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The aim of this talk is to discuss some mathematical work in the direction of
understanding the physical asymptotic behaviour of gravitational radiation in gravitational
collapse or similar astrophysical situations.
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FOUR OVERARCHING QUESTIONS

(i) In gravitational collapse, what is the
(measurable?) asymptotic behaviour
of gravitational radiation at late times?

(ii) How is this asymptotic behaviour
along I+ related to asymptotic
behaviour towards I+?

(iii) What is the asymptotic behaviour of
gravitational radiation towards I+?
To what degree is peeling satisfied? Is
I+ smooth in the sense of Penrose?

(iv) How is the asymptotic behaviour
towards I+ related to the structure of
gravitational radiation in the infinite
past?
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Aim of this talk is to show how all these questions are related and to provide answers
to these questions within a simple model!
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THE SETUP

I Consider linearised gravitational perturbations around the exterior of mass
M-Schwarzschild (or Kerr): gM = −4(1− 2M/r)dudv + r2(dθ2 + sin2 θdϕ2)

I+H+
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v
=
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=
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v
=
−∞

I It is well-known that the extremal components of the Weyl tensor, the
Newman–Penrose scalars Ψ0, Ψ4, then satisfy decoupled equations:

T [s]
g Ψ|s|±s = 0, s = ±2 (Teukolsky)

I In this talk, we mostly focus on the simpler wave equation

�gφ(= ∇µ∇µφ) = 0 (Wave)
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THE QUESTION OF LATE-TIME ASYMPTOTICS

I GR is a dynamical theory with a well-posed initial value problem
[Choquet-Bruhat–Geroch]. We therefore address the question of late-time tails in
the context of an initial value problem:

I Given data for φ on some hyperboloidal initial hypersurface Σ, what is the
asymptotic behaviour of φ near i+?

i+

I+H+

Σ

data for φ

I Understanding the asymptotics alongH+ is important for understanding
problems related to the Strong Cosmic Censorship Conjecture

I On the other hand, one could hope for the asymptotics along I+ to eventually
become physically measurable

Of course, the asymptotics one obtains will depend on the exact assumptions one
makes on data. But what assumptions to make on data?
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CASE (I): INITIAL DATA FOR φ ARE OF COMPACT SUPPORT

i+

rφ
` =
?φ `

=
?

Σ

I But: Assumption of compact support not compatible with model of isolated
system!
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ù −
2−
`+φ `

=
C
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−2
`−
3 +

Σ

I Decomposed into spherical harmonics Y`m, suppressed m-index
I These late-time tails were originally predicted by Price and are called “Price’s

law” tails [Price, Gundlach, Pullin, Leaver...]
I Only recently proved rigorously in independent works by

[Angelopoulos–Aretakis–Gajic] and [Hintz]
I Constants C`,C′` are given by integrals over initial data and are generically

non-zero
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ù −
2−
`+φ `

=
C
′ v̀
−2
`−
3 +

Σ

I Decomposed into spherical harmonics Y`m, suppressed m-index
I These late-time tails were originally predicted by Price and are called “Price’s

law” tails [Price, Gundlach, Pullin, Leaver...]
I Only recently proved rigorously in independent works by

[Angelopoulos–Aretakis–Gajic] and [Hintz]
I Constants C`,C′` are given by integrals over initial data and are generically

non-zero

I But: Assumption of compact support not compatible with model of isolated
system!

9 / 31



CASE (I): INITIAL DATA FOR φ ARE OF COMPACT SUPPORT

i+

I+H+

Σ

in
fa
ll
in
g
m
as
se
s

I−

i−

I But: Assumption of compact support not compatible with model of isolated
system!

9 / 31



CASE (II): CONFORMALLY REGULAR/ PEELING INITIAL DATA

Capture asymptotic behaviour of data by requirement that its conformal structure be
smoothly extendable to I+ [Penrose].
=⇒ Sachs peeling: Data have asymptotic expansion in integer powers of 1/r.

i+

rφ
` =
C
ù −
1−
`+φ `

=
C
′ v̀
−2
`−
2 +

Σ

φ = A0

r
+ A1

r2
+ A2

r3
+ . . .

I Proved by [Angelopoulos–Aretakis–Gajic] as well
I Decay rates one power slower than in case of localised data
I Constants C`,C′` are linear combinations of A1, . . . ,A`+1 (independent of mass

M!)
I Faster decay for higher `-modes related to existence of certain conserved charges.

In Minkowski (M = 0):

∂u(r−2`∂v(r2∂v)`(rφ`)) = 0 (1)
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SKETCH OF THE PROOF I

I Consider first ` = 0 = M. Then the conservation law ∂u(r−2`∂v(r2∂v)(rφ`)) = 0
reads ∂u∂v(rφ0) = 0.

I Since we have on data that ∂v(rφ0) ∼ −A1
r2 ∼ −

A1
v2 , we thus get that

∂v(rφ0) ∼ −A1
v2 everywhere.

I This implies the conservation of the ` = 0-Newman–Penrose charge:

lim
v→∞

v2∂v(rφ0)(u, v) =: INP
0 [φ](u, v) ≡ −A1 (2)

i+

Σ

γ
u ∼ v

I Can moreover extend this conservation law a bit away from I+:
∂v(rφ0) ∼ INP

0 [φ]v−2 in depicted region.
I Finally, integrate this from γ:

rφ0 − rφ0|γ ∼ INP
0 [φ]

(
1
u
−

1
v

)
v→∞ : =⇒ rφ0|I+ ∼

INP
0 [φ]

u
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SKETCH OF THE PROOF II

I For higher `-modes, can now perform a similar argument, but with rφ0 replaced
by (r2∂v)`(rφ`). (Recall ∂u(r−2`∂v(r2∂v)`(rφ`)) = 0 in Minkowski.)

I The main observation is that if the data are conformally regular
(φ = A0

r + A1
r2 + A2

r3 + . . . ), then

∂v(r2∂v)`(rφ`)|Σ ∼ r−2 ∼ v−2 (4)

for any `, even though extra r-weights are introduced!

i+

Σ

γ
u ∼ v

I Can again extend this a bit away from I+: ∂v(r2∂v)`(rφ`) ∼ v−2

in depicted region.
I Finally, integrate this `+ 1 times from γ, each time picking up a

1/u-factor:

rφ`|I+ ∼
INP
` [φ]

u`+1
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ASIDE: GENERALISING TO TEUKOLSKY

The asymptotic analysis for the Teukolsky equation is actually very similar:

I It turns out that one can write down very similar conservation laws for it. If
M = 0, then

∂u(r−2`−2s∂v(r2∂v)`−s(r|s|+s+1Ψ
|s|−s
` )) = 0, s = ±2 (5)

I Thus, roughly speaking, the `-th mode of rΨ4 behaves like the `+ 2-nd mode of
rφ.

I Similarly, the `-th mode of r5Ψ0 behaves like the `− 2-nd mode of rφ. (Recall that
the lowest angular mode for Ψ|s|−s is ` = 2 = |s|.)

I For instance, for compactly supported data, one would get

rΨ4
`=2|I+ ∼ u−6(∼ rφ`=4|I+ ).

For conformally smooth data, one would get

rΨ4
`=2|I+ ∼ u−5(∼ rφ`=4|I+ ).

This has recently been proved by [Ma–Zhang].
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CASE (III): CONFORMALLY IRREGULAR INITIAL DATA

What happens if we assume data that are not conformally regular?

i+

rφ
` =
?φ `

=
?

Σ

φ = A0

r
+ A∗

r2
log r + . . .

Let’s revisit the previous proof!
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SKETCH OF THE PROOF I
I Consider first ` = 0 = M. Then the conservation law ∂u(r−2`∂v(r2∂v)(rφ`)) = 0

reads ∂u∂v(rφ0) = 0.
I Since we have on data that ∂v(rφ0) ∼ −A1

r2 ∼ −
A1
v2 , we thus get that

∂v(rφ0) ∼ −A1
v2 everywhere.

I If M 6= 0, no longer have global conservation law. Instead:

∂u∂v(rφ0) = −
(

1−
2M

r

)
2M · rφ0

r3
(6)

I If M 6= 0, no longer have global conservation law. Instead:

v2·∂u∂v(rφ0) = −
(

1−
2M

r

)
2M · rφ0

r3
·v2 → 0 (7)

I This implies the conservation of the ` = 0-Newman–Penrose charge:

lim
v→∞

v2∂v(rφ0) =: INP
0 [φ] ≡ −A1 (8)

i+

Σ

γ
u ∼ v

I Can moreover extend this conservation law a bit away from I+:
∂v(rφ0) ∼ INP

0 [φ]v−2 in depicted region.
I Finally, integrate this from γ:

rφ0 − rφ0|γ ∼ INP
0 [φ]

(
1
u
−

1
v

)
v→∞ : =⇒ rφ0|I+ ∼

INP
0 [φ]

u
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I Consider first ` = 0 = M. Then the conservation law ∂u(r−2`∂v(r2∂v)(rφ`)) = 0

reads ∂u∂v(rφ0) = 0.
I Since we have on data that ∂v(rφ0) ∼ −A1

r2 log r ∼ −A1
v2 log v, we thus get that

∂v(rφ0) ∼ −A1
v2 log v everywhere.

I If M 6= 0, no longer have global conservation law. Instead:

∂u∂v(rφ0) = −
(

1−
2M

r

)
2M · rφ0

r3
(9)

I If M 6= 0, no longer have global conservation law. Instead:

v2 log−1 v·∂u∂v(rφ0) = −
(

1−
2M

r

)
2M · rφ0

r3
·v2 log−1 v→ 0 (10)

I This implies the conservation of the modified ` = 0-Newman–Penrose charge:

lim
v→∞

v2log−1 v∂v(rφ0) =: INP,log
0 [φ] ≡ −A1 (11)

i+

Σ

γ
u ∼ v

I Can moreover extend this conservation law a bit away from I+:
∂v(rφ0) ∼ INP,log

0 [φ]v−2log v in depicted region.
I Finally, integrate this from γ:

rφ0 − rφ0|γ ∼ INP,log
0 [φ]

(
log u

u
−

log v
v

)
v→∞ : =⇒ rφ0|I+ ∼

INP,log
0 [φ]log u

u
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SKETCH OF THE PROOF II

I For higher `-modes, can now perform a similar argument, but with rφ0 replaced
by (r2∂v)`(rφ`). (Recall ∂u(r−2`∂v(r2∂v)`(rφ`)) = 0 in Minkowski.)

I The main observation is that if the data are conformally regular
(φ = A0

r + A1
r2 + A2

r3 + . . . ), then

∂v(r2∂v)`(rφ`)|Σ ∼ r−2 ∼ v−2 (12)

for any `, even though extra r-weights are introduced!

i+

Σ

γ
u ∼ v

I Can again extend this a bit away from I+: ∂v(r2∂v)`(rφ`) ∼ v−2

in depicted region.
I Finally, integrate this `+ 1 times from γ, each time picking up a

1/u-factor:

rφ`|I+ ∼
INP
` [φ]

u`+1
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I For higher `-modes, can now perform a similar argument, but with rφ0 replaced
by (r2∂v)`(rφ`). (Recall ∂u(r−2`∂v(r2∂v)`(rφ`)) = 0 in Minkowski.)

I The main observation is that if the data are conformally irregular
(φ = A0

r + A1
r2 log r + . . . ), then

∂v(r2∂v)`(rφ`)|Σ ∼ r`r−2 ∼ v`v−2 (13)

for any ` > 1, so extra r-weights are introduced!

i+

Σ

γ
u ∼ v

I Can again extend this a bit away from I+:
∂v(r2∂v)`(rφ`) ∼ v−2v` in depicted region.

I Finally, integrate this `+ 1 times from γ, each time picking up a
1/u-factor:

rφ`|I+ ∼
u`

u`+1
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CASE (III): CONFORMALLY IRREGULAR INITIAL DATA

What happens if we assume data that are not conformally regular?

i+ rφ
` = {
C
0 u −

1
log u+

C
ù −
1
+

φ `
=

{ C
′
0
v
−`
−2

lo
g v
+

C
′ v̀
−`
−2 +

Σ

φ = A0

r
+ A∗

r2
log r + . . .

I Constants C`, C′` are nonvanishing multiples of A∗.
I Higher `-modes no longer decay faster!

=⇒ If your solution is conformally irregular, then the cause of this irregularity is
precisely what you would measure in the late-time tails!
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SUMMARY

I We have seen so far that the precise behaviour along Σ, in particular towards I+,
matters a lot.

I In particular, the degree to which peeling is satisfied/violated determines what is
measured at late times.

I Aside: In fact, the stronger the violation of peeling, the easier (and more robust)
the argument becomes!
I For instance, it is expected that in the non-linear setting, the non-stationary terms will

dominate for higher `-modes if the data are compactly supported.
[Bizoń–Chmaj–Rostworowski, upcoming work by Luk–Oh]

I One might expect that if the data are instead sufficiently conformally irregular, then the
linear effects (which are moreover completely Minkowskian) continue to dominate!

I We will now try and understand dynamically what the behaviour towards I+

should be!
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THE SCHEMATIC PICTURE

I− I−
masses moving

infinitely far away from
each other, following

asymptotically
Keplerian orbits

C C

no
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THE MODEL SETUP

Analytical treatment of N infalling masses too difficult (for now). Instead, capture the
radiation emitted by the N infalling masses using quadrupole approximation
[Walker–Will, Damour, Christodoulou...].

C ∂ v
(r
φ)
| I−
≡
0

rφ|C ∼
|u| −1

in
fa
lli
n
g
m
as
se
s

??
I+

I Let the masses be enclosed by a null
cone C

I On C, impose data rφ|C = Q · |u|−p for
p = 1 (corresponding to hyperbolic
Keplerian orbits)

I Impose that rφ|I− ≡ 0 to the future of
C (no incoming radiation from I−)

This is a scattering problem that gives rise to a unique solution by existing scattering
theory [Dafermos–Rodnianski–Shlapentokh-Rothman]!

23 / 31



THE MODEL SETUP

Analytical treatment of N infalling masses too difficult (for now). Instead, capture the
radiation emitted by the N infalling masses using quadrupole approximation
[Walker–Will, Damour, Christodoulou...].

C ∂ v
(r
φ)
| I−
≡
0

rφ|C ∼
|u| −1

in
fa
lli
n
g
m
as
se
s

??
I+

I Let the masses be enclosed by a null
cone C

I On C, impose data rφ|C = Q · |u|−p for
p = 1 (corresponding to hyperbolic
Keplerian orbits)

I Impose that rφ|I− ≡ 0 to the future of
C (no incoming radiation from I−)

This is a scattering problem that gives rise to a unique solution by existing scattering
theory [Dafermos–Rodnianski–Shlapentokh-Rothman]!

23 / 31



THE MODEL SETUP

Analytical treatment of N infalling masses too difficult (for now). Instead, capture the
radiation emitted by the N infalling masses using quadrupole approximation
[Walker–Will, Damour, Christodoulou...].

C ∂ v
(r
φ)
| I−
≡
0

rφ|C ∼
|u| −1

in
fa
lli
n
g
m
as
se
s

??
I+

I Let the masses be enclosed by a null
cone C

I On C, impose data rφ|C = Q · |u|−p for
p = 1 (corresponding to hyperbolic
Keplerian orbits)

I Impose that rφ|I− ≡ 0 to the future of
C (no incoming radiation from I−)

This is a scattering problem that gives rise to a unique solution by existing scattering
theory [Dafermos–Rodnianski–Shlapentokh-Rothman]!

23 / 31



THE MODEL SETUP

I Sketch of rφ|C = Q · |u|−1: If the masses follow asymptotically hyperbolic
Keplerian orbits, i.e. if their relative velocities tend to constants, then along I+ the
quadrupole approximation predicts

dE
dt
∼ −

...
Q

TT
ij

...
Q

TT
ij = −C|u|−4 + . . . as u→ −∞ (14)

I In the case of the scalar field, energy decay along I+ measured by flux of Noether
current associated to time translations:

dEscalar

dt
= −

∫
S2

(∂u(rφ))2|I+ (15)

I It follows that ∂u(rφ)|I+ ∼ |u|−2, and so rφ|I+ ∼ |u|−1. One can make a more
elaborate argument at the level of gravitational perturbations to show this rate on
C instead of I+.
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ANALYSIS OF THE CORRESPONDING SOLUTION
I For simplicity, focus on spherically symmetric part φ0, and recall that

∂u∂v(rφ0) = −2M
(

1−
2M

r

)
rφ0

r3
. (16)

I Standard arguments give the very weak preliminary bound |φ0| . r−1/2

I Insert this into (16) and integrate from u = −∞:

|∂v(rφ0)| .
∫ u

−∞
2M

r1/2

r3
du . r−3/2

I In turn, integrate this from C, where r ∼ |u|, to
obtain that

|rφ0 − rφ0|C | .
∫

r−3/2 dv . |u|−1/2

I This is an improvement over the initial bound rφ0 . r1/2. Can iterate the two
integrations above to obtain the sharp decay:

|rφ0 − rφ0|C | . |u|−2 =⇒ rφ0 = Q|u|−1 + . . . (17)

I Finally inserting this back into (16) gives
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I Finally inserting this back into (16) gives

∂v(rφ0) =

∫ u

−∞

−2MQ
|u|r3

+ · · · =
∫ u

−∞

−2MQ
|u|(v− u)3

+ · · · = −2MQ
log r

r3
+ . . . (18)
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∫

r−3/2 dv . |u|−1/2

I This is an improvement over the initial bound rφ0 . r1/2. Can iterate the two
integrations above to obtain the sharp decay:

|rφ0 − rφ0|C | . |u|−2 =⇒ rφ0 = Q|u|−1 + . . . (17)

I Finally inserting this back into (16) gives

∂v(rφ0) =

∫ u

−∞

−2MQ
|u|r3

+ · · · =
∫ u

−∞

−2MQ
|u|(v− u)3

+ · · · = −2MQ
log r

r3
+ . . . (18)
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I The backscatter of radiation near spatial infinity leads to I+ not being smooth if
there is mass near spatial infinity.

I ...similar arguments work for higher `-modes (and higher spin fields)...
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IN SUMMARY:

Theorem (K. ’21).

C ∂ v
(r
φ)
| I−
≡
0

rφ|C ∼
|u| −1

rφ|I + ∼
|u| −1

rφ|I + ∼
u −

2
log u

φ|H
+
∼
v
−3

lo
g v

∂ v
(r
φ)
∼
r
−3

lo
g r

in
fa
lli
n
g
m
as
se
s

Sm
oothly

extend

I Under physical setup (infalling
masses coming from infinitely far
away at i−), future null infinity is not
smooth: Logarithmic terms arise from
quadrupole moment of infalling
matter

I This failure of smoothness/peeling
translates into something measurable
at late times:
rφ|I+ = −2MQu−2 log u + . . .

I Late-time tails to leading order
completely determined by what
monopole and quadrupole moment of
infalling matter near infinite past!

I To be contrasted with Price’s law for
compactly supported Cauchy data:
rφ|I+ = Cu−2 + . . .
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THE SITUATION FOR GRAVITATIONAL PERTURBATIONS

I Recall first the peeling rates for the Weyl tensor components Ψi:

Ψi = O
(

1
r5−i

)
near I+

Ψi = O
(

1
r1+i

)
near I−

I Recall also that Price’s law predicts that rΨ4|I+ ∼ u−6

I Quadrupole Approximation: The Bondi mass loss formula on I+ states that

dM
du

= −
∫
S2
|N|2 dΩ (∼ |u|−4 by quadrupole approx.), (19)

where the News function N satisfies dN
du

∣∣∣
I+

= rΨ4
∣∣
I+

I This already suggests that rΨ4 ∼ |u|−3 near I−, violating peeling. Indeed, this is
what is suggested by perturbative arguments as well [Walker–Will, Damour,
Christodoulou...]
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SITUATION FOR GRAVITATIONAL PERTURBATIONS

Conjecture (K. ’21).

C

no
in

co
m

in
g

ra
di

at
io
n

Ψ 0
∼
|u| −3

rΨ 4|I + ∼
|u| −3

rΨ 4|I + ∼
u −

4

Ψ
4 ∼

r
−1

in
fa
lli
n
g
m
as
se
s

Sm
oothly

extend

Ψ 4
∼
|u| −4

Ψ
0 ∼

r
−4

I Under physical setup (infalling masses
coming from infinitely far away at i−),
Ψ4 fails to peel near I−, and Ψ0 fails
to peel near I+. In particular, the
radiation field r5Ψ0|I+ is not defined.

I This failure of smoothness/peeling
translates into something measurable
at late times: rΨ4|I+ ∼ MQu−4 + . . .

I To be contrasted with Price’s law for
compactly supported Cauchy data:
rΨ4|I+ = Cu−6 + . . .

Thank you for your attention!
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SPACE FOR QUESTIONS AND COMMENTS
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