Software for MIMD Message Passing Machines

¢ Old languages with additions for concurrent programming.

— Parallel versions of C

— Parallel versions of Fortran

e Routines are added for access to communication links.
e One or a few processes are placed on each processor.
e Mechanism of inter-process communication depends on process location.

e The hardware changes but the languages remain the same.

— Important for market acceptance.

12001

Excess Parallelism & Virtual Concurrency

o Sufficient Parallelism

With the Parallel C/Fortran approach we extract as much concurrency from the
problem as we need. We can then write a program for each processor.

« Excess Parallelism

If instead we extract as much concurrency from the problem as possible, we
find that we will often have more parallelism than we have processors. We
have excess parallelism.

« Virtual Concurrency

In order to support excess parallelism, we run multiple processes on a sin-
gle processor. This multi-tasking we call virtual concurrency because the time-
sliced processes must appear to run concurrently.

12002

The Benefits of Excess Parallelism

« Masking of Message Latency

In MIMD message passing systems the latency of message passing is often a
limiting factor.

In order to mask this latency such that it doesn’t effect the execution time of
the program, we can deschedule a process which is waiting for communication
such that it no longer gets any CPU time.

The greater the level of excess parallelism the greater the masking effect.

o Abstraction

The number of processors is no longer important. The real concurrency will
expand to fit any number of processors until there is only one process on each
processor.

Programs are more portable and easier to write.

12003

Virtual Processors

We can consider this programming style as programming for a set of virtual proces-

We program as if for an arbitrarily large number of virtual processors, one per con-
current process, and then map the virtual processors onto the available real proces-
SOTS.

lc.f. virtual memory

12004

Programming with MIMD

Occam - A language for MIMD message passing systems.

Occam’s SEQ and PAR constructs provide a framework for programming with ex-
cess concurrency — it is as simple to describe a parallel process as a sequential one.

a b C

SEQ | |
PAR O s | |
N_ /N |

W := a+b (? %) |
SEQ X - 'w |
X := a*a e |

v 1= X*C 1 N _ A

z 1= Wy | ¥
oy

\@/
Z

12005

Programming with MIMD

Occam - A language for MIMD message passing systems.

Occam also supports message passing primitives operating over channels. Occam
channels provide unbuffered and synchronized communication of values between
concurrent processes:

PAR

SEQ
inl ? A
in2 ? B
chan ! A + B

SEQ in2
chan ? X in3 X out
in3 ? Y
out ! X * Y

inl
chan

12006

Problems of programming with MIMD

Deadlock

In the following code segments the parallel processes wish to swap data via com-
munication channels.

The both versions of following occam code illustrate deadlock:

PAR PAR
SEQ SEQ
chanl ? A chan2 ! B
chan2 ! B chanl ? A
SEQ SEQ
chan2 ? X chanl ! Y
chanl ! Y chan2 ? X

The communication cannot take place until both processes are ready to proceed.

12007

Problems of programming with MIMD

Deadlock

The state in which two or more processes are deferred indefi-
nitely because each is awaiting another process to make progress,
and no process is able to make progress.

Deadlock may be avoided with careful programming:

PAR
SEQ
chanl ? A
chan2 ! B
SEQ
chanl ! Y
chan2 ? X

12008

Deadlock

« Message passing MIMD systems

Although we have illustrated the problem in occam all message passing MIMD
systems are subject to deadlock, although sometimes the onset of deadlock is
unpredictable®.

 Shared Memory MIMD systems

Poor programming with semaphores will also result in deadlock.

o Networks

A poorly designed network may deadlock. This can usually be avoided by
careful control of buffers and routing strategies®.

2e.g. deadlock only happens when a buffer becomes full.
3e.g. dimension order routing in grids and hypercubes.

12009

