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The Kerr family of black holes

Kerr black holes are solutions to EVE characterized by parameters
M > 0 and |a| ≤M .

• a = 0: Schwarzschild,
• |a| < M : subextremal.

r
=

r+
H+

r =
∞

I+

I−H−

Kerr black holes are thought to be
• unique in the class of regular stationary, asymptotically flat

black hole solutions to EVE;
• the final state of generic gravitational collapse.

Understanding their stability properties is essential!
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The Teukolsky master equation

To prove nonlinear stability, we must understand linear stability
very, very well.

The key to it is the Teukolsky equation{
2g + 2s

ρ2 (r −M)∂r + 2s
ρ2

(
M(r2 − a2)

∆ − r − ia cos θ
)
∂t

+ 2s
ρ2

[
a(r −M)

∆ + i
cos θ
sin2 θ

]
∂φ + s

ρ2

(
1− s cot2 θ

)}
α[s] = 0

(TE)

with s = ±2, which describes the dynamics of gauge-invariant
curvature components.

More generally, can take s ∈ 1
2Z:

• s = 0: scalar waves;
• s = ±1: some gauge-invariant electromagnetic quantities; ...

Since α[s] = 0 for a Kerr metric, want to show stability of the zero
solution to (TE). The rest is controllable by gauge.
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The Teukolsky radial ODE

(In)formally, a solution to (TE) is an infinite superposition of modes

α
[s], aω
mΛ = e−iωt · eimφ · S[s], aω

mΛ (θ) · (r2 + a2)−1/2∆−|s|/2u[s](r)

where u[s] solves the Schrödinger-type ODE(
u[s]
)′′

+
(
ω2 − V [s]

)
u[s] = 0 , (TO)

V [s] = ∆Λ + 4Mramω − a2m2

(r2 + a2)2 + s2 (r −M)2

(r2 + a2)2 +
∆
(
a2∆ + 2Mr(r2 − a2)

)
(r2 + a2)4

− 2is
ω
(
r(r2 + a2) +M(a2 − 3r2)

)
+ am(r −M)

(r2 + a2)2 ,

with respect to a rescaled variable r∗ (r∗ = ±∞ when r =∞, r+).
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A sca�ering interpretation of (in)stability

Consider the sca�ering map for each (ω,m,Λ).

H+ I+

I−H−

R[s]
T[s]

energy 1

If |R| =∞, have mode instability.

Usually, this is forbidden by the
conserved energy.

The superradiance condition

ω

ω −mω+
< 0, ω+ := a

2M(M +
√
M2 − a2)

,

opens door to possible superradiant instabilities!
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The ubiquity of instabilities

In fact, since Zeldovich/Teukolsky–Press ’72 it is expected that
superradiant instabilities are the norm...
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The exception that confirms the rule

And yet...

no unstable modes were detected.

If superradiant instabilities are the norm, the (massless) Teukolsky
equation appear to be the exception: why?
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Mode stability



Mode stability à la Whiting I

Theorem (Whiting ’89)

Fix |a| < M , and (ω,m,Λ) such that Imω > 0. Then the only
solution to (TO) with “good” bdry conditions is the zero solution.

To prove this, Whiting shows that (TO) is isospectral to the ODE

Then, it is easy to conclude: ˜(TO) has no superradiance, so it can
have no unstable modes; by isospectrality neither can (TO).
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Mode stability à la Whiting II

The isospectrality is shown as follows: one checks (by hand) that
the injective map u[s] 7→ ũ[s]

ũ[s] = (x2 + a2)1/2(x− r−)−s(x− r+)−2iMωe−iωx

×
∫ ∞

r+

{
e

2iω
r+−r−

(x−r−)(r−r−)(r − r−)i
2Mr−ω−am

r+−r− (r − r+)−i
2Mr+ω−am

r+−r− eiωr

×∆−s/2(r2 + a2)−1/2u[s](r)
}
dr

maps solutions of (TO) to solutions of ˜(TO).

Same holds for ω ∈ R\{0}, but need regularization argument
(Shlapentokh-Rothman ’15).

Note: transformation breaks down as |a| →M .
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Mode stability à la Whiting III

But a similar strategy works! For |a| = M , the map (TdC ’19)

ũ[s] = (x2 + 2M2)1/2(x−M)−s(x− 2M)−2iMω

×
∫ ∞

M

{
e

2iω
M

(x−M)(r−M)(r −M)−2iMωe2M2i(ω−mω+)(r−M)−1
eiωr

×∆−s/2(r2 + a2)−1/2u[s](r)
}
dr

defined whenever Imω ≥ 0 and ω 6= 0,mω+ also shows
isospectrality of (TO) to a new, superradiance-less ODE.

In summary,

Theorem (mode stability)

If Imω ≥ 0 with ω 6= 0, then the only solution to (TO) with “good”
boundary conditions, either for |a| < M , or for |a| = M if
additionally ω 6= mω+, is the zero solution.
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A new approach (joint with M. Casals) I

But why should (TO) and ˜(TO) be isospectral?

The answer might
have been in the literature already...

A nontrivial mode exists if its
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A new approach (joint with M. Casals) II

A nontrivial mode exists if its
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A new approach (joint with M. Casals) III

A nontrivial mode exists if its

The recursion coe�icients satisfy

αr
n−1γ

r
n = n {[n− σ1(m)][n(n− σ1(m)) + σ2(m)] + σ3(m)} ,
βr

n = −Λ− s2 + 8M2ω2 + 2n(iω(r+ − r−)− n)
+ [2n+ 1− iω(r+ − r−)]σ1(m)− σ2(m) ,

where σi(m) are symmetric polynomials in m = (m1,m2,m3)
and the intermediate constants are defined by

m1 = s+ 2iMω , m2 = i
2M2ω − am√
M2 − a2

, m3 = −s+ 2iMω .

[Casals–TdC ’21]

13 / 22



A new approach (joint with M. Casals) III

A nontrivial mode exists if its

The recursion coe�icients satisfy

αr
n−1γ

r
n = n {[n− σ1(m)][n(n− σ1(m)) + σ2(m)] + σ3(m)} ,
βr

n = −Λ− s2 + 8M2ω2 + 2n(iω(r+ − r−)− n)
+ [2n+ 1− iω(r+ − r−)]σ1(m)− σ2(m) ,

where σi(m) are symmetric polynomials in m = (m1,m2,m3)
and

the intermediate constants are defined by

m1 = s+ 2iMω , m2 = i
2M2ω − am√
M2 − a2

, m3 = −s+ 2iMω .

[Casals–TdC ’21]

13 / 22



A new approach (joint with M. Casals) III

A nontrivial mode exists if its

The recursion coe�icients satisfy

αr
n−1γ

r
n = n {[n− σ1(m)][n(n− σ1(m)) + σ2(m)] + σ3(m)} ,
βr

n = −Λ− s2 + 8M2ω2 + 2n(iω(r+ − r−)− n)
+ [2n+ 1− iω(r+ − r−)]σ1(m)− σ2(m) ,

where σi(m) are symmetric polynomials in m = (m1,m2,m3)
and the intermediate constants are defined by

m1 = s+ 2iMω , m2 = i
2M2ω − am√
M2 − a2

, m3 = −s+ 2iMω .

[Casals–TdC ’21]

13 / 22



A new approach (joint with M. Casals) IV

Theorem (Casals–TdC ’21)

Take |a| < M . The point spectrum of(
u[s]
)′′

+
(
ω2 − V [s]

)
u[s] = 0 , (TO)

V [s] = ∆Λ + 4Mramω − a2m2

(r2 + a2)2 + s2 (r −M)2

(r2 + a2)2 + ∆[a2∆ + 2Mr(r2 − a2)]
(r2 + a2)4

− 2isω[r(r2 + a2) +M(a2 − 3r2)] + am(r −M)
(r2 + a2)2 ,

for solutions with “good” boundary conditions

has symmetries
• m1 ↔ m3: recovers Teukolsky–Starobinsky identities;
• m2 ↔ m3: recovers Whiting’s integral transformation;
• compositions thereof.

(conjectured by Aminov, Grassi, Hatsuda ’20)

Hence, mode stability holds for (TE).
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An aside: Kerr-dS

Hidden symmetries’ method is more flexible:

Proposition (Casals–TdC ’21)

Consider subextremal Kerr-dS (solves EVE with > 0 cosm.
constant). Take ηj = i (−1)j(ω−mωj)

2κj
, and set

m1 = s− η1 − η0 , m2 = η0 − η1 , m3 = −s− η1 − η0 , m4 = η0 + η1 + 2η2 .

Then, (TO) has spectral symmetries m1 ↔ m2 ↔ m3 ↔ m4. Hence,
mode stability holds for some superradiant freqs:

0.2 0.4 0.6 0.8 1.0
a/M

0.1

0.2

0.3

0.4

ω/m

superradiant

superradiant but
modally stable

non-superradiant
and modally stable

Open: (dis)prove mode stability for the blue region.
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Beyond mode stability



Shortcomings of mode stability

Through mode stability:

no modes

0 m
2M

ω

M

a

But one could have modes at
• |ω|+ |m|+ |Λ| → ∞, i.e. high frequencies;
• ω → 0, i.e. low frequencies;
• ω → mω+, |a| →M , both high and low!
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A complete picture for |a| < M

Theorem (Shlapentokh-Rothman–TdC ’20)

For s = 0,±1,±2, there are also no modes at either of
• high frequencies: |ω|+ |m|+ |Λ| → ∞;
• low frequencies: |ω|+ |m|+ |Λ| <∞, ω → 0;

in the full subextremal range |a| < M .

Thus, solutions to (TE) are bounded and, in fact, decay in time.
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The shoulders of giants

Solutions of (TE) remain bounded in time and, in fact, decay if...

0 |a|�M M |a|

0

1

2

|s|

wave equation ’0
0s ’08–’14 Dafermos–Rodianski–Shlapentokh-Rothman’14

electromagnetic

perturbations
Ma ’17

Pa
sq

.
’1

6

gravitational

perturbations
DHR ’18

Ma ’17D
H

R
’1

6

Aretakis ’11
m = 0

mode stability,

TdC ’19
Shlapentokh-Rothman–TdC ’20

Beyond the Teukolsky equations:
• Nonlinear stability in a = 0 subfamily:

Dafermos–Holzegel–Rodnianski–Taylor ’21. (|a|�M underway, Klainerman–Sze�el, Giorgi...)

• Decay of linearized EVE for |a| �M : Andersson–Bäckdahl–Blue–Ma

and Häfner–Hintz–Vasy ’19.

• Coupled electromagnetic+gravitational perturb: Giorgi ’19...
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Low frequencies (|m|+ |Λ| . 1, ω → 0)

If |ω| 6= 0, (TO) has nontrivial long-range ImV [s],

V [s] =
∆Λ + 4Mramω − a2m2

(r2 + a2)2 + s2 (r −M)2

(r2 + a2)2 +
∆
(
a2∆ + 2Mr(r2 − a2)

)
(r2 + a2)4

− 2is
ω
(
r(r2 + a2) +M(a2 − 3r2)

)
+ am(r −M)

(r2 + a2)2 .

To deal with this, we use an idea of Chandrasekhar: set

ψ
[s]
(k) ≡

(
k adequetely r-weighted null derivatives of u[s]

)
,

for k = 0, . . . , |s|. Then Ψ[s] ≡ ψ[s]
(|s|) satisfies

(
Ψ[s])′′ + (ω2 − V [s])Ψ[s] = a

|s|−1∑
k=0

J
[s]
k

(
ψ(k), imψ(k)

)
, (RWO)

with V [s] real and short-range.
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High frequencies (|ω|+ |m|+ |Λ| → ∞) I

New potential V [s] is like the scalar wave’s: e.g. have trapping at
high frequencies.

This is in addition to the issue of superradiance!

Luckily for Kerr stability,
• trapping is unstable
• if (ω,m,Λ) is superradiant, it cannot be trapped*.

[Dafermos–Rodnianski ’09, DRSR ’14]

*This disjointness breaks down as |a| →M .
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High frequencies (|ω|+ |m|+ |Λ| → ∞) II

Coupling terms in

(
Ψ[s]

)′′
+
(
ω2 − V [s]

)
Ψ[s] = a

|s|−1∑
k=0

J
[s]
k

(
ψ(k), imψ(k)

)
, (RWO)

means the correspondence Ψ[s] ↔ scalar wave is not perfect

• Killing energy for scalar waves,

ω2|Ψ[s](∞)|2 + ω(ω −mω+)|Ψ[s](−∞)|2

good frequency weights

= −a
|s|−1∑
k=0

∫ ∞
−∞

ω Im[Ψ[s] · J[s]
k ]dr∗

is not conserved

,

• TS energy for spin-weighted waves [Teukolsky–Press ’74],

ω2 Cs
DIs
|Ψ[s](∞)|2 + ω(ω −mω+)|Ψ[s](−∞)|2

frequency weights which behave weirdly [Casals–TdC ’21]

= 0

is conserved

.

Energies are bad on their own, but turn out to go well together.
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In practice...

ω

Λ

ωhighωhigh ωlow ωlow

ε−1ω2 ε−1ω2εω2 εω2

ω

Λ

low
freqs

m
od

e
st

ab
ili

ty
m

ode
stability

maybe
superradiant,

never
trapped

comparable comparable
angular dominated

time
dominated

time
dominated

maybe trapped,
maybe superradiant*

maybe superradiant,
never trapped

never superradiant,
never trapped

* �antitatively disjoint if |a| < M , but lose control as ω → mω+, |a| →M .
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Thank you!
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