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The Kerr family of black holes

Kerr black holes are solutions to EVE characterized by parameters
M > 0and |a| < M.

® g = 0: Schwarzschild,

® |a| < M: subextremal.
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Kerr black holes are thought to be

® unique in the class of regular stationary, asymptotically flat
black hole solutions to EVE;

¢ the final state of generic gravitational collapse.
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The Kerr family of black holes

Kerr black holes are solutions to EVE characterized by parameters
M > 0and |a| < M.

N :[+
. AQ\\
® g = 0: Schwarzschild, N
® |a| < M: subextremal. ©
o

Kerr black holes are thought to be

® unique in the class of regular stationary, asymptotically flat
black hole solutions to EVE;

¢ the final state of generic gravitational collapse.

Understanding their stability properties is essential!
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The Teukolsky master equation

To prove nonlinear stability, we must understand linear stability
very, very well.
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The Teukolsky master equation

To prove nonlinear stability, we must understand linear stability
very, very well. The key to it is the Teukolsky equation

2 25 ((M(r? — a?
{Dg+p—§(r—M)8r+p—§<—(rA a)—r—iacos9)6t
(TE)
2s [a(r— M)  cosf s 9 s
P|: A +zsin29]6¢+/?(1—scot 9)}06[]20

with s = +2, which describes the dynamics of gauge-invariant
curvature components.

Since al*l = 0 for a Kerr metric, want to show stability of the zero
solution to (TE). The rest is controllable by gauge.
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P (3

2s [a(r—M) . cosf
A sin? @

] Oy + /% (1 —scot?6) }oc[s] =0

with s = +2, which describes the dynamics of gauge-invariant
curvature components. More generally, can take s € %Z:

® s = (: scalar waves;

® s = £1: some gauge-invariant electromagnetic quantities; ...

Since al*l = 0 for a Kerr metric, want to show stability of the zero
solution to (TE). The rest is controllable by gauge.
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The Teukolsky radial ODE

(In)formally, a solution to (TE) is an infinite superposition of modes

agfl]}\aw — e—z’wt . ez’mgb . Siz]/&aw(e) . (7,2 + a2)—1/2A—|s|/2u[s] (’I")
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The Teukolsky radial ODE

(In)formally, a solution to (TE) is an infinite superposition of modes
alshaw — gmiwt gimé  Glshaw gy (2 4 2y =172 A=lsl/2y [s] (1)
mA T mA

where ul*] solves the Schrédinger-type ODE

(u[s]>” n (w2 _ V[S]) ulfl =0, (TO)
vl = AA + AMramw — a*m?> 2 (r=M)> A (a2A +2Mr(r? — a2))
B (r? + a?)? e (r? +a?)? (r? +a?)*
() M 3r%) + a0
— 2is >
(r?2 +a?)?

with respect to a rescaled variable r* (r* = 00 when r = oo, 7).
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A scattering interpretation of (in)stability

Consider the scattering map for each (w, m, A).
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A scattering interpretation of (in)stability

Consider the scattering map for each (w, m, A).

If || = oo, have mode instability.

Usually, this is forbidden by the
conserved energy. E.g., if a = 0,

IRPZ+ZP =1 = R <1< .
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A scattering interpretation of (in)stability

Consider the scattering map for each (w, m, A).

If || = oo, have mode instability.

Usually, this is forbidden by the

A conserved energy. Butif a # 0,
R+ —2 gP=1 = 7.
W —mwy
The superradiance condition
d <0 Wy = a
w—mwy T oMM+ VAME = a?)

opens door to possible superradiant instabilities!
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The ubiquity of instabilities

In fact, since Zeldovich/Teukolsky—Press ’72 it is expected that
superradiant instabilities are the norm...

NATURE VOL. 238 JULY 28 1972

LETTERS TO NATURE

PHYSICAL SCIENCES

Floating Orbits, Superradiant
Scattering and the Black-hole Bomb
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The exception that confirms the rule

And yet...

PERTURBATIONS OF A ROTATING BLACK HOLE. II.
DYNAMICAL STABILITY OF THE KERR METRIC*

WiLLiaM H. PResst AND SAUL A. TEUKOLSKY]
California Institute of Technology, Pasadena

ABSTRACT

This paper tests the dynamical stability of rotating
holes by numerical integration of the separable perturbation equations for the Kerr metric. No
instabilities are found in any of the dozen or so lowest angular modes tested, for any value of
specific angular momentum 0 < a < M.

These stability results add credibility to the use of the Kerr metric in detailed astrophysical models.

no unstable modes were detected.
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The exception that confirms the rule

And yet... even with good tools for the numerics,
Proc. R. Soc. Lond. A 402, 285-298 (1985)
Printed in Great Britain

An analytic representation for the quasi-normal
modes of Kerr black holes

By E. W. LEAVER

Department of Physics, University of Utah, Salt Lake City,
Utah 84112, U.S.A.

the quasi-normal frequencies and angular separation constants are defined
as the simultaneous roots of two characteristic continued fraction equations, and
these may be solved numerically with high precision.

no unstable modes were detected.
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The exception that confirms the rule

And yet...
Proc. R. Soc. Lond. A 402, 285-298 (1985)
Printed in Great Britain

An analytic representation for the quasi-normal
modes of Kerr black holes

By E. W. LEAVER

Department of Physics, University of Utah, Salt Lake City,
Utah 84112, U.S.A.

the quasi-normal frequencies and angular separation constants are defined
as the simultaneous roots of two characteristic continued fraction equations, and

these may be solved numerically with high precision.
no unstable modes were detected.

If superradiant instabilities are the norm, the (massless) Teukolsky

equation appear to be the exception: why?
7/22



Mode stability



Mode stability a la Whiting |

Theorem (Whiting ’89)

Fix |a| < M, and (w, m, A) such that Imw > 0. Then the only
solution to (TO) with “good” bdry conditions is the zero solution.
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Mode stability a la Whiting |

Theorem (Whiting ’89)

Fix |a| < M, and (w, m, A) such that Imw > 0. Then the only
solution to (TO) with “good” bdry conditions is the zero solution.

To prove this, Whiting shows that (TO)

(@) + (w? - V¥) bl =0, (TO)
AA + AMramw — a?m?® o (r—M)? A (a’A+2Mr(r® —d®))
(r? + a?)2 2t a2)? + (r? + a?)A
w (r(r2 +a?) + M(a® - 3r2)) +am(r— M)

(% + a?)2 )

vl —

— 2is
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To prove this, Whiting shows that (TO) is isospectral to the ODE

(um)” i (w2 _ V[s]) ulfl =0, (TO)
o Z& 2 2 2(7'—— ]V[) 2(7'—— JL[)
V= —(r2+a2)2 |:w <A+4M —r—r+ +4MT_—7“+—1L >

—A — 2amw

2(r—ry) a’A 4 2Mr(r? — a?) _ToTh 2
Ty — 7o (r2 4 a?)? r—r_ ’
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Mode stability a la Whiting |

Theorem (Whiting ’89)

Fix |a| < M, and (w, m, A) such that Imw > 0. Then the only
solution to (TO) with “good” bdry conditions is the zero solution.

To prove this, Whiting shows that (TO) is isospectral to the ODE

(um)” i (w2 _ V[s]) ulfl =0, (TO)
o Z& 2 2 2(7'—— ]V[) 2(7'—— JL[)
V= —(7'2 e |:w <A +4M R — . —+ 4MT_—7'+ o >
A 2amw2(r —r4) a’A + 2Mr(r? — a?) =Ty 52] ’
(T (r2 + a?)? r—r_

Then, it is easy to conclude: (?\6) has no superradiance, so it can
have no unstable modes; by isospectrality neither can (TO).
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Mode stability a la Whiting II

The isospectrality is shown as follows: one checks (by hand) that
the injective map ul®! — @l

ﬁ[ ] _ (II,'Z + a2)1/2(x _ T_)78($ _ T+)72iMwefiwz
) 2Mr_w— oM _
X /OO {6”’2?’” (w_h)(r_h)(r — r_)i% (r— r+)_z% e™r
T

X ATV (r? 4 a2)_1/2u[sl(r)} dr

maps solutions of (TO) to solutions of (?6)
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X /OO {6”’2?’” (z_h)(r_h)(r — r_)i% (r— r+)_z% e™r
T

X AT (r? 4 a2)_1/2u[31(1")} dr

maps solutions of (TO) to solutions of (?6)

Same holds for w € R\{0}, but need regularization argument
(Shlapentokh-Rothman ’15).
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Mode stability a [a Whiting II

The isospectrality is shown as follows: one checks (by hand) that
the injective map ul®! — @l

ﬁ[ ] _ (II,'Z + a2)1/2(x _ T_)78($ _ T+)72iMw67iwz
) 2Mr_w— oM _
X /OO {6”’2?’” (z_h)(r_h)(r — r_)i% (r— r+)_z% e™r
T

X AT (r? 4 a2)_1/2u[31(1")} dr

maps solutions of (TO) to solutions of (?6)

Same holds for w € R\{0}, but need regularization argument
(Shlapentokh-Rothman ’15).

Note: transformation breaks down as |a| — M.
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Mode stability a la Whiting IlI

But a similar strategy works! For |a| = M, the map (TdC 19)

a[s] _ ($2 + 2M2)1/2({E _ M)fs(x _ 2M)72iMw

% /OO {621(‘/;’ (z—M)(r—M)(T _ M)—2iMwe2Mzi(w—mw+)(r—M)*lez‘m
M
XA_S/Q(r2 + a2)_1/2u[s] (r)} dr

defined whenever Imw > 0 and w # 0, mw also shows
isospectrality of (TO) to a new, superradiance-less ODE.
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Mode stability a la Whiting I

But a similar strategy works! For |a| = M, the map (TdC 19)

1;1[5] _ ($2 + 2M2)1/2({E _ M)fs(x _ 2M)72iMw

% /OO {621(‘/;’ (z—M)(r—M)(T _ M)—2¢Mwe2M2z‘(w—mw+)(r—M)*1ez‘m
M
XA_S/Q(r2 + a2)_1/2u[5] (7’)} dr

defined whenever Imw > 0 and w # 0, mw also shows
isospectrality of (TO) to a new, superradiance-less ODE.

In summary,

Theorem (mode stability)

If Imw > 0 with w # 0, then the only solution to (TO) with “good”
boundary conditions, either for |a| < M, or for |a| = M if
additionally w # mw., is the zero solution.
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A new approach (joint with M. Casals) |

But why should (TO) and (?O/) be isospectral?
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A new approach (joint with M. Casals) |

But why should (TO) and (TO) be isospectral? The answer might
have been in the literature already...

Proc. R. Soc. Lond. A 402, 285-298 (1985
Printed in Great Britain

An analytic representation for the quasi-normal
modes of Kerr black holes

By E. W. LEAVER

Department of Physics, University of Utah, Salt Lake City,
Utah 84112, U.S.A.

A nontrivial mode exists if its frequency w is a root of the continued fraction
equation

0= ﬂ{JG Vil vE 25 Y; @7)

B Bi-F~ "

11/22



A new approach (joint with M. Casals) Il

A nontrivial mode exists if its frequency o is a root of the continued fraction
equation

0- poBAEAGT,
B i Bi-
The recursion coefficients are
of, = nt+(cp+1)n+c,,
Br=—=20%+(c;,+2)n+c,,
Y =nt+(c,—3)n+c,—c,+2,
and the intermediate constants ¢, are defined by

. 2ifw . 4i (w
= I—.s—m;—? (E_am)’ @ ——4+2w(2+b)+?(§—am),

) 2i (w
Cy = s+3—31w—? (E—am),

0y = m=(4+2b—a=)—2amm—.g-1+(2+b)iw—A,,,+i4%2' (%—wm.),

b \2
Proc. R. Soc. Lond. A 402, 285-208 (1985)

¢, = 43+1—2cu“—(2.s+3)iw—4m+2l (E—WM-).
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A new approach (joint with M. Casals) IlI

A nontrivial mode exists if its frequency @ is a root of the continued fraction
equation
0 g BB BV Y,

Bi— BI—B;—""
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A new approach (joint with M. Casals) IlI

A nontrivial mode exists if its frequency @ is a root of the continued fraction
equation

T sl g myl T a7
r_FY1 % Vs % Vs
0_‘30 et T8 Juw X4 4

B Bi—F=""

the intermediate constants are defined by

2 J—
mi1=s+2tMw, ma2 :Z,2]\/[w—am’ m3 = —s+2iMw.
M2 _ CL2
[Casals-TdC ’21]
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A new approach (joint with M. Casals) IlI

A nontrivial mode exists if its frequency @ is a root of the continued fraction
equation

T apT ¥ mpl g myT
0=‘3r__“01’1 %Y %2V
o

Bi-Bi-p=""

The recursion coefficients satisfy

an-1Y = n{ln —o1(m)][n(n — o1(m)) + o2(m)] + o3(m)},
B =—A— 5"+ 8M>*w* + 2n(iw(ry —r_) —n)
+2n+1—iw(ry —ro)]or(m) — oz2(m),

where o;(m) are symmetric polynomials in m = (mq, ma, ms)
and the intermediate constants are defined by

2 J—
mi1=s+2tMw, ma2 :Z,ZJ\/[w—am’ m3 = —s+ 2iMw.
AIQ __a2
[Casals-TdC ’21]
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A new approach (joint with M. Casals) IV

Theorem (Casals-TdC ’21)
Take |a| < M. The point spectrum of

(u[s])” + (w2 - V[S]) ull =0, (TO)
Vsl AA + 4AMramw — a®m? 2 (r— M)  Ala®A +2Mr(r? — a?))
= (r2 + a2)2 “F (r2 + a2)2 (r2 + a2)*
o wlr(r? + a?) + M(a® — 3r?)] + am(r — M)
— 2is 7 a2)? ,

for solutions with “good” boundary conditions
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A new approach (joint with M. Casals) IV

Theorem (Casals-TdC ’21)
Take |a| < M. The point spectrum of

()" (w2 = vH) b <0, (10)
ot _ M2 = @)[(mi1 + m2)® — 1] + 2wl (r — M)ms
B (R0

mima(ry —r—)A? . A(A + s* — 8M?w? + 4Mrw?)
(r—r-)(r? +a?)? (r2 +a?)?

for solutions with “good” boundary conditions has symmetries
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Theorem (Casals-TdC ’21)
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(u[sl)" + (w2 = VI uld =0, (TO)
(M? — a®)[(m1 4+ m2)? — 1] + 2iwA(r — M)ms
(12 + a2)2
A(A + 5% — 8M%w? + 4Mrw?)
(r2 + a2)2

visl =

mima(ry — 1:)A2
(r—r_)(r? + a?)?

4_

for solutions with “good” boundary conditions has symmetries

® m; <> ma: recovers Teukolsky—Starobinsky identities;
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® my <> mg: recovers Whiting’s integral transformation;

Hence, mode stability holds for (TE).
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A new approach (joint with M. Casals) IV

Theorem (Casals-TdC ’21)
Take |a| < M. The point spectrum of

(um)” X (wz _ V[s}) ul*l =0, (TO)
ot _ M2 = @)[(mi1 + m2)® — 1] + 2wl (r — M)ms
B (R0

A(A + 5% — 8M%w? + 4Mrw?)
(r2 + a2)2

mima(ry —r_)A*
(r—r_)(r? + a?)?

4_

for solutions with “good” boundary conditions has symmetries
® m; <> ma: recovers Teukolsky—Starobinsky identities;
® my <> mg: recovers Whiting’s integral transformation;

® compositions thereof.
(conjectured by Aminov, Grassi, Hatsuda *20)

Hence, mode stability holds for (TE).
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An aside: Kerr-dS

Hidden symmetries’ method is more flexible:

Proposition (Casals-TdC ’21)

Consider subextremal Kerr-dS (solves EVE with > 0 cosm.
i (=1 (w=mw;)
2K
my=s—mn1—"nNo, M2=10—"N1, M3=-—S—N1—10, M4=mn0+n +2n2.

constant). Take 1; = , and set
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2K
mi=s8—m1—"No, M2="nNo—"N1, M3=—S—1N1—No, Ma=m0+m+2n2.

constant). Take 1; = , and set

Then, (TO) has spectral symmetries my <> mg <> mg <> my.
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An aside: Kerr-dS

Hidden symmetries’ method is more flexible:

Proposition (Casals-TdC ’21

)

Consider subextremal Kerr-dS (solves EVE with > 0 cosm.

constant). Take 1; =

mi1=s8—"1—"70,

m2 =10 =71,

Rj

m3=—s—m1—1n0, ™M4=mn0+n +2n2.

Then, (TO) has spectral symmetries m; <> ma <> mg <> my4. Hence,
mode stability holds for some superradiant fregs:

wim

non-superradiant

i and modally stable

superradiant but/"
modally stablé
/// Superradiant
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An aside: Kerr-dS

Hidden symmetries’ method is more flexible:

Proposition (Casals-TdC ’21)

Consider subextremal Kerr-dS (solves EVE with > 0 cosm.
i (1) (w—mw;)

D , and set
J

constant). Take 1; =

mi=s—m1—"N0, M2=n0—N1, M3=—8—N1—1N0, Ma="n0+"n +2n02.

Then, (TO) has spectral symmetries m; <> ma <> mg <> my4. Hence,
mode stability holds for some superradiant fregs:

wim

non-superradiant

i and modally stable

superradiant but/"
modally stablé

/// Superradiant

Open: (dis)prove mode stability for the blue region.
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Beyond mode stability



Shortcomings of mode stability

Through mode stability:
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Shortcomings of mode stability

Through mode stability:

But one could have modes at
® |w|+ |m|+ |A| — oo, i.e. high frequencies;
® w— 0, i.e. low frequencies;

® w— mwy,|al = M, both high and low!
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A complete picture for |a| < M

Theorem (Shlapentokh-Rothman-TdC ’20)

For s = 0,41, +2, there are also no modes at either of
* high frequencies: |w| + |m| + |A| = oc;
* low frequencies: |w| 4 |m| + [A] < 00, w — 0;

in the full subextremal range |a| < M.
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A complete picture for |a| < M

Theorem

(Shlapentokh-Rothman-TdC ’20)
For s = 0,41, +2, there are also no modes at either of
* high frequencies: |w| + |m| + |A| = oc;
* low frequencies: |w| 4 |m| + [A] < 00, w — 0;

in the full subextremal range |a| < M.

Thus, solutions to (TE) are bounded and, in fact, decay in time.
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The shoulders of giants

Solutions of (TE) remain bounded in time and, in fact, decay if...

5]

. . Nl
gravitational } £ [PHR 18
perturbations % [Ma 17

. el
electromagnetic -
. } o |Ma’17
perturbations &
. %)
wave equation }O S |’08-"14
0 |a|<M

Shlapentokh-Rothman-TdC ’20

Beyond the Teukolsky equations:

® Nonlinear stability in a = 0 subfamily:

Dafermos—Holzegel-Rodnianski-Taylor ’21. (Ja|<M underway, Klainerman-Szeftel, Giorgi..)

® Decay of linearized EVE for |a| < M: Andersson-Backdahl-Blue-Ma

and Hafner-Hintz-Vasy ’19.

mode stability,

TdC 19
|

Aretakis *11
m =0

/,(—J
—

lal

® Coupled electromagnetic+gravitational perturb: Giorgi’19...

18/22



Low frequencies (jm| + |A| S 1,w — 0)

If |w| # 0, (TO) has nontrivial long-range Im V*,

AA + 4Mramw — a?m? s (r=M)?2 A (aQA +2Mr(r? — a2))
(2 + a2)2 T2 1 a2)2 + (2 + a2)
w (7“(7‘2 +a?) 4+ M(a? — 37“2)) + am(r — M)

(r2 + a2)2 :

visl —

— 2is
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Low frequencies (jm| + |A| S 1,w — 0)

If |w| # 0, (TO) has nontrivial long-range Im V[*),

To deal with this, we use an idea of Chandrasekhar: set

1|)EZ]) = (k adequetely r-weighted null derivatives of u[sl) ,

fork=0,...,]s|
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Low frequencies (jm| + |A| < 1,w — 0)

If |w| # 0, (TO) has nontrivial long-range Im V¢!

To deal with this, we use an idea of Chandrasekhar: set

II)EZ]) (k adequetely r-weighted null derivatives of u[sl)

fork=0,...,|s|. Then ¥l = d)ET” satisfies

[s|—1

()" 4+ (W = V) wl = o Z 3 (W, imby) (RWO)

k=0

with VI real and short-range.
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High frequencies (jw| + |m| + |A| — o0) |

New potential V¥l is like the scalar wave’s: e.g. have trapping at
high frequencies.
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High frequencies (jw| + |m| + |A| — o0) |

New potential V¥l is like the scalar wave’s: e.g. have trapping at
high frequencies. This is in addition to the issue of superradiance!

Luckily for Kerr stability,
® trapping is unstable
e if (w,m, A) is superradiant, it cannot be trapped™.

[Dafermos—-Rodnianski 09, DRSR *14]

*This disjointness breaks down as |a| — M.
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High frequencies (jw| + |m| + |A| — oc0) Il

Coupling terms in

(01" 4 (= V) 009 = 3 ) (i) . @RWO)
k=0

means the correspondence Wl ¢ scalar wave is not perfect
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e Killing energy for scalar waves,
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good frequency weights is not conserved

® TS energy for spin-weighted waves [Teukolsky-Press '74],

@I 27 W (00)]? + w(w —mw. )| ¥H(—c0)* =0

] . ]
frequency weights which behave weirdly [Casals-TdC ’21] is conserved
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High frequencies (Jw| + |m| + |A| — o0) II

Coupling terms in (RWO) means the correspondence ¥l*) « scalar
wave is not perfect; e.g. for s < 0 compare

e Killing energy for scalar waves,

[s|—1
W) (00) % 4+ w(ew — ma )Wl (= :—aZ/ w Im[WFT - 3] dre

L I ]
good frequency weights is not conserved

® TS energy for spin-weighted waves [Teukolsky-Press '74],

@I"I’ () 4 w(w = mw )T (o) =0

frequency weights which behave weirdly [Casals-TdC ’21] is conserved

Energies are bad on their own, but turn out to go well together.
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In practice...

A

EW

comparable .
P angular dominated

maybe superradiant,
never trapped

never superradial
never trapped

time
whigh dominated

time
dominated = wyign

* Quantitatively disjoint if |a| < M, but lose control as w — mwy, |a| = M.
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Thank you!
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