▸ Higher harmonics 
are favored for 
high mass ratios

LIGO

CE

The Rayleigh criterion is too restrictive!

horizon distance depends both on mass and 
mass ratio

intermediate mass black holes have the largest 
horizons for ground based detectors

*averaged over sky localization and binary inclination

estimated rates for event similar to GW190521 at 
 are  (LIGO) and 

 (CE)
z spec,B

221 ∼ 0.6 0.03 − 0.1 yr−1

(0.6 − 2.4) × 103 yr−1



Parameter Estimation
grey bands: priors
grey curves: posteriors
black curves: Fisher matrix 
error estimate

inside the horizon

on the horizon

outside the horizon

inside the horizon

on the horizon

outside the horizon



Comparison between the Rayleigh  
and Bayes horizons

Bayes factor calculated on the Rayleigh horizon 
(many noise realizations per mass)

For systems on the Rayleigh 
horizon, the Bayes factor is 

effectively infinite! 

redshift

The Rayleigh horizon is not 
equivalent to a fixed high Bayes 

factor threshold



Final remarks

• There are exciting prospects for testing 
gravity and the existence of new types of 
astrophysical objects with gravitational 
wave detections

• Black hole spectroscopy is a promising probe of the nature of 
black holes. Lower threshold detections have already been 
claimed.

• 3G detectors will help (2030's); 
LISA will have even higher SNR (2037)!


