Memory Hierarchy

Ideally we would like large amounts of fast memory. This is neither economically
viable nor technically possible.

Type of Storage Typical Access
Registers Several Accesses per Cycle
Cache SRAM One Access per Cycle
Main Memory DRAM Several Cycles per Access

} Virtual Memory Hard Disk Many Cycles per Access

The solution is a hierarchy of memory containing some large components and some
fast components.

Our task is to make it appear that we have large amounts of very fast memory.

3001

Cache Memory

Whereas the compiler decides which items are stored in registers for rapid access,
the computer must decide which items are stored in the cache.
The compiler will not normally have any knowledge of cache size or organization'.

Cache memory is based on the principle of locality.

This is in contrast to the fast on-chip memory offered by the early Transputers - the compiler
knows the size and location of this memory.

3002

Cache Memory

Principle of Locality

o Temporal locality

If an item is referenced, it will tend to be referenced again soon.

— code loops & important data items

o Spatial locality

If an item is referenced, items whose addresses are close by will tend to be ref-
erenced soon.

— sequential code access & array access

Caching systems exploit this knowledge by storing recently accessed items and
their neighbours in fast cache memory.

3003

Cache Memory

Processor | Cache Main
Memory Memory
Address = —————={ Address
Data % Cache 6%% Data
‘ Controller !

Read = = RIW
Write = —+————— OE

Stall = = ME

e The cache controller provides the processor with data from the main memory.
e The cache controller copies accessed items into the cache memory.

e When a copied item is accessed it is retrieved rapidly from the cache memory.
Thus the controller makes use of Temporal locality.

3004

Cache Memory

Ideal Cache

Ideal caches use content addressable memories (a.k.a. associative memories).

Valid Tag Data
Y
i 30 32
HIT Address Data

On storage the address and data of an item are stored at any empty location in the
memory. The valid flag is set to indicate that the location contains valid data.

On access the requested address is simultaneously compared with each address
stored in the Tag field of a valid cache location.

If there is a match, the memory flags a Cache HIT and returns the appropriate data,
otherwise a Cache MISS is flagged.

3005

Cache Memory

Discard Strategy

Inevitably a finite cache will become full. In order to accept another item the cache
must overwrite an old value. The choice of value to overwrite or discard is the
discard strategy.

Least Recently Used Discard Strategy

Since we have based the cache on the principle of temporal locality it seems reason-
able for an ideal cache to discard the item from the cache that has been accessed
least recently.

3006

Cache Memory

Alternative Cache Types

Content addressable memory as used in an ideal cache is not as dense as standard
SRAM due the overheads of distributed Tag comparison.

It is possible to achieve much larger cache sizes with caches which can use stan-
dard SRAM technology. A larger cache size should increase performance by in-

creasing the HIT rate.

Cache types:

e Fully associative - ideal cache needs associative memory.
e Direct mapped - simple cache using standard SRAM.

e Set Associative - compromise cache using standard SRAM.

3007

Direct Mapped Cache

Address

Tag Index

131

12|11 2] |

’/
Byte
Offset

10

Valid

Tag

0

1

Data

1021

10, 1021

1022

1022

1023

1023

20

20

e Storage Strategy

— Cache address (a.k.a. Index) is low order bits of data address
— The remainder of the data address is stored as the Tag

e Data Recovery

— Since data can be in only one location data recovery is trivial
— A simple Tag comparison determines cache HIT/MISS

32

3008

=1

Data

HIT

Direct Mapped Cache

Implementation of direct mapped cache using SRAM components

READ
WRITE
UPDATE
DISCARD

A[31:12]
(Tag)

A[11:2]
(Index)

o

¥

O @
WR OE V Tag
Address
Tag Memory
(1k x 21)

O
WR OE Data
Address

Data Memory

(1k x 32)

3009

HIT

D[31:0]

Direct Mapped Cache

Strategy

Our implementation:

o Write Strategy

- Write Through

All write operations update the main memory

Other caches may use a Write Back strategy; data is only written to main
memory when it is bumped from the cache.

e Write Miss Strategy
- Write Around

In the case of a Write Miss we write to the main memory only.

The alternative of updating the cache for all writes will cause complications
for byte and halfword writes.

3010

Direct Mapped Cache

Write Procedure

e Cache Write (Hit)

— Write request simultaneous to cache and main memory

— Hit enables write to cache

— Address and data are stored at end of first cycle for write to main memory

— Memory access completes in one cycle — main memory write continues off-
line

e Cache Write (Miss)

— Write request simultaneous to cache and main memory
— Miss disables write to cache
— Address and data are stored at end of first cycle for write to main memory

— Memory access completes in one cycle — main memory write continues off-
line

3011

Direct Mapped Cache

Read Procedure
Read data, copy to cache if not present.

e Cache Read (Hit)

— Read request simultaneous to cache and main memory
— Hit enables data from cache and disables data from memory

— Memory access completes in one cycle
e Cache Read (Miss)

— Read request simultaneous to cache and main memory

— Miss disables data from cache and enables data from memory
— Memory access completes after several cycles

— In the last cycle an update signal enables a cache write

n.b. A read miss, or a write may be additionally delayed where it overlaps
with an off-line main memory write.

3012

Cache Performance

Average memory access time = Hit time + Miss rate X Miss penalty

e Hit Time
Time for a cache hit - may be different for read and write.

e Miss Penalty
Additional time for a cache miss.

e Miss Rate

In order to analyse miss rate consider the reasons for a miss:

— Compulsory Miss

The required block has never been accessed before.
— Capacity Miss

The required block was displaced when the cache was full.
— Collision Miss

The required block was displaced by another although the cache was not
full.

3013

Improving Cache Performance

Reducing the Miss Rate
o Capacity Miss

— Increase cache capacity.
This simple option will also reduce collision misses.
The usual limit here is cost although a larger cache may well affect hit time.

o Compulsory Miss

— Fetch items before they are requested.
If we can work out which items the CPU will need, we can load them into
the cache before a request is made.

- - Pre-fetch Instructions.
This technique is appropriate for machines with a dedicated memory
port for instruction fetch.

- - Pick up an item when it’s neighbour is requested.
This technique is used by caches with increased block size.

3014

Increased Cache Block Size

Spatial Locality

In order to take advantage of spatial locality we keep copies of the neighbours of
recently used data items.

We increase the block size (a.k.a. line size) of the cache.

The following is a direct mapped cache with a block size of 4 words

Address[3:2] acts as a block offset selecting a word for read /write

V Tag Data 1k x 128
1 ® ® B ® ® ® ®
Byte
Address Offset
131 14]13 4[]/
18 32 32 32 32
10 — Data

3015

Increased Cache Block Size

Direct Mapped Cache supporting Write Through and Write Around strategies:

e Cache Write (Hit)
— Write Through — single word
e Cache Write (Miss)
— Write Around - single word
e Cache Read (Hit)
— Read from cache — single word
e Cache Read (Miss)

— Read whole of cache block from main memory

— Pass only appropriate word to CPU

Note that a cache with a width of 32 bits appears as a wide cache when the proces-
sor makes a byte or halfword access.

3016

Increased Cache Block Size

If the path to main memory remains unchanged, the block read miss will take
longer to perform.

CPU CPU
[— [—
=N\ =N\
32 32
C Cache Block Size C
4 words
32x4
32x4
32

M M

Alternatively a 128 bit path to memory will increase bandwidth considerably giv-
ing much better cache performance.

3017

Increased Cache Block Size

Without matching the block size and the path to memory, there is still a benefit in
a reduced miss rate.

Cache Block Size
16 words

The increased miss penalty may be limited by:

e Fast DRAM page mode access.
The first access to a DRAM row incurs the penalty of row access time.

Multicolumn accesses to the same row incur this overhead only once.

e Fetch critical word first.

The critical word is passed to the CPU and the block access completes off-line.

3018

Improving Cache Performance

Collision Misses

Given a fixed cache size, the number of collision misses will depend on the number
of locations a new block may be placed.

e Fully Associative

— Block placement — Anywhere

— No collision misses

e Direct Mapped

— Block placement — Fixed - many to one mapping
— Worst situation for collision misses

e Set Associative

— Block placement — Fixed number of locations for each block

— Compromise cache with better collision performance than direct mapped,
while limiting the task of tag comparison to a small set on each access.

3019

Set Associative Cache

Main Memory Main Memory

showing blocks mapped to single cache block showing blocks mapped to single cache set

1 1

_ 2-way
Direct Mapped H] Set Associative H] H]
Cache Cache

o 2-way Set Associative cache

A simple two way set associative cache offers two locations for each new block.
With only two tag comparisons required per access.

A collision miss will occur if both locations are full while there is space else-
where in the cache.

— The cache may be built from standard SRAM components.

3020

Set Associative Cache

Address Valid Tag Data
Tag Index 0 0
131 12]11 2] | 1 1

N .
Byte ® ® ®
Offset
1021 1021
1022 1022
1023 1023
1
—— Data
0
™ ‘jf\\\ HIT
0 0
1 1
® ® ®

1021 1021
1022 1022
1023 1023

Valid Tag Data

3021

Set Associative Cache

e Cache Write

— Dual tag comparison selects the appropriate bank for write or indicates a
miss.

e Cache Read

— Dual tag comparison selects the appropriate bank for read or indicates a
miss.

In the case of a miss a decision must be made on where to put the data.

- - One or more banks indicates no valid data - easy choice.
- - Otherwise consult discard strategy.

3022

Set Associative Cache

Discard Strategy

e Least Recently Used (LRU)

We suggested this method for ideal cache. It gives best performance but is
rather expensive to implement as the associativity increases.

e Random

Easy to implement and performs almost as well as LRU as cache size and as-
soclativity increase.

e FIFO

Although it seems attractive, being easier to implement than LRU, it usually
performs less well than random discard.

e None

Direct mapped caches have no strategy since there is no choice of location for the new block.
This is a saving in complexity which should lead to a lower hit time.

3023

Set Associative Cache

Main Memory Main Memory

showing blocks mapped to single cache set showing blocks mapped to single cache set

1

2-way 4-way
Set AssociativeH] H] Set Associative W W W W
Cache

Cache

o N-way Set Associative Cache

Typically associativity ranges from one (direct mapped) to eight.

Increased Associativity offers:

— fewer collision misses

— greater overhead for tag comparisons, discard strategy etc.

3024

Improving Cache Performance

Reducing the Miss Penalty

In our original analysis only the read miss failed to operate at the speed of the
cache.

It was also noted that read miss and write hit/miss might be additionally delayed
when they overlap with an off-line write. Wide block reads may also provide such
interference.

e Read Miss

Must increase speed of lower level access.

— Multi-Level Caches

e Off-line interference

Must reduce effect of interference

— Advanced Write Buffer

3025

Write Buffer

e

Cache Memory

Write
Buffer

3026

Write Buffer

e Simple Write Buffer

— single word storage allows write hit/miss to complete in one cycle.

e Advanced features

— multi-word FIFO buffer

— merge writes to words within the same block (where main memory is wide)
— priority of read miss over write

must check contents of write buffer on a read miss in order to avoid a read
after write data hazard.

Note a write back rather than a write though strategy should reduce the number of
main memory writes. (Write back is normally used with fetch on write write miss
strategy which may increase the number of main memory reads.)

3027

Multi-Level Cache

e First Level Cache

— Simple cache
— Optimized for hit time
— Operates at speed of CPU

e Second Level Cache

— Large cache
— Optimized for miss rate

3028

Multiple Caches

C.P.U.
Instruction () @E Data
-

Cache e Cache

M

Pseudo-Harvard Architecture

e With multiple caches a machine with an external Princeton architecture may
achieve performance approaching that of a Harvard machine.

— Double CPU to cache bandwidth

— Separately optimized caches
Different capacities, block sizes and associativities.
Instruction caches are read-only with respect to the CPU.

3029

Multiple Caches

e Instruction Pre-Fetch

The pseudo Harvard machine may also make use of an instruction pre-fetch
buffer containing one or more blocks of instructions. This buffer reduces the
probability of a compulsory miss when the CPU reads a new instruction.

e Cache configurations to support instruction fetch.

[CPU. | [CPU. | [CPU. | [CPU. | [CPU._|
=N — B\ =\ — B\

o | @D

_m)]

—

3030

Cache Coherence

e Where we have multiple copies of data we must ensure that all copies are the
same. This becomes a problem when there are multiple bus masters, e.g. DMA

controllers and multiprocessors.
\ cpu. | | CPU | [CPU | [CPU |

EW\ ~“BvY) FEBEY FEVY
TEEREEXX.
s) (se) (Cse) ()

ww | ' |

e Bus snooping by cache controllers

— Discard cache copy?
— Update cache copy?

e Is it safe to assume that Program cache does not suffer from these problems?

3031

Summary of Cache Features

e Capacity
e Block/Line Size
e Storage Strategy

— Fully Associative — requires associative memory
— Direct Mapped
— Set Associative

e Discard Strategy

— Least Recently Used

- FIFO
— Random
— None — for direct mapped cache

o Write Strategy

— Write Through — Write Back
— Write Around — Fetch on Write

3032

Virtual Memory

e Works like a second level cache
e Large block(page) size

— miss penalty is horrendous
— access overhead (seek time) is very long compared to transfer rate.

e Supports Write Back and Fetch on Write
— seek time precludes single word write through or write around
e Supports some form of LRU discard strategy

— miss penalty justifies this complexity

3033

Virtual Memory

Virtual Memory Map
Page Mappings

// S
B -

Physical Memory

N e - — —

Disk Swap Space

N e e e e e e =~

Virtual Memory is broken down into pages:

e Unallocated
e Allocated

— Mapped to physical memory
— Swapped out to disk

3034

Virtual Memory

Virtual Address

32 0
Page Table | Virtual page number | Page Offset |
Valid Dirty 20 12
YN
‘ M ’ l 18
HIT | Physical page number | Page Offset |
30 0

e Page Hit

Physical Address

A fully associative page table provides address translation.

e Page Fault

An exception is flagged to the processor. Swapping is performed by software
Only dirty pages need be copied back to disk when swapped out®.

2compared to the disk seek time the overhead for software swapping is low.

Sassuming that an old copy is always stored on disk

3035

2

Virtual Memory

Page Fault |--——-__

Translation

Virtual Lookaside
Memory Buffer

Controller

| Page table pointer

Page M
Table

(.)

e Due to size restrictions, the page table is usually stored in physical memory.
e A Translation Lookaside Buffer (TLB) acts as a cache for this table.
e A TLB miss triggers the controller to access the full page table.

e A page fault is flagged if the full page table indicates an illegal access®.

%a simpler controller might flag a page fault on TLB miss leaving the CPU to sort out page table
access

3036

Virtual Memory

Memory Management Unit

In fact virtual memory management is usually just one function of the memory
management unit. Other functions include:

e DRAM refresh

e Support for multiple processes

— multiple virtual memory maps

- - each process exists in its own memory map
- - each memory map requires a separate page table
- - the TLB page table cache is flushed when there is a process switch

— memory protection

- - page table entries must include read and write permission fields

3037

Virtual Memory

Controller Virtual Memory

Controller
{ Virtual Memory J
L) Controller
[VM j [VM j

e Cache addresses are physical addresses

f N Cache
t Cache J Controller

— cache hit time is slowed by page table translation
e Cache addresses are virtual addresses

— discard cache contents on context switch®?

To save cache flush on context switch, the virtual memory address tag must include a field
indicating a context number. A hit is flagged only if the virtual address and the current context
match the values stored in the tag. The same system can be used to avoid TLB flush.

3038

