

The INMOS Transputer - (SGS-Thompson)

- A Single Chip Microprocessor:
 - CPU
 - RAM
 - I/O
- A Building Block For Parallel Processors:
 - Virtual Concurrency
 - Message Passing
 - Occam Engine

Transputer Structure

- T800 Transputer:
 - 32 bit CPU
 - 4 kbytes On-chip RAM
 - 4 INMOS Serial Links.
 - 64 bit Floating Point Unit

A Single Chip Microprocessor

- Designed for embedded processing and parallel computing.
- Minimum overheads for support circuitry.
 - Minimum requirement is:
 - Transputer + Power supply + 5 MHz Clock.
 - 42 Transputers on 9" by 9" PCB.
- Memory interface makes for easy connection to external RAM (if present).
- External ROM is seldom required except in standalone configurations.

Support for Virtual Concurrency

Microcoded Scheduler

- Faster & Simpler than scheduler in software kernel.
- Minimum of Internal Registers (for rapid context switch)
 - Three Register Stack: A B C
 - Workspace Pointer, Instruction Pointer & Operand Register.
- Scheduler cycles through a Linked List of Active Processes
 - Each process is executed for two ticks of the 1ms scheduling timer.
 - A process is descheduled at a suitable point
 - leaving stack and operand register empty.
 - Descheduled process is placed at back of list.
 - Process from front of list is executed.

Message Passing — Links

• T800 has 4 INMOS Serial Links

- Links are bit serial and asynchronous.
- Links are bi-directional supporting:
 - LinkIn channel & LinkOut channel.
- All transfers are acknowledged.

Message Passing — Links

• Data and Ack are multiplexed onto a single line.

- Link performance
 - Autonomous DMA allows concurrent use of all 8 channels.
 - Link speed is selectable 5MHz 10MHz 20MHz (for T800).
 - Overlapping Data and Ack allows bi-directional transfer rate of 2.4 Mbytes/sec on each link (uni-directional transfer at 1.8 Mbytes/sec).

Support for Virtual Concurrency

Channel Communication

The same instructions, in and out, are used to provide occam style synchronized communication for both internal and external transfers. The channel number differentiates between hard and soft channels:

- Hard Channels (numbers 0–8)
 - between concurrent processes on different transputers.
 - the transfer of Ack tokens ensures inter-process synchronization.
- Soft Channels (numbers 9–)
 - between *virtually concurrent* processes on the same transputer.
 - the first process to access a channel is descheduled until the transfer is completed by the second process to ensure inter-process synchronization.

Networks

- Transputer has a fixed *valency* of 4.
- Hence the choice of networks is limited.

N.B. Given that Software Packet Routing is relatively expensive in Transputer networks and manual rewiring is not a serious option, many general purpose machines have been built using C004 Programmable Link Switches to provide limited network reconfiguration.