Hyperbolic mass and Maskit gluings

Piotr T. Chruściel

University of Vienna

Southampton, March 2022

based on joint work with Erwann Delay and Rafaela Wutte

space-dimension n

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact n-dimensional asymptotically locally hyperbolic manifolds (M,g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future-pointing or vanishes.

space-dimension n

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact n-dimensional asymptotically locally hyperbolic manifolds (M,g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future-pointing or vanishes.

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M,g) with

$$R(g) = -6$$

with arbitrarily high genus and with negative total mass

space-dimension n

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact n-dimensional asymptotically locally hyperbolic manifolds (M,g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future-pointing or lightlike future-pointing, or vanishes.

space-dimension n

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact n-dimensional asymptotically locally hyperbolic manifolds (M,g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future-pointing or lightlike future-pointing, or vanishes.

- Known since 2001 for spin manifolds by Witten-type methods (Wang, PTC-Herzlich).
- Different story if topology at infinity is not spherical.
- Huang, Jang, Martin (2019): lightlike cannot occur
- Generalises to many ends and boundaries with H < n-1 (PTC, Galloway, 2107.05603 [gr-qc])

space-dimension n

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact n-dimensional asymptotically locally hyperbolic manifolds (M,g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future-pointing or lightlike future-pointing, or vanishes.

- Known since 2001 for spin manifolds by Witten-type methods (Wang, PTC-Herzlich).
- 2 Different story if topology at infinity is **not** spherical.
- Huang, Jang, Martin (2019): lightlike cannot occur
- Generalises to many ends and boundaries with H < n 1 (PTC, Galloway, 2107.05603 [gr-qc])

space-dimension n

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact n-dimensional asymptotically locally hyperbolic manifolds (M,g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \geq -n(n-1)$, $n \geq 3$, is timelike future-pointing of high high the future-pointing of R(g) or vanishes.

- Known since 2001 for spin manifolds by Witten-type methods (Wang, PTC-Herzlich).
- Different story if topology at infinity is not spherical.
- Huang, Jang, Martin (2019): lightlike cannot occur
- Generalises to many ends and boundaries with H < n 1 (PTC, Galloway, 2107.05603 [gr-qc])

space-dimension n

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact n-dimensional asymptotically locally hyperbolic manifolds (M,g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \geq -n(n-1)$, $n \geq 3$, is timelike future-pointing of high high that the pointing of R(g) or vanishes.

- Known since 2001 for spin manifolds by Witten-type methods (Wang, PTC-Herzlich).
- Different story if topology at infinity is not spherical.
- Huang, Jang, Martin (2019): lightlike cannot occur
- Generalises to many ends and boundaries with H < n 1 (PTC, Galloway, 2107.05603 [gr-qc])

space-dimension n

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact n-dimensional asymptotically locally hyperbolic manifolds (M,g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \geq -n(n-1)$, $n \geq 3$, is timelike future-pointing of high like future-pointing or vanishes.

- Known since 2001 for spin manifolds by Witten-type methods (Wang, PTC-Herzlich).
- Different story if topology at infinity is not spherical.
- Huang, Jang, Martin (2019): lightlike cannot occur
- Generalises to many ends and boundaries with H < n 1 (PTC, Galloway, 2107.05603 [gr-qc])
- if $n \ge 7$, needs the higher-dimensional asymptotically flat positive energy theorem (Lohkamp, Schoen & Yau)

space-dimension n

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact n-dimensional asymptotically locally hyperbolic manifolds (M,g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \geq -n(n-1)$, $n \geq 3$, is timelike future-pointing of high high the future-pointing of R(g) or vanishes.

- Known since 2001 for spin manifolds by Witten-type methods (Wang, PTC-Herzlich).
- Different story if topology at infinity is not spherical.
- Huang, Jang, Martin (2019): lightlike cannot occur
- Generalises to many ends and boundaries with H < n 1 (PTC, Galloway, 2107.05603 [gr-qc])
- key idea: the "Maskit gluing" by Isenberg, Lee & Stavrov (2010)

Other topologies at infinity?

In dimension 3 + 1:

- positivity of energy in the spherical case is taken care of by the last theorem
- toroidal case: the Horowitz-Myers metrics provide examples with negative mass without black hole boundaries
- this talk: what about higher genus at infinity without black hole boundaries?

Other topologies at infinity?

In dimension 3 + 1:

- positivity of energy in the spherical case is taken care of by the last theorem
- toroidal case: the Horowitz-Myers metrics provide examples with negative mass without black hole boundaries
- this talk: what about higher genus at infinity without black hole boundaries?

Other topologies at infinity?

In dimension 3 + 1:

- positivity of energy in the spherical case is taken care of by the last theorem
- toroidal case: the Horowitz-Myers metrics provide examples with negative mass without black hole boundaries
- this talk: what about higher genus at infinity without black hole boundaries?

space-dimension 3

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M,g) with scalar curvature R(g) satisfying

$$R(g) = -6$$

with arbitrarily high genus and with negative total mass

space-dimension 3

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M, g) with scalar curvature R(g) satisfying

$$R(g)=-6$$

with arbitrarily high genus and with negative total mass

the metric approaches a hyperbolic metric at large distances;

space-dimension 3

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M, g) with scalar curvature R(g) satisfying

$$R(g) = -6$$

with arbitrarily high genus and with negative total mass

the metric approaches a hyperbolic metric at large distances; in dim $3 \equiv$ "asymptotically Birmingham-Kottler"

space-dimension 3

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M, g) with scalar curvature R(g) satisfying

$$R(g) = -6$$
,

with arbitrarily high genus and with negative total mass

no interior boundary, only a boundary at infinity

space-dimension 3

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M, g) with scalar curvature R(g) satisfying

$$R(g) = -6$$

with arbitrarily high genus and with negative total mass

no interior boundary, only a boundary at infinity previously: with a black hole boundary

space-dimension 3

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M,g) with scalar curvature R(g) satisfying

$$R(g) = -6$$

with arbitrarily high genus and with negative total mass

time-symmetric vacuum general relativistic initial data with suitably normalised negative cosmological constant

space-dimension 3

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M, g) with scalar curvature R(g) satisfying

$$R(g)=-6$$

with arbitrarily high genus and with negative total mass

previously: toroidal infinity

space-dimension 3

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M, g) with scalar curvature R(g) satisfying

$$R(g)=-6$$

with arbitrarily high genus and with negative total mass

not clear how to generalise this to higher dims

- Asymptotically hyperbolic manifolds are ubiquitous in nowadays theoretical physics (supergravities, string theory, holography, CFT/AdS).
- They appear naturally as spacelike hypersurfaces in solutions of Einstein equations, with or without a cosmological constant Λ:
 hyperbolic space itself occurs as a "static slice" of the Anti-de Sitter spacetime (Λ < 0), or as a hyperboloid in Minkowski spacetime Λ = 0.
- Interesting mathematical problem anyway

- Asymptotically hyperbolic manifolds are ubiquitous in nowadays theoretical physics (supergravities, string theory, holography, CFT/AdS).
- They appear naturally as spacelike hypersurfaces in solutions of Einstein equations, with or without a cosmological constant Λ:
 hyperbolic space itself occurs as a "static slice" of the Anti-de Sitter spacetime (Λ < 0), or as a hyperboloid in Minkowski spacetime Λ = 0.
- Interesting mathematical problem anyway

- Asymptotically hyperbolic manifolds are ubiquitous in nowadays theoretical physics (supergravities, string theory, holography, CFT/AdS).
- They appear naturally as spacelike hypersurfaces in solutions of Einstein equations, with or without a cosmological constant Λ:
 - hyperbolic space itself occurs as a "static slice" of the Anti-de Sitter spacetime ($\Lambda < 0$), or as a hyperboloid in Minkowski spacetime $\Lambda = 0$.
- Interesting mathematical problem anyway

- Asymptotically hyperbolic manifolds are ubiquitous in nowadays theoretical physics (supergravities, string theory, holography, CFT/AdS).
- They appear naturally as spacelike hypersurfaces in solutions of Einstein equations, with or without a cosmological constant Λ:
 hyperbolic space itself occurs as a "static slice" of the Anti-de Sitter spacetime (Λ < 0), or as a hyperboloid in Minkowski spacetime Λ = 0.
- Interesting mathematical problem anyway

- Asymptotically hyperbolic manifolds are ubiquitous in nowadays theoretical physics (supergravities, string theory, holography, CFT/AdS).
- They appear naturally as spacelike hypersurfaces in solutions of Einstein equations, with or without a cosmological constant Λ:
 hyperbolic space itself occurs as a "static slice" of the Anti-de Sitter spacetime (Λ < 0), or as a hyperboloid in Minkowski spacetime Λ = 0.
- Interesting mathematical problem anyway

- Asymptotically hyperbolic manifolds are ubiquitous in nowadays theoretical physics (supergravities, string theory, holography, CFT/AdS).
- They appear naturally as spacelike hypersurfaces in solutions of Einstein equations, with or without a cosmological constant Λ:
 hyperbolic space itself occurs as a "static slice" of the Anti-de Sitter spacetime (Λ < 0), or as a hyperboloid in Minkowski spacetime Λ = 0.
- Interesting mathematical problem anyway

Static vacuum solutions of Einstein equations with a negative cosmological constant

$$\mathbf{g}_m = -V_m^2 dt^2 + V_m^{-2} dr^2 + r^2 h_{\kappa}, \qquad V_m^2 = r^2 + \kappa - \frac{2m}{r^{n-2}}.$$

Static vacuum solutions of Einstein equations with a negative cosmological constant

$$\mathbf{g}_m = -V_m^2 dt^2 + V_m^{-2} dr^2 + r^2 h_{\kappa}, \qquad V_m^2 = r^2 + \kappa - \frac{2m}{r^{n-2}}.$$

where h_{κ} is a t- and r-independent Einstein metric on a (n-1)-dim compact manifold, with scalar curvature $R(h) = (n-1)(n-2)\kappa$.

• The mass of \mathbf{g}_m relative to $\overline{\mathbf{g}} := \mathbf{g}_0$ is proportional to m

Static vacuum solutions of Einstein equations with a negative cosmological constant

$$\mathbf{g}_m = -V_m^2 dt^2 + V_m^{-2} dr^2 + r^2 h_{\kappa}, \qquad V_m^2 = r^2 + \kappa - \frac{2m}{r^{n-2}}.$$

- The mass of \mathbf{g}_m relative to $\overline{\mathbf{g}} := \mathbf{g}_0$ is proportional to m
- The metrics with m ≠ 0 are singular unless the V_m's have positive zeros, which then correspond to black hole horizons

Static vacuum solutions of Einstein equations with a negative cosmological constant

$$\mathbf{g}_m = -V_m^2 dt^2 + V_m^{-2} dr^2 + r^2 h_{\kappa}, \qquad V_m^2 = r^2 + \kappa - \frac{2m}{r^{n-2}}.$$

- The mass of \mathbf{g}_m relative to $\overline{\mathbf{g}} := \mathbf{g}_0$ is proportional to m
- The metrics with m ≠ 0 are singular unless the V_m's have positive zeros, which then correspond to black hole horizons
- asymptotically BK is the same as locally asymptotically hyperbolic in space-dimension 3

Static vacuum solutions of Einstein equations with a negative cosmological constant

$$\mathbf{g}_m = -V_m^2 dt^2 + V_m^{-2} dr^2 + r^2 h_{\kappa}, \qquad V_m^2 = r^2 + \kappa - \frac{2m}{r^{n-2}}.$$

- The mass of \mathbf{g}_m relative to $\overline{\mathbf{g}} := \mathbf{g}_0$ is proportional to m
- The metrics with m ≠ 0 are singular unless the V_m's have positive zeros, which then correspond to black hole horizons
- asymptotically BK is the same as locally asymptotically hyperbolic in space-dimension 3
- and is a special case of locally asymptotically hyperbolic in higher dimensions

$$\mathbf{g}_m = -V_m^2 dt^2 + V_m^{-2} dr^2 + r^2 (d\theta^2 + h_0'), \ V_m^2 = r^2 \# k - \frac{2m}{r^{n-2}}.$$

where h'_0 is a t-, θ -, and r-independent Ricci flat metric on a (n-3)-dim compact manifold.

$$\mathbf{g}_{m} = \# \mathbf{W}_{m}^{2} dt^{2} \mathbf{V}_{m}^{2} d\theta^{2} + \mathbf{V}_{m}^{-2} dr^{2} + r^{2} (d\theta^{2} - dt^{2} + h'_{0}), \ \mathbf{V}_{m}^{2} = r^{2} - \frac{2m}{r^{n-2}}.$$

where h'_0 is a t-, θ -, and r-independent Ricci flat metric on a (n-3)-dim compact manifold.

$$\mathbf{g}_m = V_m^2 d\theta^2 + V_m^{-2} dr^2 + r^2 (-dt^2 + h'_0), V_m^2 = r^2 - \frac{2m}{r^{n-2}}.$$

where h'_0 is a t-, θ -, and r-independent Ricci flat metric on a (n-3)-dim compact manifold.

• For m > 0 the zero-sets of V_m are smooth totally-geodesic submanifolds ("core geodesics" in n = 3) when the period of θ is appropriately chosen, depending upon m.

$$\mathbf{g}_m = V_m^2 d\theta^2 + V_m^{-2} dr^2 + r^2 (-dt^2 + h'_0), V_m^2 = r^2 - \frac{2m}{r^{n-2}}.$$

where h'_0 is a t-, θ -, and r-independent Ricci flat metric on a (n-3)-dim compact manifold.

- For m > 0 the zero-sets of V_m are smooth totally-geodesic submanifolds ("core geodesics" in n = 3) when the period of θ is appropriately chosen, depending upon m.
- the metric at conformal infinity is

$$d\theta^2 + h_0',$$

hence depends upon m

Model metrics: Horowitz-Myers Instantons

$$\mathbf{g}_m = V_m^2 d\theta^2 + V_m^{-2} dr^2 + r^2 (-dt^2 + h'_0), V_m^2 = r^2 - \frac{2m}{r^{n-2}}.$$

where h'_0 is a t-, θ -, and r-independent Ricci flat metric on a (n-3)-dim compact manifold.

- For m > 0 the zero-sets of V_m are smooth totally-geodesic submanifolds ("core geodesics" in n = 3) when the period of θ is appropriately chosen, depending upon m.
- the metric at conformal infinity is

$$d\theta^2 + h_0',$$

hence depends upon m

 The mass relative to g₀ can be arbitrarily negative, proportional to the negative of m.

Model metrics: Horowitz-Myers Instantons

Woolgar's version of the Horowitz-Myers conjecture

$$\mathbf{g}_m = V_m^2 d\theta^2 + V_m^{-2} dr^2 + r^2 (-dt^2 + h'_0), V_m^2 = r^2 - \frac{2m}{r^{n-2}}$$

where h'_0 is a t-, θ -, and r-independent Ricci flat metric on a (n-3)-dim compact manifold.

- For m > 0 the zero-sets of V_m are smooth totally-geodesic submanifolds ("core geodesics" in n = 3) when the period of θ is appropriately chosen, depending upon m.
- the metric at conformal infinity is

$$d\theta^2 + h_0',$$

hence depends upon m

- The mass relative to g₀ can be arbitrarily negative, proportional to the negative of m.
- Horowitz-Myers conjecture: these are minima of energy at prescribed conformal structure at infinity.

"Maskit gluing"

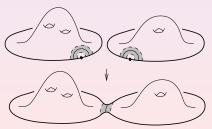
Theorem (Isenberg, Lee & Stavrov 2010, PTC, Delay, arXiv:1511.07858)

Given two asymptotically hyperbolic manifolds with constant scalar curvature (or general relativistic vacuum initial data sets) one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be

'Maskit gluing'

Theorem (Isenberg, Lee & Stavrov 2010, PTC, Delay, arXiv:1511.07858)

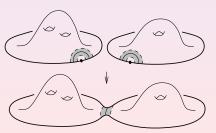
Given two asymptotically hyperbolic manifolds with constant scalar curvature (or general relativistic vacuum initial data sets) one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be



"Maskit gluing

Theorem (Isenberg, Lee & Stavrov 2010, PTC, Delay, arXiv:1511.07858)

Given two asymptotically hyperbolic manifolds with constant scalar curvature (or general relativistic vacuum initial data sets) one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be localised by a Carlotto-Schoen type hyperbolic gluing.



"Maskit gluing"

Theorem (Isenberg, Lee & Stavrov 2010, PTC, Delay, arXiv:1511.07858)

Given two asymptotically hyperbolic manifolds with constant scalar curvature (or general relativistic vacuum initial data sets) one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be localised by a Carlotto-Schoen type hyperbolic gluing.

Question: What is the energy-momentum of the new initial data set?

How to define mass

Spacetime methods

Spacetime variational methods: "Noether charge" à la Wald (~ 1990) ≡ geometric Hamiltonian methods à la Kijowski-Tulczyjew (1979)

How to define mass

Spacetime methods

- Spacetime variational methods: "Noether charge" à la Wald (~ 1990) ≡ geometric Hamiltonian methods à la Kijowski-Tulczyjew (1979)
- 2 A convenient geometric formula for total energy E: if g approaches a *Kottler-Birmingham* metric with m = 0

$$E = -\frac{1}{16(n-2)\pi} \lim_{R\to\infty} \int_{r=R} D^j V(\mathbf{R}^i{}_j - \frac{\mathbf{R}}{n} \delta^i_j) dS_i.$$

where R^{i}_{j} is the Ricci tensor of g and

$$V = \sqrt{r^2 + \kappa}$$
, $\kappa \in \{0, \pm 1\}$. (**)

Energy-momentum, spherical conformal infinity

Total energy-momentum $p_{(\mu)}$:

$$\mathbf{p}_{(\mu)} = -\frac{1}{16(n-2)\pi} \lim_{R \to \infty} \int_{r=R} D^{j} V_{(\mu)} (\mathbf{R}^{i}{}_{j} - \frac{\mathbf{R}}{n} \delta^{i}_{j}) dS_{i}.$$

where

$$V_{(0)} = \sqrt{r^2 + 1}$$
, $V_{(i)} = x^i$.

Energy-momentum, spherical conformal infinity

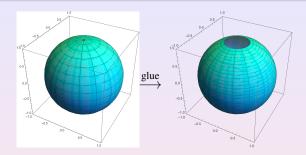
Total energy-momentum $p_{(\mu)}$:

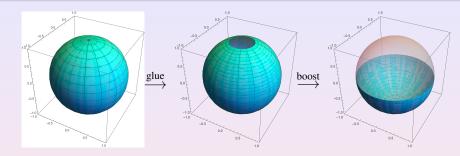
$$\rho_{(\mu)} = -\frac{1}{16(n-2)\pi} \lim_{R\to\infty} \int_{r=R} D^j V_{(\mu)} \left(\mathsf{R}^i{}_j - \frac{\mathsf{R}}{n} \delta^i_j\right) dS_i.$$

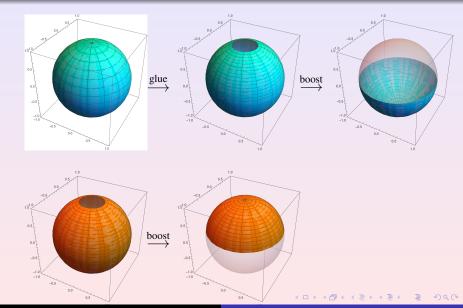
where

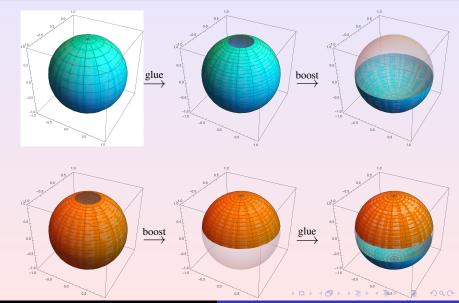
$$V_{(0)} = \sqrt{r^2 + 1}$$
, $V_{(i)} = x^i$.

• $p_{(\mu)}$ transforms as a Lorentz vector under isometries of the hyperbolic metric.







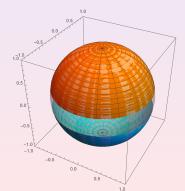


Now energy-mometum is obviously additive

$$\underline{\rho}_{(\mu)} = -\frac{1}{16(n-2)\pi} \lim_{R\to\infty} \int_{r=R} D^j V_{(\mu)} (\mathbf{R}^i{}_j - \frac{\mathbf{R}}{n} \delta^i_j) dS_i.$$

where

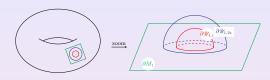
$$V_{(0)} = \sqrt{r^2 + 1}$$
, $V_{(i)} = x^i$.



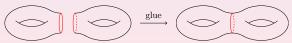
• the metric is exactly hyperbolic inside the red half-ball



- the metric is exactly hyperbolic inside the red half-ball
- the boundary of the red half-ball is totally geodesic

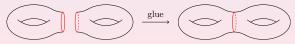


- the metric is exactly hyperbolic inside the red half-ball
- the boundary of the red half-ball is totally geodesic
- the hyperbolic metric extends smoothly when any two such boundaries touch





- the metric is exactly hyperbolic inside the red half-ball
- the boundary of the red half-ball is totally geodesic
- the hyperbolic metric extends smoothly when any two such boundaries touch



 the initial mass is defined with respect to a toroidal BK metric; the final one with respect to a genus-two BK metric!

• initial toroidal background:
$$b = \frac{dr^2}{r^2} + r^2 \underbrace{(d\theta^2 + d\varphi^2)}_{=:h_0}$$

- initial toroidal background: $b = \frac{dr^2}{r^2} + r^2 \underbrace{(d\theta^2 + d\varphi^2)}_{=:h_0}$
- final genus-two background:

$$\bar{b} = \frac{d\bar{r}^2}{\bar{r}^2 - 1} + \bar{r}^2 \underbrace{\left(d\bar{\theta}^2 + \cosh^2\bar{\theta}d\bar{\varphi}^2\right)}_{=:h_{-1}}$$

- initial toroidal background: $b = \frac{dr^2}{r^2} + r^2 \underbrace{(d\theta^2 + d\varphi^2)}_{=:h_0}$
- final genus-two background:

$$\bar{b} = \frac{d\bar{r}^2}{\bar{r}^2 - 1} + \bar{r}^2 \underbrace{\left(d\bar{\theta}^2 + \cosh^2\bar{\theta}d\bar{\varphi}^2\right)}_{=:h_{-1}}$$

$$h_{-1} = e^{\omega} h_0$$

- initial toroidal background: $b = \frac{dr^2}{r^2} + r^2 \underbrace{(d\theta^2 + d\varphi^2)}_{=:h_0}$
- final genus-two background:

$$\bar{b} = \frac{d\bar{r}^2}{\bar{r}^2 - 1} + \bar{r}^2 \underbrace{\left(d\bar{\theta}^2 + \cosh^2\bar{\theta}d\bar{\varphi}^2\right)}_{=:h_{-1}}$$

• on each half of the glued manifold, h_{-1} is conformal to h_0 :

$$h_{-1} = e^{\omega} h_0$$

• the *initial mass* is defined with respect to b; the *final one* with respect to \bar{b}

- initial toroidal background: $b = \frac{dr^2}{r^2} + r^2 \underbrace{(d\theta^2 + d\varphi^2)}_{=:h_0}$
- final genus-two background:

$$\bar{b} = \frac{d\bar{r}^2}{\bar{r}^2 - 1} + \bar{r}^2 \underbrace{\left(d\bar{\theta}^2 + \cosh^2\bar{\theta}d\bar{\varphi}^2\right)}_{=:h_{-1}}$$

• on each half of the glued manifold, h_{-1} is conformal to h_0 :

$$h_{-1} = e^{\omega} h_0$$

• a calculation gives: $\bar{r} = e^{-\omega/2}r + \text{lower order terms}$

- initial toroidal background: $b = \frac{dr^2}{r^2} + r^2 \underbrace{(d\theta^2 + d\varphi^2)}_{=:h_0}$
- final genus-two background:

$$\bar{b} = \frac{d\bar{r}^2}{\bar{r}^2 - 1} + \bar{r}^2 \underbrace{\left(d\bar{\theta}^2 + \cosh^2\bar{\theta}d\bar{\varphi}^2\right)}_{=:h_{-1}}$$

$$h_{-1} = e^{\omega} h_0$$

- a calculation gives: $\bar{r} = e^{-\omega/2}r + lower order terms$
- mass of the initial torus

$$E = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r=R} D^j r(\mathbf{R}^i{}_j - \frac{\mathbf{R}}{3} \delta^i_j) dS_i.$$

- initial toroidal background: $b = \frac{dr^2}{r^2} + r^2 \underbrace{(d\theta^2 + d\varphi^2)}_{=:h_0}$
- final genus-two background:

$$\bar{b} = \frac{d\bar{r}^2}{\bar{r}^2 - 1} + \bar{r}^2 \underbrace{\left(d\bar{\theta}^2 + \cosh^2\bar{\theta}d\bar{\varphi}^2\right)}_{=:h_{-1}}$$

$$h_{-1} = e^{\omega} h_0$$

- a calculation gives: $\bar{r} = e^{-\omega/2}r + \text{lower order terms}$
- mass of each half of the glued manifold

$$E = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{\bar{r}=R} D^{j}(\sqrt{\bar{r}^{2}-1}) \left(\mathsf{R}^{i}{}_{j} - \frac{\mathsf{R}}{3} \delta^{i}_{j}\right) dS_{i}$$

- initial toroidal background: $b = \frac{dr^2}{r^2} + r^2 \underbrace{(d\theta^2 + d\varphi^2)}_{-rh_2}$
- final genus-two background:

$$\bar{b} = \frac{d\bar{r}^2}{\bar{r}^2 - 1} + \bar{r}^2 \underbrace{\left(d\bar{\theta}^2 + \cosh^2\bar{\theta}d\bar{\varphi}^2\right)}_{=:h_{-1}}$$

$$h_{-1} = e^{\omega} h_0$$

- a calculation gives: $\bar{r} = e^{-\omega/2}r + \text{lower order terms}$
- mass of each half of the glued manifold

$$E = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{\bar{r}=R} D^{j}(\sqrt{\bar{r}^{2}-1}) \left(\mathsf{R}^{i}{}_{j} - \frac{\mathsf{R}}{3} \delta^{i}_{j}\right) dS_{i}$$
$$= -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r=R} D^{j}(e^{-\omega/2}r) \left(\mathsf{R}^{i}{}_{j} - \frac{\mathsf{R}}{3} \delta^{i}_{j}\right) dS_{i}.$$

Mass formula, space dimensions 3, somewhat more generally:

Theorem

Let g be asymptotic to two backgrounds,

$$b=rac{dr^2}{r^2+\kappa}+r^2h_{\kappa}$$
 and $ar{b}=rac{dar{r}^2}{ar{r}^2+ar{\kappa}}+ar{r}^2h_{ar{\kappa}}$, with $h_{ar{\kappa}}=\mathbf{e}^{\omega}h_{\kappa}$. Then

$$E = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r=R} D^j r \left(R^j_j - \frac{R}{3} \delta^i_j \right) dS_i.$$

$$\bar{E} = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r=R} D^j(e^{-\omega/2}r) (R^i{}_j - \frac{R}{3}\delta^i_j) dS_i.$$

Mass formula, space dimensions 3, somewhat more generally:

Theorem

Let g be asymptotic to two backgrounds ???,

$$b=rac{dr^2}{r^2+\kappa}+r^2h_{\kappa}$$
 and $ar{b}=rac{dar{r}^2}{ar{r}^2+ar{\kappa}}+ar{r}^2h_{ar{\kappa}}$, with $h_{ar{\kappa}}=e^{\omega}h_{\kappa}$. Then

$$E = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r=R} D^j r \left(\mathbf{R}^j_{\ j} - \frac{\mathbf{R}}{3} \delta^j_j \right) dS_j.$$

$$\bar{E} = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r=R} D^j(e^{-\omega/2}r) (R^i{}_j - \frac{R}{3}\delta^i_j) dS_i.$$

Mass formula, space dimensions 3, somewhat more generally:

Theorem

Let g be asymptotic to two backgrounds,

$$b=rac{dr^2}{r^2+\kappa}+r^2h_\kappa$$
 and $ar{b}=rac{dar{r}^2}{ar{r}^2+ar{\kappa}}+ar{r}^2h_{ar{\kappa}}$, with $h_{ar{\kappa}}=\mathbf{e}^\omega h_\kappa$. Then

$$E = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r=R} D^j r \left(R^j_j - \frac{R}{3} \delta^i_j \right) dS_i$$
.

$$\bar{E} = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r-R} D^{j}(e^{-\omega/2}r) \left(R^{i}_{j} - \frac{R}{3}\delta^{i}_{j}\right) dS_{i}.$$

Gluing torii

mass of each half of the glued manifold

$$E = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r=R} D^{j}(e^{-\omega/2}r) \left(R^{i}_{j} - \frac{R}{3}\delta^{i}_{j}\right) dS_{i}.$$

Gluing torii

mass of each half of the glued manifold

$$E = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{\{r=R\} \times \left(\mathbb{T}^2 \setminus D(p,\epsilon)\right)} D^j(e^{-\omega/2}r) \left(\mathbb{R}^i{}_j - \frac{\mathbb{R}}{3} \delta^i_j\right) dS_i.$$

Gluing torii

ullet mass of each half of the glued manifold, ω depends on ϵ \wedge

$$E = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{\{r=R\} \times \left(\mathbb{T}^2 \setminus D(p,\epsilon)\right)} D^j(e^{-\omega_{\epsilon}/2}r) \left(\mathsf{R}^i{}_j - \frac{\mathsf{R}}{3} \delta^i_j\right) dS_i.$$

Gluing torii, c small needed

ullet mass of each half of the glued manifold, ω depends on ϵ \wedge

$$E = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{\{r=R\} \times \left(\mathbb{T}^2 \setminus D(p,\epsilon)\right)} D^j(e^{-\omega_{\epsilon}/2}r) \left(\mathsf{R}^j{}_j - \frac{\mathsf{R}}{3} \delta^i_j\right) dS_i.$$

Gluing torii, limit $\epsilon \to 0$ needed

ullet mass of each half of the glued manifold, ω depends on ϵ \wedge

$$E = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{\{r=R\} \times \left(\mathbb{T}^2 \setminus D(p,\epsilon)\right)} D^j(e^{-\omega_{\epsilon}/2}r) \left(\mathsf{R}^j{}_j - \frac{\mathsf{R}}{3} \delta^i_j\right) dS_i.$$

Taking the limit $\epsilon \to 0$

Theorem (PTC, E. Delay, R. Wutte)

When Maskit-gluing two Horowitz-Myers metrics with mass parameter m, $e^{\omega_{\epsilon}}$ tends to the conformal factor $e^{\omega_{0}}$ of a punctured torus as ϵ tends to zero, with

$$ar{m{E}}
ightarrow -rac{m}{4\pi} \int_{\mathbb{T}^2} \mathbf{e}^{-\omega_0/2} d\mu_{h_0} < 0$$
 (1)

Taking the limit $\epsilon \to 0$

Theorem (PTC, E. Delay, R. Wutte)

When Maskit-gluing two Horowitz-Myers metrics with mass parameter m, $e^{\omega_{\epsilon}}$ tends to the conformal factor $e^{\omega_{0}}$ of a punctured torus as ϵ tends to zero, with

$$\bar{\mathbf{E}} \rightarrow -\frac{m}{4\pi} \int_{\mathbb{T}^2} \mathbf{e}^{-\omega_0/2} d\mu_{h_0} < 0 \tag{1}$$

It thus follows that the final mass is negative for ϵ small enough

Taking the limit $\epsilon \to 0$

Theorem (PTC, E. Delay, R. Wutte)

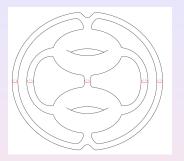
When Maskit-gluing two Horowitz-Myers metrics with mass parameter m, $e^{\omega_{\epsilon}}$ tends to the conformal factor $e^{\omega_{0}}$ of a punctured torus as ϵ tends to zero, with

$$\bar{E} \rightarrow -\frac{m}{4\pi} \int_{\mathbb{T}^2} e^{-\omega_0/2} d\mu_{h_0} < 0 \tag{1}$$

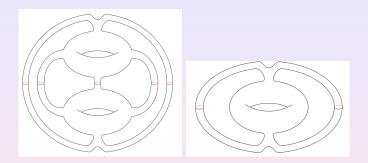
The construction can be iterated

Gluing with several punctures

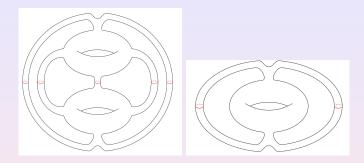
Gluing with several punctures



"Topological instability at the conformal boundary"?

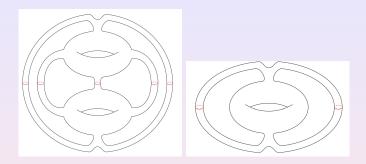


"Topological instability at the conformal boundary"?



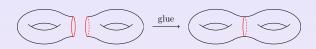
The above construction can be used to lower the total mass of an ALH manifold by a localised deformation near the conformal boundary at infinity, for geometries with very thin necks

"Topological instability at the conformal boundary"?



The existing higher-genus-mass-inequalities, which include conditions such as existence of a strictly negative mass aspect function (Lee & Neves; Gibbons), or product topology (Galloway et al.), cannot be improved without further conditions

Conjectures:



• For any genus of the conformal boundary at infinity there exists $m_c \leq 0$, depending only upon the conformal class of conformal infinity, so that for conformally compact vacuum asymptotically locally hyperbolic initial data sets we have

$$E \geq m_c$$
,

with m_c < 0 unless the boundary is spherical.

Conjectures:

• For any genus of the conformal boundary at infinity there exists $m_c \leq 0$, depending only upon the conformal class of conformal infinity, so that for conformally compact vacuum asymptotically locally hyperbolic initial data sets we have

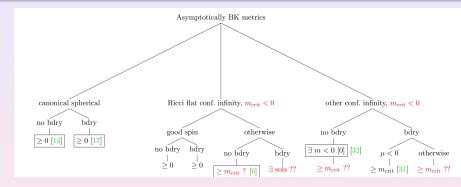
$$E \geq m_c$$
,

with $m_c < 0$ unless the boundary is spherical.

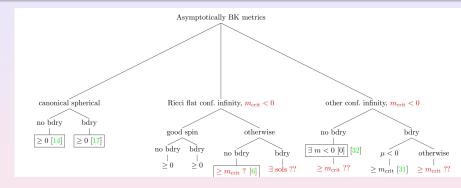
• m_c is attained on a static metric.

Conformally compact, with or without black-hole boundary

Conformally compact, with or without black-hole boundary



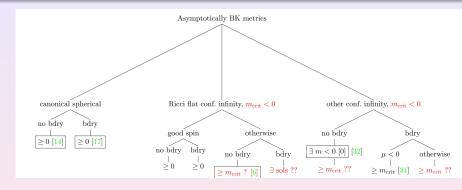
Conformally compact, with or without black-hole boundary



Negative mass solutions:

toroidal: Horowitz-Myers (1998)

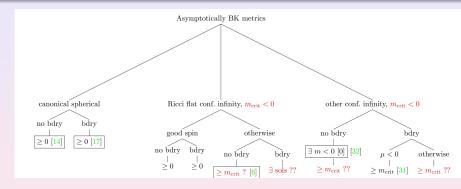
Conformally compact, with or without black-hole boundary



Negative mass solutions:

- toroidal: Horowitz-Myers (1998)
- quotients of a sphere: Clarkson & Mann (2006), dim 4+1

Conformally compact, with or without black-hole boundary



Negative mass solutions:

- toroidal: Horowitz-Myers (1998)
- quotients of a sphere: Clarkson & Mann (2006), dim 4+1
- higher genus: PTC, Delay, Wutte (XII 2021), dim 3+1