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Part I: Weak Cosmic Censorship and
Naked Singularities



The Weak Cosmic Censorship Conjecture (in 3 + 1 Dimensions)

Conjecture (Weak Cosmic Censorship for Einstein Vacuum Equations)

If the initial data is complete, regular, and asymptotically flat, then singularities
in the corresponding maximal spacetime are generically hidden inside a black
hole.

I At time of original formulation (Penrose 69) only evidence originally was
that all known explicit examples satisfied the conjecture!
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The Weak Cosmic Censorship Conjecture (in 3 + 1 Dimensions)

Conjecture (Weak Cosmic Censorship for Einstein Vacuum Equations)

If the initial data is complete, regular , and asymptotically flat, then

singularities in the corresponding maximal spacetime are generically hidden

inside a black hole.

I At time of original formulation (Penrose 69) only evidence originally was
that all known explicit examples satisfied the conjecture!

I A heuristic mechanism and also that fact that one should consider
“generic” data was only understood much later. (Christodoulou 94,99)

I As with other fundamental questions in relativity (such as Strong Cosmic
Censorship), the precise notion of regular initial data and singularity could
affect the validity of the conjecture.



A Digression: What Should “Regular” Initial Data and “Singularity” Mean?

I Easiest is to require initial data to be smooth, and say that a singularity
occurs when smoothness is lost. Though this framework suffices in other
situations, it is actually quite naive from various perspectives.

I Some necessary conditions for a function space to study weak cosmic
censorship:

1. Need well-posedness of the Cauchy problem in the space.

2. Should reproduce familiar phenomenology (e.g. stability of Minkowski
space).
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Definition of a Naked Singularity

A singularity is naked if there exists A > 0 and a collection {γi} of suitably
normalized future oriented null geodesics which may start arbitrarily far out
along an asymptotically flat cone and go extinct in affine time less than A.
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Spherically Symmetric Matter Sourced Spacetimes

As a warm-up to studying the Einstein vacuum equations, Christodoulou
explored this conjecture in the situation when the spacetime is assumed to be
spherically symmetric and is sourced by a scalar field:

Ricµν (g) = ∂µφ∂νφ, �gφ = 0.

His main results were the following:

Theorem (Christodoulou 1994,1999)

There exist naked singularities for spherically symmetric Einstein-scalar field
system! However, generically, naked singularities do not occur.

(See also large heuristic/numerical literature on naked singularities associated
to critical phenomenon...)
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Naked Singularities for the Einstein Vacuum Equations?

Despite Christodoulou’s example, until recently there has been no progress in
constructing naked singularities for the Einstein vacuum equations

Ric(g) = 0.

There are various reasons why:

I Christodoulou’s construction relied on a reduction, under a “twisted”
self-similarity, of the spherically symmetric Einstein-scalar field system to a
two dimensional autonomous system and then a corresponding phase plane
analysis. For the Einstein vacuum equations, one cannot expect such a
dramatic reduction, and thus a completely different approach is needed.

I If one tries to construct such a spacetime dynamically, one needs to
simultaneously solve a low-regularity (due to the presence of singularities)
and a global existence problem (since one has to construct the maximal
possible spacetime and show that no black hole region forms).
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Naked Singularities do Exist!

Despite the above difficulties, we have

Theorem (Rodnianski–S., Informal Version)

There exist naked singularities for the Einstein vacuum equations

Ric(g) = 0.

In the rest of the talk we will

1. Review Christodoulou’s solutions in more detail.

2. Present our naked singularities and compare with Christodoulou’s
solutions.
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Part II: Christodoulou’s Solutions



Symmetries of the Spherically Symmetric Einstein-scalar field system

A solution is described by a triple (h, r , φ) where h is a 1 + 1 dimensional
metric, r is the area radius function, and φ is the scalar field.

There are two important symmetries:

1. a ∈ R+ acts by (h, r , φ) 7→
(
a2h, ar , φ

)
.

2. b ∈ R acts by (h, r , φ) 7→ (h, r , φ+ b).

Definition
Let k ∈ R. We say that a solution (h, r , φ) is “k-self-similar” if there exists a
1-parameter family of diffeomorphisms {fs}s>0 such that

f ∗s h = s2h, f ∗s r = sr , f ∗s φ = φ− k log(s).

If k = 0, then we say that solutions are “scale-invariant.”
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Scale-invariant Solutions
The scale-invariant solutions may be written down explicitly and are
parametrized by the value a

.
= ∂v (rφ) |(u,v)=(−1,0). For a� 1, the spacetime is

as follows:

{v
=

0}

{u
=
−1}

I +

{u
=

0}

flat

flat

Though the scalar field is only continuous, these are perfectly physical solutions
representing a spherical impulsive gravitational wave.



Solutions of Bounded Variation

Theorem (Christodoulou, 1993)

The spherically symmetric Einstein-scalar field system is well-posed within the
class of “solutions of bounded variation” (BV-solutions).

I Bounded variation spacetimes are locally modeled on scale-invariant
solutions. That is, if you repeatedly rescale around a point on {r = 0} you
converge to a scale-invariant solution.



0 < k � 1 Self-Similar Solutions I

For 0 < k � 1, the solutions cannot be written down explicitly. Nevertheless,
Christodoulou showed that there exist solutions which correspond to naked
singularities:

{v
=

0}

{u
=
−1}

I +

singularity



0 < k � 1 Self-Similar Solutions

He could call his solutions naked singularities for the following two reasons:

1. The initial data for the scalar field is C 1,α, and thus, the initial data is
better than a solution of bounded variation.

2. The solution cannot be extended to the singular point and remain even a
solution of bounded variation. For example:

2.1 Hawking Mass Concentration at Singularity: limr→0
mH
r
∼ k > 0.

2.2 Scalar-field blow-up:
∫ 0
−1

∣∣∣ ∂φ∂u ∣∣∣ |v=0 du =∞.

Final Remarks:

I Christodoulou has to apply a suitable truncation to obtain an
asymptotically flat solution.

I The limit as k → 0 is singular. In fact, ∂vφ ∼ k−1/2!
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Part III: Naked Singularities in Vacuum



Analogue of Self-Similar Solutions(?)

I We look for a solution (M, g) which possesses a conformally Killing vector
field K :

LKg = 2g .

I We must first pick a concrete gauge. Natural to work in double-null
coordinates

g = −2Ω2 (du ⊗ dv + dv ⊗ du) + /gAB

(
dθA − bAdu

)
⊗
(
dθB − bBdu

)
,

and to require that K = u∂u + v∂v is the generator of scaling symmetry.

I More explicitly, this implies that there exist Ω̊, b̊A, and /̊gAB
so that

Ω
(
u, v , θA

)
= Ω̊

(v
u
, θA
)
, bA

(
u, v , θB

)
= u−1b̊A

(v
u
, θB
)
,

/gAB

(
u, v , θC

)
= u2

/̊gAB

(v
u
, θC
)
.
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Null Constraint Equations Along {v = 0}

I Along {v = 0} the null constraint equations implies that the following
equation must hold along the sphere S2 at (u, v) = (−1, 0):

/divb−Lb /divb−
1

2

(
/divb
)2

=
1

4

∣∣ /∇⊗̂b∣∣2 + 4Lb log Ω− 2 (Lb log Ω)
(
/divb
)
.

I Appears to be quite underdetermined; however, one can show that any
solution satisfies

LbΩ|v=0 = 0, Lb/g |v=0 = 0.

I After a further (scale-invariant) coordinate change one can take without
loss of generality that

b = 0, Ω = 1, /gAB
|v=0 = u2

/g
(round)

AB
.

This is a special rigidity associated to 3 + 1 dimensional problems!
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Fefferman–Graham Expansions

Theorem (Fefferman–Graham, 1985)

There exist formal power series in v
u

representing scale-invariant solutions.
Furthermore, these formal ambient metrics are uniquely characterized by

tf
(
∂v /g
)
AB
|(u,v)=(−1,0).

In the following diagram we have shaded in the region formally covered by FG’s
power series:

{v
=

0}

{u = 0}

formal power series



Existence of True Fefferman–Graham Spacetimes

Theorem (Rodnianski–S., 2018)

All of the formal expansions of FG correspond to actual solutions in a region
{u ∈ (−∞, 0), v

−u
∈ [0, ε)} for suitable 0 < ε� 1.

{ v−
u =

ε}
{v

=
0}

{u = 0}

true solution



Extensions to the Past

I It is natural to ask about “filling-in” the cone with a regular spacetime.
There turns out to be a rigidity, and we must fill-in with a flat spacetime:

{v
−

u
=

0
}

{v
=

0}

I
−

flat

I This corresponds to a spherical impulsive wave; the metric will only be
initially continuous across {v = 0}, and there is no real loss of regularity
at the singularity. This is analogous to the case of k = 0 self-similar
solutions in spherical symmetry.
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Analogue of k-Self-Similar Solutions?
I All Fefferman–Graham solutions have the property that the scaling vector

field K is null and tangent to the cone {v = 0}:

(S2, u2
/g

(round))

O

I Natural to ask if we can construct a spacetime where the scaling
symmetry is spacelike along the past cone of the singularity:

(S2, /g)

γ

O

The flow of K yields a dilation of /g only after a diffeomorphism! This can
be considered analogous to the twisting of the k-self-similar solutions of
Christodoulou.
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How to Break the Rigidity

I Again we work in double-null coordinates

g = −2Ω2 (du ⊗ dv + dv ⊗ du) + /gAB

(
dθA − bAdu

)
⊗
(
dθB − bBdu

)
,

and require that K = u∂u + v∂v is the generator of scaling symmetry.

I However, we now allow the lapse Ω to be singular

Ω ∼
(

v

−u

)−κ
,

for some 0 < κ� 1.

I Of course, now the metric does not even extend continuously to {v = 0}
in these coordinates. But we can define a new coordinate
v̂
.

= (1− 2κ)−1 v 1−2κ and obtain

g = −2Ω2v 2κ (du ⊗ dv̂ + dv̂ ⊗ du)+/gAB

(
dθA − bAdu

)
⊗
(
dθB − bBdu

)
.

Now the metric extends to {v = 0}. (Though the form of the self-similar
field is changed to u∂u + (1− 2κ) v̂∂v̂ !)
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I However, we now allow the lapse Ω to be singular

Ω ∼
(

v

−u

)−κ
,

for some 0 < κ� 1.

I Of course, now the metric does not even extend continuously to {v = 0}
in these coordinates. But we can define a new coordinate
v̂
.

= (1− 2κ)−1 v 1−2κ and obtain

g = −2Ω2v 2κ (du ⊗ dv̂ + dv̂ ⊗ du)+/gAB

(
dθA − bAdu

)
⊗
(
dθB − bBdu

)
.

Now the metric extends to {v = 0}. (Though the form of the self-similar
field is changed to u∂u + (1− 2κ) v̂∂v̂ !)



Null Constraints Revisited

I Now, along {v̂ = 0} the null constraint equations along the sphere S2 at
(u, v) = (−1, 0) become:

/divb − Lb /divb−
1

2

(
/divb
)2

=

1

4

∣∣ /∇⊗̂b∣∣2 − 4κ + 4Lb log Ω− 2 (Lb log Ω)
(
/divb
)
.

I The flexibility of κ allows us to break the rigidity, and we can find an
infinite dimensional set of solutions. In the small data regime, we can
essentially freely choose /g , /curl(b), and vκΩ.
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Embedding the Twisted Cones in a Spacetime

We have the following:

Theorem (Rodnianski–S., 2019)

Along {v̂ = 0} we prescribe exactly self-similar data and give transversal data
satisfying a suitable matching condition. Then we always have existence of the
solution in a scale-invariant region:

{v̂
=

0}

dat
a

{u = 0}



Extending to a Global Spacetime: Exterior of a Naked Singularity

We may globalize our construction to the future.

Theorem (Rodnianski–S., 2019)

There exists a naked singularity exterior: If we suitably extend the transversal
data to an asymptotically flat cone, the corresponding maximal spacetime is
contained in the region below:

{v̂
=

0}

as
ym

pto
tic

al
ly

flat
dat

a

I +

lig
ht

co
ne

of
sin

gu
la

rit
y

singularity

γ

The singularity is naked in that arbitrarily far out ingoing null curves originating
from the initial data (such as γ) intersect the future light cone of the
singularity in time 1.



Filling in the Light Cone
It is also of great interest to extend our solutions to the interior of the cone
{v̂ = 0}:
Theorem (S., 2022)

There exists a naked singularity interior: The solution in the previous theorem
may be extended to the interior of the cone {v̂ = 0}, and in this extension the
initial data forms a complete asymptotically flat cone:

{v̂
=

0}
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singularity



Comparison with Christodoulou’s Solutions I: Regularity of Initial Data

I Across the cone {v = 0} the initial data of our solutions are C 1,γ for
γ ∼ ε2. The limited regularity is only in the v -direction; one can take
arbitrarily many derivatives tangent to S2. This is qualitatively similar to
Christodoulou’s solutions.

I The initial data for Christodoulou’s solutions are large in that
∂vφ|(u,v)=(−1,0) ∼ k−1/2. Similarly, our initial data is large in that
tf
(
∂v /g
)
|(u,v)=(−1,0) ∼ ε−1.

I Of course, for the Einstein vacuum equations, we cannot appeal to a
well-posedness result for BV -solutions. However, away from the “axis,” we
can appeal to work of Luk–Rodnianski which allows for the v -derivative of
the metric to only be in L2, as long as one has sufficient angular regularity.
Furthermore, we expect that if we require Hölder-continuity in v (as well
as sufficient additional angular regularity) then one may establish a
well-posedness statement which includes the initial data we have.
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Comparison with Christodoulou’s Solution II: Nature of the Singularity

I In drawing analogies between the Einstein vacuum equations and the
spherically symmetric Einstein-scalar field equations, the standard rules for
comparison are

∂vφ↔ tf
(
∂v /g
)

= χ̂, ∂uφ↔ tf
(
∂u/g
)

= χ̂.

I Christodoulou’s solutions have
∫
u
|∂uφ| du =∞ at the singularity. Our

solutions have that
∫
γ

∣∣Ωχ̂∣∣ ds =∞ for suitable null geodesics γ which

converge to the singularity. (Also can find Jacobi fields which blow-up
along suitable null geodesics.)

I Another aspect of the singularity for Christodoulou’s solution is that along
the past cone of the singularity, we have mH

r
∼ ε2, where mH is the

Hawking mass. We similarly have that
mH(S2

u,0)√
Area(S2

u,0)
∼ ε2.

I The above considerations are formally consistent with a C 0-singularity of
the metric.
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A Few Natural Questions

We close with some natural questions:

1. Are the naked singularities we construct unstable to trapped surface
formation? Yes, we believe so, and we plan to address this in a future
work.

2. Are all naked singularities unstable? This remains a wide open problem...

3. Is it possible to construct naked singularities with smooth initial data?
One expects so, but this remains an open problem.
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