

VLSI Design Project

Iain McNally <I.McNally@ecs.soton.ac.uk>

Josh Curry </br/>
dotsh.Curry@soton.ac.uk>

5+ lectures¹ Monday 09:00-11:00

10 lab sessions Thursday 15:00-18:00

¹If there are any lectures after the first four weeks, they will be advertised via the course e-mail list

Task:

Design and Implement a Sports Altimeter Chip using:

AMS 0.35 μm CMOS or TSMC (or UMC) 0.18 μm CMOS

- Complete IC Design Flow
- Complex System
 - Importance of Systematic Approach
 - Modular Design & Test
 - Manage Complexity through Hierarchy
- Team Exercise
 - Teams of 3 or 4 or 5

3

Flexible Specification²:

- Display
 - 8-character L.C.D. +optional Pixel Display
- Functionality
 - Simplified I²C Pressure Sensor or BMP390 Pressure Sensor
 - Mountain Sports and/or Aerial Sports
 - Height/Pressure Initialisation
 - Additional Functions
- Process
 - AMS $0.35 \mu m$ CMOS
 - TSMC (or UMC) $0.18 \mu m$ CMOS

²additional functionality will result in extra credit

ELEC6231 VLSI Design Project	Milestones		
1. Practice Chip Design	FRI week 4	(21 ^{<i>st</i>} February 2025)	
2. Design Proposal			
 Architecture and Project Plan 	WED week 5	(26 th February 2025)	
3. Behavioural Model			
• Barometer	WED week 6	(5 th March 2025)	
• Barometer, Altimeter, Timer (and VSI)	WED week 7	(12 th March 2025)	
4. Gate-Level Design			
 Gate-level netlist from synthesis stage 	WED week 8	(19 th March 2025)	
5. Full Chip Design			
 Full Cadence Design + Guide/Note 	FRI week 10	(2 nd May 2025)	
6. Supporting Information			
 Demonstration 	THU week 11	(8 th May 2025)	
 Individual Reflection 	WED week 12	(14 th May 2025)	

Practice Chip Design

- Completed individually
- Full chip design based on tools & techniques labs:
 - Synthesis
 - Place & Route
 - Post-Layout Simulation
 - Sign-Off
- Dice chip based on your ELEC6230 design exercise 2.
 - with extra control signal 'Roll'
 - behavioural dtype model to permit synthesis (same signal names)

Design Proposal

- Process:
 - e.g. AMS 0.35um CMOS
- Approach:
 - SoC (hardware/software co-design) or Hardware-Only Design

• Specification:

- Sensor Choice / Display Choice
- Mountain Sports, Aerial Sports or Mountain + Aerial Sports?
- Set of functions to be supported + range and resolution for each
- Set of buttons required and the procedure used to select each function
- Architecture Diagram showing major design blocks
 - detailed programmer's model for prospective SoC teams
- Division of Responsibilities and Schedule of Work
- 4 A4 pages

Initial Behavioural Model

• Must support barometer readings via the 8-character L.C.D.

Behavioural Model

- Must support barometer, altimeter and trip timer readings via the 8-character L.C.D.³
- Should support variometer (VSI) if included in the design proposal.

³more advanced features may exist at this time but they will not be tested and they will not result in any extra credit

Gate-Level Design

- Must support barometer, altimeter and trip timer readings via the 8-character L.C.D.
- Should support variometer (VSI) if included in the design proposal.
- Should support height/pressure initialistaion if included in design proposal.
- Should support a simple pixel based display if included in design proposal.
- Simulation including realistic gate delays
- Support for input synchronisation, reset synchronisation and scan path

Full Chip Design

- Complete Cadence Design
 - Ready for "Tape Out"
 - Simulated
 - Verified
 - Design Rule Checked
- User's Guide

All the user needs to know about using your sports altimeter.

• Technical Note

All an engineer needs to know about building a sports altimeter with your chip.

Proposed Marking Scheme

Tools & Techniques	Practice Chip Design (Individual)	20%
Milestones	Design Proposal	
	Initial Behavioural Design	
	Behavioural Design	
	Gate-Level Design	5%
Final Design	Chip Functionality	45%
	User's Guide + Technical Note	10%
	Reflection (Individual)	5%

Team marks will be distributed to team members based on the input from each team member.

Proposed Marking Scheme

• Chip Functionality

45 marks are available dependent on the features supported⁴:

	Marks for basic functionality	Max Marks	
Functions Supported (/cost)	10	25	
Display	10	20	
Ease of Use (HCI)	5	10	
Cost of each additional button -5			

⁴a minimal system in a standard pad ring using a simplified I²C pressure sensor to support a barometer, altimeter and trip timer without variometer or height/pressure initialisation via an 8-character L.C.D. may score up to 10+10+5+55 = 80%.

week	MON	TUE	WED	THU	mini milestones	FRI
1				LAB SoC		
2				LAB Synthesis	Confirm Teams	
3				LAB P&R	Draft Design Proposal	
4				LAB Sign-off		Dice Chip
5			Design Proposal	LAB	t.b.a.	
6			Initial Behavioural Model	LAB	t.b.a.	
7			Behavioural Model	LAB	t.b.a.	
8			Gate-Level Design	LAB	t.b.a.	
9				LAB	t.b.a.	
10				LAB	Balloon Debate	Final Design
11	Bank Holiday				Demonstrations	
12			Reflection			

ELEC6231 VLSI Design Project Lectures

Week	Day	Time	Topic
1	Monday	09:00	Introduction to Team Exercise This lecture
	Monday	10:00	System-on-Chip Design
2	Monday	09:00	Synthesis and Constraints
	Monday	10:00	Timing Simulation
3	Monday	09:30	Place and Route