Performance Limits of Serial Computers

Computer power has been increasing steadily.!

What factors enable this increase in power?

« Technology

o Architecture

1 Approx. — factor of 10 increase in arithmetic speed every 5 years

5001

Performance Limits of Serial Computers

Technology
T >

Direct effect on computer power.

e Transistor speed

e Transistors size

Direct effect by reducing wire length and reduction in slow off-chip wiring.

Limits
e The rate of increase is likely to level-off due to the hard limits of molecular size
and light speed.

5002

Performance Limits of Serial Computers

Technology Limits

Just how close are these fundamental limits?

e We have already reached a time when designers must consider the propaga-
tion delays of signals being limited by the speed of light - signals take about
6ns to travel 1 meter along 50 ohm co-axial cable.

e As we shrink our computers to take account of this, we require freon cooling
to dissipate the heat generated.

e Meanwhile we find device physicists talking about the impact of atom spacing
on their ability to make smaller (and faster) transistors.

We must look to architecture to realize our goals for ever
increasing computer power.

5003

Performance Limits of Serial Computers

Architectural Enhancements

Variety of architectural enhancements:

e Wider datapaths (8,16,32,64bits) the simplest form of increased concurrency.
e RISC machines

e Memory Caches

e Hardware floating point units

e Increased use of simple concurrency

Each architectural enhancement requires extra design effort to overcome a specific
bottleneck. The benefit in each case is limited, as the system bottleneck moves
from one unit to another.

5004

Performance Limits of Serial Computers

The Problem

e Each enhancement has limited effect.

¢ Many enhancements complicate the system.

The Alternative

e An enhancement that can increase your computing power 100 fold without
any extra design effort.

?

5005

Replication!

BUY ANOTHER 99 COMPUTERS

aalall QIS G SN G S N S SIS SIS I SIS
sl el eeie e e e e
Q] sljEleEjejejejejejeiejeejse]jejeje)me]
el eee el e e el]
slsjsijelsisisisisisieisisiaisisieielslsl]

This is the concept of replication

e your computing power is limited only by your budget
e the same units can be used in large and small installations
e no extra design effort for more powerful systems

e linear increase in power with budget

5006

Selective Replication

Replication as described is easy, but more selective replication may yield better re-
sults.

e With 100 screens and 100 keyboards we need 100 programmers. With selective
replication we need only have one screen and keyboard and replicate the rest.

I AT TN R R TR NN
I AT TN R R TR NN
o JupupbypbyrbronE Ly
I AT TN R R TR NN
A AT TN R R TR AN

Two new problems are produced:

e How do we connect the computers to work together with a single screen and
keyboard?

e How does one programmer write a program to control all of the computers?

These are the problems of
Parallel Computers

5007

Parallelism

Let us consider the programming of a parallel machine, this will give us some in-
sight into what we want of our parallel machine.

For each problem to be solved, the following must be performed:

o Identify Parallelism

We must identify operations which can be done in parallel.

« Express Parallelism

We must write (or re-write) code to indicate the parallelism present.

« Exploit Parallelism

We must be able to distribute these parallel operations amongst our processing
elements.

5008

Identify Parallelism

Two computations may be done in parallel provided that the
result from one is not required (directly or indirectly) for the
completion of the other..

Take:

X := a + b;
vy = b + C;

These computations are independent.
We can carry out operations in parallel.

Take:

X := a + Db;
Yy = X 4+ C;

y is dependent on the calculated value of x (we have data flow between them).
We can'’t carry out operations in parallel.

2i.e. there is no flow of data from one to the other

5009

Express Parallelism

We must use a language which can cope with parallelism.

OCCAM provides us with two basic structures to distinguish between sequential
and parallel operations.

SEQ
A
B
C

Causes A, B & C to be evaluated in strict SEQuence.

PAR
A
B
C

States that A, B & C may be evaluated in PARallel.
5010

Express Parallelism

Thus

X := a + Db;
vy = b + C;

can be expressed as

PAR
X := a + b
y := b + C
Whereas
X = a + b;
Yy = X + C;

must be expressed as

SEQ
X := a + b
YV 1= X + C

5011

Express Parallelism

For a more formal approach we can use data flow analysis

a b C
w = atb;
X = a*a;
y 1= X*c: w
X W
z .= wWy;
Y
/%/
7
Z
Sequential Form Data Flow Graph
(Pseudo Pascal)

Note that the scope of each PAR/SEQ is indicated by indentation.

5012

SEQ
PAR
W = atb

X 1= a*a
y 1= X*C

Parallel Form
(Pseudo Occam)

Identify Parallelism

Parallel Algorithms

Given a single problem, there are frequently several algorithms for its solution.

e Usually one algorithm dominates all others due to its suitability for comput-
ing.

e What if this algorithm exhibits no potential for exploiting parallelism?

e We may be able to find an alternative algorithm specifically for parallel ma-
chines.

Thus we have specialised sequential algorithms which run efficiently on sequen-
tial machines and inefficiently on parallel machines, and specialised parallel algo-
rithms which run efficiently on parallel machines and inefficiently on sequential
machines.

5013

Sequential Sum

The sequential sum problem in an excellent example where the natural” algorithm
is unsuitable for a parallel implementation.

We start with a vector A[1..n] and wish to obtain a vector of ‘sums’ SUM|1..n],

such that
SUM]Ii] = Ali] + SUMJi-1]

where
SUM[0] =0

The problem is defined as a recursion, each result depends upon the previous one.
It appears that we must produce the results in strict sequence with no parallelism.

5014

Sequential Sum - Sequential Algorithm

The sequential algorithm is straightforward and takes n — 1 additions all per-
formed in strict sequence.

All] A[2] A[3] Al4] Al Al6] AlT7] Al8]

RN

ON

RN

o8

@\i

SUM[1] SUM[2] SUMI[3] SUM[4] SUM[5] SUM[6] SUM[7] SUMI8]

5015

Sequential Sum - Parallel Algorithm

The parallel algorithm is more complex taking logs(n) * n/2 additions to perform

the same task.

A[1]

N\

A[l2] A

®

A

®

[3] A4 A

N\

™

|
)
B

[S]

N\

Al6] A

®

N

A

®

AN ?%\ ?/\ ?/

[7] Al8]

..

G

SUM[1] SUM[2] SUM[3] SUM[4] SUM[5] SUM[6] SUM[7] SUMIg]

5016

Algorithm Performance

Parallel Speedup

We wish to compare our two algorithms.

e How much faster is our parallel algorithm?

For comparison purposes we invent a Paracomputer on which to run the software.

The Paracomputer is an ideal parallel computer with an arbi-
trarily large number of processors and no overheads for com-
munication or co-ordination.

The concept of such an ideal computer allows us to compare algorithms simply,
without considering particular machines.

5017

Algorithm Performance

For sequential algorithm

We have n — 1 additions carried out in sequence.
hence
Tseq — (’Il - 1)Tadd
where
Toaa = time for a single addition

For parallel algorithm

We have [0g,(n) additions in the critical path
hence

Tpar — (lOQZ(n))Tadd

Parallel Speedup

Toeg n—1
Tpar ZOQZ(H)

5018

Algorithm Performance

Algorithmic Parallelism

There is another measure of algorithmic performance.

e How many processing elements do we need for our algorithm?

Clearly our sequential algorithm only needs 1 processing element.
We say it has
Algorithmic Parallelism =1

Our parallel algorithm needs n/2 processing elements.
We say it has
Algorithmic Parallelism = n/2

5019

Algorithm Performance

For any real machine

If
Algorithmic Parallelism < Number O f Processing Elements

Then we are unable to make use of all of our processing elements.

If
Algorithmic Parallelism > Number O f Processing Elements

Then we must expect a lower parallel speedup.

Note that the parallel speedup for any particular machine is likely to be less than
predicted by the Paracomputer due to the overheads of communication and co-
ordination.

5020

Identifying Parallelism

Process Parallelism

So far we have looked at process parallelism.

Process parallelism exists where any number of related or un-
related processes can be performed in parallel.

Data Parallelism

Data parallelism is a subset of process parallelism.

Data parallelism exists where we can manipulate data struc-
tures in parallel.

5021

Express Parallelism

If we are adding two arrays together, element by element, we find that there is no
data flow between the different additions.®> Hence we can perform the operations
in parallel.

Taking a sequential algorithm: (Pseudo Pascal)

for i = 0 to 99
begin

Cl[1i] := A[1] + Bli];
end

we find that it exhibits data parallelism.
We can re-express it in data parallel form: (Pseudo Fortran 90)

C(0:99) = A(0:99) + B(0:99)
or even
C = A + B

Data parallelism in algorithms is easy to identify and easy to
express.

3This is also true for any elemental operation

5022

Exploiting Parallelism

Having identified and classified the parallelism within your problem you must ex-
ploit it on a parallel machine.

Due to the large number of scientific and engineering problems which exhibit data
parallelism, many parallel machines have been built specifically to exploit this mar-
ket.

These are A7ray Processors and Vector Processors.

In the early years of parallel computing, the most successful machines have been
Supercomutpers based on Pipeline Vector Processors.

5023

