Cray's Massively Parallel Processors

Up to 2048 PEs

		T3D	T3E	T3E-1200	
Each PE is	DEC Alpha	21064	21164	21164	
	capable of	150	600	1200	MFlops
Total:	_	0.3	1.2	2.5	TerraFlops

Cray T3D & T3E - Network

- Fixed Valency nodes (v = 6)
- Torus provides redundancy for fault-tolerance.
- \bullet Good geometric mapping for 3D finite element problems

Cray T3D & T3E

- Memory arrangement *Shared Distributed Memory*
 - Physically Distributed
 Each processor has it's own local memory allowing for fast access without network delays.
 - Logically Shared
 Single global address space.

A C.P.U. may access data from any block of memory. Non-local accesses are detected by the memory controller. Access is completed via the network which interconnects the memory controllers.

Cray T3D & T3E

Node Architecture

• DEC Alpha

- Standard component.
- Fastest available RISC microprocessor 64 bit, Superscalar and Superpipelined.
- For T3E T3E-900 T3E-1200 the only difference is the processor.

Network

- Direct network of nodes.
- 1 or 2 PEs per node sharing a packet routing switch.
- Data Channels are 16 bit parallel.

Cray T3E

Scalability

• Bisection Bandwidth

Increases as $p^{2/3}$

Slightly less than linear but doesn't suffer from the problems of building large machines with truely scalable bisection bandwidth

- Hypercube increased node cost
- Fat Tree increased proportion of routing nodes

Actual Machines

- Machines have been built with between 6 and 1324 PEs although at \$630,000 the 6 processor T3E-1200 may not represent good value for money.

	T3D	T3E	T3E-900	T3E-1200	
No of PEs	1024	1084	1324	1084	
Theoretical Peak	152.0	650.4	1191.6	1300.8	GigaFlops
Measured (Linpack-MP)	100.5	448.6	815.1	891.5	GigaFlops
Year	1994	1998	1997	1998	

Cray T3E

Programming Paradigms

Shared Memory Model

Shared distributed memory allows for shared memory code to be written. In order to gain maximum performance data must be carefully placed.

• Communicating Processes Model

The network may be used for explicit message passing.
Cray supports message passing versions of both C and Fortran

• Data Parallel Model

The network supports synchronization to help with SIMD style computation. Cray's CRAFT Fortran includes Fortran 90 array syntax.