Review of Computer Architecture

In this course we are concerned with systems architecture:

— O —
v

X

e The arrangement of computer components
e The mechanisms for connecting these components together

e How the problems change as we have multiple copies of certain components

We are less concerned with the components themselves:

e We shall not be discussing the design of a better multiplier.

1001

Review of Computer Architecture

e Central Processing Unit (C.P.U.)

— Arithmetic Logic Unit (A.L.U.)
— Instruction Processing Unit (I.P.U.)
— Registers

e Support for Central Processing Unit
Both the datapath and the control system require external storage.

Controller DataPath

I.P.U. ! Registers |,

Program Workspace
Memory Memory

1002

Review of Computer Architecture

Harvard Architecture

----4 - --- >
Program Workspace
< C.P.U. >
Memory Memory
Princeton Architecture
———————— e
| |
| |
C.P.U. [0 —— R
Address v v v v
-—--=
Data Program Workspace
Memory Memory
Control
-------- >

e The Harvard Architecture uses different sets of buses for program and workspace
memories.
e The Princeton Architecture uses a common set of buses for all components.

1003

A Simple Processor Architecture

Controller Datapath
CoTTTTTT T L Feedback
| T ‘ ' Registers |
Sequencer . | Control i i
. Decoder |
ALU 3
| Program |1 |
! Counter ! ? 777777 2
Instruction Address Instruction Data Address Data I/O
Address Data ~ Address Data
TTIRIW
Program Workspace
Memory Memory
(ROM) (Synchronous RAM)

To introduce more advanced architectures we will consider a very simple proces-
sor with a Harvard type architecture. We will follow its refinement into a real pro-
cessor and then we will base architecture advancements on this machine.

1004

Instruction Types

We shall opt for a RISC style register-register architecture supporting three distinct
instruction types:

e Arithmetic/Logic instruction

— The ALU is used for data processing.

— No workspace memory access is made.

¢ Memory Access Instruction

— The ALU is used for address calculation (e.g. simple indexing).

— Workspace memory access may be read or write.

e Control Transfer Instruction

— The ALU is used for program counter manipulation (e.g. conditional rela-
tive jump).

— No workspace memory access is made.

1005

Datapath Detail

_ Registers
Immediate Data
Program Counter
Memory
Data
ALU
Branch Address
Address

e Additional paths allow data address and branch address calculation in the ALU
— note that normal PC increment is still carried out by the sequencer

e Immediate data is available in all ALU modes

1006

Instruction Cycle

Fetch Fetch Instruction

_Phase . .
Decode Decode Instruction

_ _th"f‘??_ o ﬁ ____________________ : _______
Eﬁzgzte . Calculate Expression Calculate Address Calculate PC

“Update | .. . $ """""" i
Phase | Update Register Memory Read/Write Update PC

No unit is used more than once for each instruction', the whole instruction may be
completed in a single clock cycle.

We have a one CPI machine?.

11 program memory access, 1 instruction decode, 1 ALU calculation, 1 (or 0) data register up-
date, 1 (or 0) workspace memory access
2CP1 is Cycles per Instruction

1007

Instruction Cycle

Memory

Workspace | Address
Memory

>

Fetch Decode Execute Update

e The period of the clock must be long enough to accommodate the worst case
timings for the worst case instruction.

1008

Instruction Pre-Fetch

Controller Datapath
CoTTT T — Feedback
3 T | ' Registers |
' Sequencer | | Decoder | | Control
| o | AL& i | |
| - T | ;
| Program | ' | Instruction
| Counter | Register | | | | | T T
Instruction Address Instruction Data Address Data I/O
Address Data ~Address Data
— |RIW
Program Workspace
Memory Memory
(ROM) (Synchronous RAM)

1009

Instruction Pre-Fetch

By adding an instruction register we are able break the instruction cycle into two
shorter cycles and allow instruction pre-fetch.

Program | Address) >“ ___________________________ <
Memor | 5 L |

Y| paa X) v i
Workspace | Address ________________________________ Y / < X ><
Memor o I L

" pata Ty K XX

' Fetch Decode Execute Update o

1010

Instruction Pre-Fetch

Instruction Pre-Fetch in a Harvard sequential computer:

Clock

Instruction i

Instruction i+1

Instruction i+2

Instruction i+3

e The next instruction is pre-fetched before an instruction is completed.

Decode
Fetch Execute
Update
Decode
Fetch Execute
Update
Decode
Fetch Execute
Update
Fetch

1011

Instruction Pre-Fetch

e Following a Control Transfer Instruction we may pre-fetch the wrong instruc-

tion.
cock [| [[[1 T

i Decode
InBS:;L:](:;]OS ! Fetch Execute
Update,
Instruction i+1 empt l
(discarded) Fetch (kiIIeo?S |
_ Decode
Instruction n Fetch Execute
Update
Instruction n+1 Fetch

— where the CTI is taken we must kill the instruction.

— where the CTI is not taken we have already fetched the correct instruction.

1012

Pipelining

e Instruction pre-fetch is a simple form of plpEl min g.

e We begin one operation before the previous operation has completed.

— Although each individual instruction will take the same length of time to
complete, a group of instructions may be completed in a much shorter time
due to overlap.

— The increase in performance arises since we are making more efficient use
of our hardware. More of the hardware is kept busy for more of the time.

— We have a limited form of concurrency

e A 4 CPI Harvard Architecture can be used to produce a 4 stage pipeline ma-
chine:

1013

4 Stage Pipeline

Controller Datapath
:'f 7777777777777 \:<7 :: : : : : : : 7777777 FeedbaCk :riRiééIiSitieiré‘\:
? % | De- ? 3
' Sequencer | |Decoder icoder| Control |
: . | o ALU | |
| ! | Reg |
3 S ALUOutput | [|
| Program || Instruction Register '
|__Counter || Register
Instruction Address Instruction Data Address Data 1/0
Address Data ~Address Data
—= R/W
Program Workspace
Memory Memory
(ROM) (Synchronous RAM)

1014

4 Stage Pipeline Operation

e Two more registers are added

Decoder output register is updated at the end of cycle 2.

ALU output register is updated at the end of cycle 3.

Clock | [| | | | | | | |
Instructioni | Fetch | Decode | Execute | Update
Instruction i+1 Fetch | Decode | Execute | Update
Instruction i+2 Fetch | Decode | Execute | Update
Instruction i+3 Fetch | Decode | Execute | Update
Instruction i+4 Fetch | Decode | Execute | Update

¢ A new instruction is fetched on every clock cycle.

e The machine completes four quarter instructions every clock cycle giving an

average of one CPL

1015

Processor Performance

e Let us consider the performance of our simple machines:

Instruction Rate

Work Rate =

Instructions per Task

— The Instructions per Task value will be determined by the power of our in-
struction set and how well it matches the task to be performed.

Clock Frequency (MHz)

Instruction Rate (Mips) = Cycles per Instruction

— The Cycles per Instruction value is an average over the whole task. At first
it appears that all three architectures will have a CPI value of one, allow-
ing them to be compared on clock frequency alone. In fact the average CPI
values for the two pipelined machines will be greater than one due to prob-
lems in the pipeline operation.

1016

Abuse of Statistics

° Mips3

— The Instruction Rate of a machine is frequently given as a measure of its
performance. Since an average Instruction Rate may depend on the set of
instructions chosen the maximum Instruction Rate is quoted.

Here we can take Mips to mean Meaningless Indication of Processor Speed, the
best we can hope for is an indication of the relative performance of ma-
chines sharing the same instruction set and a similar architecture.

e VAX Mips
— Relative Mips value w.r.t. to VAX 11/780.

This is better but will still dependent on the task chosen for the comparison.

e Benchmarking
Architects & Compiler Writers vs Benchmark Designers.

— Alpha 21264 (@833 MHz) 544 SPECint2000 658 SPECfp2000 (3332,,,. Mips).
— Intel Pentium 4 (@1.5 GHz) 535 SPECint2000 561 SPEC{p2000 (1500,,,, Mips).

3Millions of Instructions Per Second

1017

