Advanced Pipeline Architectures

IF ID EXE MEM wWB

om

e So far we have considered only ideal pipelines where each stage will complete
within one cycle in the absence of conflict with earlier pipeline instructions.

e Complications include:
— Cache stalls
e.g. Data cache read miss will stall all but WB stage.

— Stage iteration

e.g. SPARC v8 introduces instructions for signed and unsigned integer mul-
tiply. To avoid a very slow clock, we have iteration in the execute stage.

4001

Advanced Pipeline Architectures

EXE

MEM

WB

e Effect on pipeline of stage iteration during the execution of MULtiply:

- | IF

ID |EXE MEM| WB
IF ID |EXE1|EXE2 | EXE3|EXE4|EXEs |EXEs |[EXE7 [EXEs MEM| WB
IF | "sall "Sall: "stall: Sl "Stall; "sall: "$all| 1D |EXE MEM| WB
"stall: "stall; "stall "stall: "stall: "stall "stall|_IF | ID |EXE|MEM
IF | ID |EXE

Here the multiply is shown taking 8 cycles in the execute stage, the actual number
of cycles will depend on the number of bits processed per iteration and the number
of bits in the multiplier.

4002

Princeton Pipeline Architectures

IF ID EXE MEM WB 1= ID EXE @

e A five stage Princeton architecture will never make use of all five stages, since
the use of the MEM stage precludes the use of the IF stage.

e A simpler four stage implementation performs MEM and WB operations as
required within the WRite stage. For a load instruction the WR stage will last
for two cycles; WR(MEM) during which the rest of the pipeline is stalled and
WR(WB) during which the register file is updated.

4003

Advanced Pipeline Architectures

IF ID EXE @
om

e Effect on pipeline of 5 cycle load in 4 stage architecture:

--- | IF | ID |[EXE|WR,
LD IF | ID |[EXEWR_ IWR
IF | ID |“Stall| EXE|WR,,,

IF |"stall| ID |EXE|WR,,

"salll IF | ID |[EXE|WR,,

IF | ID |[EXE|WR,,

The LSI logic SPARC chip on the RISC Experimenter Board uses this system:

4004

Fetch | Decode | Execute | Write

)) ﬂ ;
nPC PC oPC v
N 0 |
L HENE H

. BCU ! !

+ - DEST
;fimm. i :

||3? align 77 i ﬂ
R ‘

Registers mm & 1]
j } i shift !
| S2 B MD@O»UT MDRIn
i [olign] [olign]
Data

Addr Memory

SuperPipelined Architectures

MIPS R4000 8 stage pipeline!

IF IS RF EX DF DS TC WB

|cJ—/\Inst. DC jData
Tag Check Tag Check
o]

e Deeper pipe leads to faster clock.

e Deeper pipe leads to more hazards:

— 2 cycle branch penalty (even with 1 cycle delayed branch)
— 2 cycle load-use penalty

— Some pipelines have two execute stages incurring a single cycle define-use penalty

'Hennessy & Patterson Computer Architecture pp201-209
4006

SuperScalar Pipeline Architectures

These processors have multiple execution units combined with an ability to launch
multiple instructions in the same cycle. With suitable width buses to instruction
and data caches these processors can achieve average CPI values of less than one.

ID EXE [7|MEM [~ WB
Fetch !
& ID EXE [7 MEM [~ WB
Issue }?
ID EXE [MEM [~ WB

4007

SuperScalar Pipeline Architectures

Structural Hazards

=)
ID @ MEM [~ WB
Fetch [ﬁ
& ID @ MEM [WB
Issue I } ?
ID EXE) MEM [~ WB

B =
om

e Multiple general purpose pipelines compete for scarce resources.

Should we allow out-of-order completion?

4008

SuperScalar Pipeline Architectures

Structural Hazards

=)
EXE WB
Fetch De-
code
g EXE WB
Issue | [Addr.

om

e Multiple specialised pipelines with attached resources.

— only certain types of instruction may be launched together

Should we allow out-of-order issue?

4009

SuperScalar Pipeline Architectures

Data Hazards
¢ True Dependency
RAW: ADD A,B,C
MUL C,D,E

With more instructions in the system we have much more complicated depen-
dencies including dependency on instructions in the same pipeline stage and
possibly even dependency on instructions which have been overtaken.

— Many processors enforce strict ordering of dependent instructions.

Dependencies are detected before issue, preventing premature issue of in-
structions that would cause a hazard.

e False Dependencies

WAR: SUB F,G,H WAW : XOR K,L,M
ADD I1,J,F AND N,O,M

These dependencies can be accommodated or removed using register renaming.

4010

SuperScalar Pipeline Architectures

Control Hazards

e Branch Penalty
A single cycle branch delay may cause up to 2n — 1 instructions to be fetched
in error in a machine which launches = instructions per cycle.

e Speculative Execution
Branch prediction may lead to the speculative execution of instructions from
the branch destination. We must ensure that the correct instructions are killed
on branch

e Dynamic branch prediction
Advanced systems predict the outcome of a branch instruction even before the
instruction is fetched from the instruction cache, based on previous behaviour.

¢ Interrupts

If we allow out of order completion of dependency-free instructions, what ac-
tion should we take on interrupt?

Should we consider each instruction that might generate a trap as a control transfer
instruction on which all subsequent instructions depend?

4011

SuperScalar Pipeline Architectures

Optimizing Compilers
Optimizing compilers are required to maximize the number of concurrent instruc-

tions.

e Instruction re-ordering

Instruction may be re-ordered such that instructions arrive in batches which
are concurrently executable.

This manipulation is, of course, limited by the required program semantics.

e Loop unrolling

CPI value is severely limited by short runs of instructions between successful
branches.

Unrolling of loops increases the run length and may be used to convert a branch
on X to a branch on notX where X is the likely outcome.

4012

SuperScalar Pipeline Architectures

SuperSPARC (Texas Instruments 1992)

e Launches up to 3 instructions per cycle.
— average 0.75 CPI
e 50 MHz
e 64 bit floating point unit
e 20 kbyte (fully coherent) instruction cache
e 16 kbyte data cache
¢ 64 bit wide main memory access

e 3.1 million transistors

4013

\
IMul DP Adder || R?«Ig-
Queue |— Execute File
IDiv DP Mult |—
N
- Superscalar Integer Unit
Pre-fetch | |Instruction| |Registers/ 8 Port, 8 Window
Control Register File
‘ LN ALU ALU Shifter,
| Xception Branch
Test
2 | Aress
Instruction Reference
Cache MMU Data Cache
Store Buffer

Bus Interface
Addr. [35:0] Data [63:0] Parity [7:0] Control/Test/Clock

l $ $ |

4014

SuperPipelined SuperScalar Pipeline Architectures

v 21164 (Digital Semiconductor 1995)
e 64 bit datapath 32 bit instructions
e 600 MHz
e 4 pipes
— 2 integer @ 7 stages
— 2 float @ 9 stages

e ordered execution of sets of up to 4 independent instructions aligned on 16
byte boundary

e 9.6 million transistors
¢ 21264 (Compaq 1998)

e Includes another 2 integer pipes (although issue rate remains at 4 instructions
per cycle) and supports out of order instruction issue using 15.2 million tran-
sistors.

e 700MHz version is the current top performing P 1/1/00

4015

SuperScalar CISC — Pentium II/1I1

CisC Superscalar
Front-end RISC core

e With variable length, variable complexity instructions, CISC machines don’t
pipeline well.

e CISC instructions are converted to one or several micro-ops (uops).
Each micro-op is 118 bits fixed format.

e Micro-ops are executed within a superscalar RISC core.

The resulting pipeline is long and complicated (> 14 stages) with most of the
effort going into coping with the inherited instruction set.

There are also problems with too few registers and with the floating point stack
model causing an excess of memory accesses.

4016

SuperScalar CISC — Pentium II/1I1

Itipl [
Sxechton pipaes e

Instruction CISC . | Register Retirement|
fetch instruction|_ .| fetch unit ‘
decode | : &
& micro-op
micro-op out of micro-op
generate | . order re-order
. ; issue

Superscalar o
E@ RISC core [D@
Simplified Pentium Il /

[Pentium Il architecture
v

e Micro-ops may be issued out of order - where operands are unavailable.

e Micro-op completion is ordered - avoiding problems with pipeline flush due
to branch mis-prediction and exception handling.

4017

