
DFT Compiler
Scan
User Guide
Version H-2013.03-SP4, September 2013

Copyright Notice and Proprietary Information
© 2013 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information that is
the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced,
transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Synopsys, Inc., or as expressly provided by the license agreement.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
http://www.synopsys.com/Company/Pages/Trademarks.aspx.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc.
700 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com
DFT Compiler Scan User Guide, version H-2013.03-SP4 ii

Copyright Notice for the Command-Line Editing Feature
© 1992, 1993 The Regents of the University of California. All rights reserved. This code is derived from software contributed to
Berkeley by Christos Zoulas of Cornell University.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgement:
This product includes software developed by the University of California, Berkeley and its contributors.
4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright Notice for the Line-Editing Library
© 1992 Simmule Turner and Rich Salz. All rights reserved.

This software is not subject to any license of the American Telephone and Telegraph Company or of the Regents of the
University of California.

Permission is granted to anyone to use this software for any purpose on any computer system, and to alter it and
redistribute it freely, subject to the following restrictions:
1. The authors are not responsible for the consequences of use of this software, no matter how awful, even if they arise
from flaws in it.
2. The origin of this software must not be misrepresented, either by explicit claim or by omission. Since few users ever
read sources, credits must appear in the documentation.
3. Altered versions must be plainly marked as such, and must not be misrepresented as being the original software.
Since few users ever read sources, credits must appear in the documentation.
4. This notice may not be removed or altered.
DFT Compiler Scan User Guide, version H-2013.03-SP4 iii

DFT Compiler Scan User Guide, version H-2013.03-SP4 iv

Contents

About This Guide . xxii

Customer Support. xxiv

1. Key Design-for-Test Flows and Methodologies

Design-for-Test Flows in the Logic Domain . 1-2

Unmapped Design Flow . 1-2
Synthesizing Your Design . 1-4
Postprocessing Your Design . 1-5
Building Scan Chains . 1-6

Mapped Design Flow . 1-8
Reading In Your Design . 1-10
Performing Scan Replacement and Building Scan Chains. 1-11

Mapped Designs With Existing Scan Flow . 1-13
Reading In Your Design . 1-15
Checking Test Design Rules. 1-16

Designing Block by Block. 1-17

Controlling Scan Replacement During Scan Insertion 1-17

Hierarchical Scan Synthesis Flow. 1-18

Introduction to Test Models . 1-19

Linking Test Models to Library Cells . 1-23

Checking Library Cells for CTL Model Information . 1-24

Scan Assembly Using Test Models . 1-24

Saving Test Models for Subdesigns. 1-25

Using Test Models . 1-26

Reading Designs Into TetraMAX . 1-28

v

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Managing Test Models. 1-28

Top-Level Integration . 1-30

Hierarchical ScanEnable Integration . 1-32

DFT Flows in Design Compiler Topographical Mode . 1-33

Supported DFT Features . 1-34

DFT Insertion in Design Compiler Topographical Mode 1-34

Hierarchical Support in Design Compiler Topographical Mode 1-35
Top-Level Design Stitching Flow. 1-36
Performing a Bottom-up or Hierarchical Compile . 1-38

Scan Insertion Methodologies . 1-41

Bottom-Up Scan Insertion . 1-42

Top-Down Scan Insertion. 1-44

DFT Compiler Default Scan Synthesis Approach . 1-45

Scan Replacement . 1-46

Scan Element Allocation . 1-46

Test Signals . 1-47

Pad Cells . 1-47

Area and Timing Optimization . 1-47

Getting the Best Results With Scan Design . 1-48

DFT Compiler and Power Compiler Interoperability . 1-49

Improving Testability in Clock Gating . 1-49
Inserting Control Points in Control Clock Gating . 1-50
Scan-Enable Signal Versus Test-Mode Signal . 1-51
Inserting Observation Points to Control Clock Gating 1-53
Choosing a Depth for Observability Logic . 1-55

Power Compiler/DFT Compiler Interoperability Flows 1-55
Using Test-Mode Signals With Power Compiler . 1-55
Using Scan-Enable Signals With Power Compiler 1-56

Connecting Test Pins to Clock-Gating Cells Using the insert_dft Command. . . 1-59
Design Requirements . 1-60
Hookup Testport Connections . 1-61
Design Rule Checking Changes. 1-61

Specifying Signals for Automatic Clock-Gating Cell Test Pin Connections 1-62

Limitations . 1-64

Contents vi

DFT Compiler Scan User Guide Version H-2013.03-SP4
2. Running RTL Test Design Rule Checking

Understanding the Flow . 2-2

Specifying Setup Variables . 2-3

Generating a Test Protocol . 2-3

Defining a Test Protocol. 2-3
Reading in an Initialization Protocol in STIL Format. 2-4

Setting the Scan Style . 2-7

Design Examples. 2-8
Test Protocol Example 1 . 2-8
Test Protocol Example 2 . 2-9

Running RTL Test DRC . 2-12

Understanding the Violations . 2-13

Violations That Prevent Scan Insertion . 2-13
Uncontrollable Clocks . 2-13
Asynchronous Control Pins in Active State . 2-14

Violations That Prevent Data Capture . 2-14
Clock Used As Data . 2-15
Black Box Feeds Into Clock or Asynchronous Control 2-15
Source Register Launch Before Destination
Register Capture. 2-16
Registered Clock-Gating Circuitry . 2-17
Three-State Contention . 2-17
Clock Feeding Multiple Register Inputs . 2-18

Violations That Reduce Fault Coverage . 2-18
Combinational Feedback Loops . 2-19
Clocks That Interact With Register Input . 2-19
Multiple Clocks That Feed Into Latches and Flip-Flops 2-20
Black Boxes . 2-21

Limitations. 2-22

3. Running the Test DRC Debugger

Starting and Exiting the Graphical User Interface. 3-2

Exploring the Graphical User Interface . 3-2

Logic Hierarchy View . 3-4

Console . 3-4

Command Line . 3-4
Chapter 1: Contents
1-vii

Contents vii

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Viewing Man Pages . 3-5

Menus . 3-5
Checking Scan Test Design Rules . 3-5
Examining DRC Violations . 3-6
Viewing Test Protocols . 3-6

Viewing Design Violations. 3-6

Examining DRC Violations. 3-7

Inspecting DRC Violations . 3-8
Inspecting Static DRC Violations . 3-8
Inspecting Dynamic DRC Violations . 3-15

Commands Specific to the DFT Tools in the GUI . 3-17

gui_inspect_violations . 3-17

gui_wave_add_signal . 3-18

gui_violation_schematic_add_objects . 3-18

4. Performing Scan Replacement

Scan Replacement Flow. 4-3

Preparing for Scan Replacement . 4-4

Selecting a Scan Replacement Strategy . 4-4

Identifying Barriers to Scan Replacement . 4-6
Logic Library Does Not Contain Appropriate Scan Cells 4-6
Support for Different Types of Sequential Cells and Violations 4-7
Attributes That Can Prevent Scan Replacement . 4-8
Invalid Clock Nets . 4-9
Invalid Asynchronous Pins . 4-12

Preventing Scan Replacement . 4-12

Specifying a Scan Style . 4-13

Types of Scan Styles . 4-13
Multiplexed Flip-Flop Scan Style. 4-13
Clocked Scan Style. 4-14
LSSD Scan Style . 4-14
Scan-Enabled LSSD Scan Style. 4-14

Scan Style Considerations. 4-15

Setting the Scan Style . 4-16

Verifying Scan Equivalents in the Logic Library . 4-17

Checking the Logic Library for Scan Cells . 4-17

Contents viii

DFT Compiler Scan User Guide Version H-2013.03-SP4
Checking for Scan Equivalents . 4-18

Scan Cell Replacement Strategies . 4-18

Specifying Scan Cells . 4-19
Restricting the List of Available Scan Cells. 4-19
Scan Cell Replacement Strategies . 4-19
Mapping Sequential Gates in Scan Replacement 4-20

Multibit Components . 4-21
What Are Multibit Components? . 4-22
How DFT Compiler Assimilates Multibit Components 4-22
Controlling Multibit Test Synthesis . 4-23
Performing Multibit Component Scan Replacement 4-23
Disabling Multibit Component Support . 4-24

Test-Ready Compilation . 4-24

What Is Test-Ready Compile? . 4-24
The Test-Ready Compile Flow . 4-25

Preparing for Test-Ready Compile. 4-26
Performing Test-Ready Compile in the Logic Domain 4-27

Controlling Test-Ready Compile . 4-27

Comparing Default Compile and Test-Ready Compile 4-28

Complex Compile Strategies . 4-31

Validating Your Netlist . 4-31

Running the link Command . 4-31

Running the check_design Command. 4-32

Performing Constraint-Optimized Scan Insertion . 4-32

Supported Scan States . 4-33

Locating Scan Equivalents . 4-33

Preparing for Constraint-Optimized Scan Insertion . 4-35

Scan Insertion . 4-36
Specification Phase . 4-38
Preview . 4-39
Synthesis . 4-40

5. Pre-Scan Test Design Rule Checking

Test DRC Basics. 5-2

Test DRC Flow. 5-2
Preparing Your Design . 5-4
Creating the Test Protocol . 5-5
Chapter 1: Contents
1-ix

Contents ix

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Assigning a Known Logic State . 5-5
Performing Test Design Rule Checking . 5-5
Reporting All Violating Instances . 5-6
Analyzing and Debugging Violations . 5-6
Summary of Violations . 5-6
Enhanced Reporting Capability . 5-7

Test Design Rule Checking Messages . 5-8
Understanding Test Design Rule Checking Messages. 5-9

Effects of Violations on Scan Replacement . 5-9

Viewing the Sequential Cell Summary. 5-10

Classifying Sequential Cells . 5-10

Sequential Cells With Violations . 5-11
Cells With Scan Shift Violations . 5-11
Black-Box Cells. 5-11
Constant Value Cells . 5-12

Sequential Cells Without Violations . 5-12

Checking for Modeling Violations . 5-12

Black-Box Cells . 5-12
Correcting Black-Box Cells . 5-13

Unsupported Cells . 5-14

Generic Cells . 5-16

Scan Cell Equivalents . 5-16
Scan Cell Equivalents and the dont_touch Attribute. 5-17

Latches . 5-17
Nonscan Latches . 5-17

Setting Test Timing Variables . 5-18

Protocols for Common Design Timing Requirements . 5-18
Strobe-Before-Clock Protocol . 5-18
Strobe-After-Clock Protocol . 5-19

Setting Timing Variables . 5-19
test_default_period Variable . 5-19
test_default_delay Variable. 5-20
test_default_bidir_delay Variable . 5-20
test_default_strobe Variable . 5-21
test_default_strobe_width Variable . 5-22
The Effect of Timing Variables on Vector Formatting 5-23

Creating Test Protocols. 5-24

Design Characteristics for Test Protocols . 5-25

Contents x

DFT Compiler Scan User Guide Version H-2013.03-SP4
Scan Style. 5-25
New DFT Signals . 5-25
Existing Clock Ports . 5-25
Existing Asynchronous Control Ports . 5-25
Bidirectional Ports. 5-26

STIL Test Protocol File Syntax. 5-26
Defining the test_setup Macro . 5-26
Defining Basic Signal Timing . 5-27
Defining the load_unload Procedure . 5-29
Defining the Shift Procedure. 5-29

Defining an Initialization Protocol. 5-30

Scan Shift and Parallel Measure Cycles . 5-32
Multiplexed Flip-Flop Scan Style. 5-33
Clocked-Scan Scan Style . 5-33
LSSD Scan Style . 5-33
Scan-Enabled LSSD Scan Style. 5-34

Examining a Test Protocol File . 5-34
Updating a Protocol in a Scan Chain Inference Flow 5-37

Masking Capture DRC Violations . 5-37

Configuring Capture DRC Violation Masking. 5-37

Reporting Capture DRC Violation Masking . 5-38

Resetting Capture DRC Violation Masking . 5-39

6. Architecting Your Test Design

Configuring Your DFT Architecture . 6-3

Defining Your Scan Architecture . 6-3
Setting Design Constraints . 6-4
Defining Constant Input Ports During Scan . 6-4
Specifying Test Ports . 6-4

Specifying Individual Scan Paths. 6-5

Previewing Your Scan Design . 6-6

Architecting Scan Chains . 6-7

Controlling the Scan Chain Length . 6-8
Specifying the Global Scan Chain Length Limit . 6-8
Specifying the Global Scan Chain Exact Length . 6-8

Determining the Scan Chain Count . 6-9

Defining Individual Scan Chain Characteristics . 6-10

Balancing Scan Chains . 6-11
Chapter 1: Contents
1-xi

Contents xi

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Multiple Clock Domains . 6-11
Multibit Components and Scan Chains. 6-14

Controlling the Routing Order . 6-15

Preventing Half-Cycle Paths Between Hierarchical Scan Chains 6-16

Routing Scan Chains and Global Signals . 6-17

Rerouting Scan Chains . 6-18

Stitching Scan Chains Without Optimization . 6-18
Specifying a Stitch-Only Design . 6-19
Mapping the Replacement of Nonscan Cells to Scan Cells 6-19
Criteria for Conversion Between Nonscan and Scan Cells. 6-21

Using Existing Subdesign Scan Chains. 6-22

Uniquifying Your Design. 6-24

Reporting Scan Path Information on the Current Design 6-25

Architecting Scan Signals . 6-25

Specifying Scan Signals for the Current Design . 6-26

Selecting Test Ports . 6-31
Defining Existing Unconnected Ports as Scan Ports 6-31
Sharing a Scan Input With a Functional Port . 6-31
Sharing a Scan Output With a Functional Port . 6-32
Controlling Subdesign Scan Output Ports . 6-33

Controlling Scan-Enable Connections to DFT Logic . 6-33
Associating Scan-Enable Ports With Specific Scan Chains 6-34
Defining Dedicated Scan-Enable Signals for Scan Cells 6-34
Connecting the Scan-Enable Signal in Hierarchical Flows. 6-36
Preserving Existing Scan-Enable Pin Connections 6-38

Suppressing Replacement of Sequential Cells . 6-39
In Logic Scan Synthesis . 6-39

Changing the Scan State of a Design . 6-39

Removing Scan Configurations . 6-40

Keeping Specifications Consistent. 6-41

Synthesizing Three-State Disabling Logic . 6-41

Configuring Three-State Buses . 6-44
Configuring External Three-State Buses . 6-44
Configuring Internal Three-State Buses . 6-45
Overriding Global Three-State Bus Configuration Settings 6-45
Disabling Three-State Buses and Bidirectional Ports 6-45

Handling Bidirectional Ports. 6-46
Setting Individual Bidirectional Port Behavior . 6-46

Contents xii

DFT Compiler Scan User Guide Version H-2013.03-SP4
Fixed Direction Bidirectional Ports . 6-47

Assigning Test Port Attributes . 6-47

Architecting Test Clocks . 6-48

Defining Test Clocks . 6-48

Specifying a Hookup Pin for DFT-Inserted Clock Connections 6-49

Requirements for Valid Scan Chain Ordering . 6-50

Adding Lock-Up Latches Between Clock Domains . 6-51

Adding Lock-Up Latches Within Clock Domains . 6-55

Assigning Scan Chains to Specific Clocks . 6-58

Handling Multiple Clocks in LSSD Scan Styles . 6-59
Using Multiple Master Clocks . 6-59
Dedicated Test Clocks for Each Clock Domain. 6-60
Controlling LSSD Slave Clock Routing . 6-61

Modifying Your Scan Architecture . 6-63

Post-Scan Test Design Rule Checking . 6-63

Preparing for Test Design Rule Checking After Scan Insertion 6-64

Checking for Topological Violations . 6-65

Checking for Scan Connectivity Violations . 6-66
Scan Chain Extraction . 6-66

Causes of Common Violations . 6-66

Ability to Load Data Into Scan Cells . 6-67
Incomplete Test Configuration . 6-67
Invalid Clock Logic . 6-69
Incorrect Clock Timing Relationship . 6-71
Nonscan Sequential Cells. 6-73

Ability to Capture Data Into Scan Cells . 6-74
Clock Driving Data . 6-75
Untestable Functional Path. 6-76
Uncontrollable Asynchronous Pins . 6-77

7. Advanced DFT Architecture Methodologies

Performing Scan Extraction . 7-3

Inserting Test Points . 7-4

Test Point Types. 7-4
Force Test Points . 7-5
Control Test Points . 7-6
Observe Test Points . 7-9
Chapter 1: Contents
1-xiii

Contents xiii

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Test Point Signals . 7-10

Sharing Test Point Scan Cells . 7-10

Automatically Inserting Test Points . 7-12
Enabling Automatic Test Point Insertion . 7-12
Configuring Pattern Reduction and Testability Test Point Insertion 7-13
Previewing the Test Point Logic . 7-15
Inserting the Test Point Logic . 7-16
Script Example . 7-16

Inserting User-Defined Test Points . 7-16
Defining User-Defined Test Points . 7-17
Previewing the Test Point Logic . 7-19
Inserting the Test Point Logic . 7-19
User-Defined Test Points Example . 7-20

Using AutoFix . 7-22

When to Use AutoFix . 7-22
Uncontrollable Clock Signals . 7-23
Uncontrollable Asynchronous Set and Reset Signals 7-23
Uncontrollable Three-State Bus Enable Signals. 7-24
Uncontrollable Bidirectional Enable Signals . 7-25

The AutoFix Flow . 7-26

Using AutoFix. 7-27
Enabling AutoFix Capabilities . 7-27
Configuring Clock AutoFixing . 7-28
Configuring Set and Reset AutoFixing . 7-29
Configuring Three-State Bus AutoFixing . 7-30
Configuring Bidirectional AutoFixing. 7-31
Applying Hierarchical AutoFix Specifications . 7-31
Previewing the AutoFix Implementation . 7-32

AutoFix Script Example . 7-33

Pipelined Scan-Enable Architecture . 7-34

Pipelined Scan-Enable Signals in Hierarchical Flows . 7-35

Limitations . 7-36

Multiple Test Modes . 7-36

Introduction to Multiple Test Modes . 7-36

Defining Test Modes . 7-37
Defining the Usage of a Test Mode. 7-38
Defining the Encoding of a Test Mode . 7-39

Applying Test Specifications to a Test Mode . 7-42

Contents xiv

DFT Compiler Scan User Guide Version H-2013.03-SP4
Using Multiple Test Modes in Hierarchical Flows. 7-44

Supported Test Specification Commands for Test Modes 7-46
set_dft_signal . 7-46
set_scan_configuration. 7-47
set_scan_path . 7-47

Multiple Test-Mode Scan Insertion Script Examples . 7-47

Multivoltage Support . 7-55

Configuring Scan Insertion for Multivoltage Designs . 7-56

Configuring Scan Insertion for Multiple Power Domains 7-56

Mixture of Multivoltage and Multiple Power Domain Specifications 7-57

Reusing Multivoltage Cells . 7-58
Reusing Level Shifters in Scan Paths. 7-58
Reusing Isolation Cells in Scan Paths . 7-60

Scan Path Routing and Isolation Strategy Requirements 7-66

Using Domain-Based Strategies for DFT Insertion . 7-69

DFT Considerations for Low-Power Design Flows. 7-70

Previewing a Multivoltage Scan Chain. 7-72

Scan Extraction Flows in the Presence of Isolation Cells 7-73

Limitations . 7-74

Controlling Power Modes During Test. 7-74

Inserting Power Controller Override Logic . 7-74
Limitations. 7-76

Power-Aware Functional Output Gating . 7-77

Controlling Clock-Gating Cell Test Pin Connections . 7-83

Connecting User-Instantiated Clock-Gating Cells . 7-84
Script Example . 7-86
Limitations. 7-87

Excluding Clock-Gating Cells From Test-Pin Connection 7-87

Connecting Clock-Gating Cell Test Pins Without Scan Stitching 7-90

Internal Pins Flow . 7-92

Understanding the Architecture . 7-92

DFT Commands . 7-93
Enabling the Internal Pins Flow . 7-93
Specifying Hookup Pins . 7-94

Scan Insertion Flow . 7-95

Mixing Ports and Internal Pins . 7-96
Chapter 1: Contents
1-xv

Contents xv

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Specifying Equivalency Between External Clock Ports and Internal Pins 7-97

Limitations to the Internal Pins Flow . 7-99

Creating Scan Groups . 7-100

Configuring Scan Grouping . 7-100
Creating Scan Groups . 7-100
Removing Scan Groups . 7-101
Integrating an Existing Scan Chain Into a Scan Group 7-102
Reporting Scan Groups . 7-103

Scan Group Flows . 7-103

Known Limitations . 7-103

Identification of Shift Registers . 7-104

Shift Register Identification in an ASCII Netlist Flow . 7-105

8. Wrapping Cores

Wrapper Chain Concepts . 8-2

Wrapper Cells . 8-3
Safe-State Wrapper Cells . 8-4
Shared-Register Wrapper Cells . 8-5

Wrapper Operation Modes . 8-8

Core Wrapping Test Modes . 8-10

Core Wrapping Flows . 8-11

Simple Core Wrapping Flow . 8-11
Reporting the Wrapper Cells . 8-15
Wrapper Signal Behavior . 8-17
Separating Input and Output Wrapper Cells. 8-17
Wrapping Three-State and Bidirectional Ports . 8-18
Controlling Wrapper Chain Count and Length . 8-19
Using the set_scan_path Command With Wrapper Chains 8-20
Creating User-Defined Wrapper Modes . 8-22
DRC Rule Checks. 8-23
Multiple Voltage Domains . 8-23
SCANDEF Generation . 8-24

Maximized Reuse Core Wrapping Flow. 8-24
Computing Reuse Threshold Values . 8-26
Overriding the Reuse Threshold. 8-30
Applying a Combinational Depth Threshold . 8-31
Using Dedicated Wrapper Cells . 8-32
Previewing Shared Wrapper Cells . 8-33

Contents xvi

DFT Compiler Scan User Guide Version H-2013.03-SP4
Wrapper Signal Behavior . 8-35
Using the Pipelined Scan-Enable Feature . 8-36
Low-Power Features . 8-37
Hierarchical Core Wrapping . 8-38
Limitations of the Maximized Reuse Flow . 8-40

Delay Test Core Wrapping Flow . 8-40
Wrapper Signal Behavior . 8-40

Creating User-Defined Core Wrapping Test Modes . 8-42

Wrapping Cores With Existing Scan Chains. 8-43

Core Wrapping Scripts . 8-46

Core Wrapping With A Dedicated Wrapper . 8-47

Core Wrapping With A Shared Wrapper . 8-48

Core Wrapping With A Delay Test Wrapper. 8-49

Core Wrapping With Shared Delay Wrapper . 8-51

9. On-Chip Clocking Support

Background. 9-3

Supported DFT Flows. 9-4

Clock Type Definitions. 9-4

Capabilities . 9-5

OCC Controller Structure and Operation . 9-6

OCC Controller Types . 9-6

OCC Controller Signal Operation . 9-7
Logic Representation of an OCC Controller . 9-9
Scan-Enable Signal Requirements for OCC Controller Operation 9-10

Enabling On-Chip Clocking Support . 9-10

OCC Flows . 9-10

DFT-Inserted OCC Controller Flow . 9-11
Defining Clocks. 9-11
Defining Global Signals . 9-13
Configuring the OCC Controller . 9-14
Specifying Scan Configuration . 9-16
Performing Timing Analysis . 9-16
Script Example . 9-16

Existing User-Defined OCC Controller Flow . 9-18
Chapter 1: Contents
1-xvii

Contents xvii

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Defining Clocks . 9-18
Defining Global Signals . 9-21
Specifying Clock Chains . 9-22
Specifying Scan Configuration . 9-23
Script Example . 9-23

Hierarchical On-Chip Clocking Flow . 9-25

Script Example for Cores Without Preconnected OCC Signals. 9-26

Script Example for Cores With Preconnected OCC Signals 9-28

Reporting Clock Controller Information . 9-29

DFT-Inserted OCC Controller Flow . 9-29

Existing User-Defined OCC Controller Flow . 9-30

DRC Support . 9-30

Enabling the OCC Controller Bypass Configuration . 9-31

DFT-Inserted OCC Controller Configurations . 9-31

Single OCC Controller Configurations . 9-32
Example 1. 9-32
Example 2. 9-33
Example 3. 9-33

Multiple DFT-Inserted OCC Controller Configurations. 9-34
Example 1. 9-34
Example 2. 9-35

Waveform and Capture Cycle Example . 9-36

Limitations. 9-36

10. Exporting Data to Other Tools

Verifying DFT Inserted Designs for Functionality . 10-2

Verification Setup File Generation . 10-2

Test Information Passed to the Verification Setup File. 10-3

Script Example. 10-3

Formality Tool Limitations . 10-4

Exporting a Design to TetraMAX ATPG . 10-4

Before Exporting Your Design . 10-4
Support for DFT Compiler Commands in TetraMAX ATPG 10-5
Creating Generic Capture Procedures . 10-5

Exporting Your Design to TetraMAX ATPG . 10-13

Contents xviii

DFT Compiler Scan User Guide Version H-2013.03-SP4
SCANDEF-Based Reordering Flow . 10-15

Overview . 10-15

Generation of SCANDEF Information . 10-16
Reading and Compiling the Design . 10-16
Specifying the Scan Configuration . 10-16
Writing Out the SCANDEF Information. 10-16

Generating SCANDEF Information for Typical Flows . 10-17

Generating SCANDEF Information for Hierarchical Flows 10-17

Hierarchical SCANDEF Flow Support . 10-18
DFT Commands . 10-18
Hierarchical SCANDEF Flows . 10-18

Impact of DFT Configuration Specification on SCANDEF Generation 10-23

Support for Other DFT Features . 10-27

Limitations With SCANDEF Generation . 10-28
Chapter 1: Contents
1-xix

Contents xix

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4

Contents xx

Preface

This preface includes the following sections:

• About This Guide

• Customer Support

xxi

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
About This Guide

The DFT Compiler Scan User Guide describes the processes and flows for using scan
technology in DFT Compiler.

Audience
This manual is intended for ASIC design engineers who have some experience with
testability concepts and for test and design-for-test engineers who want to understand how
basic test automation concepts and practices relate to DFT Compiler.

Related Publications
For additional information about the DFT Compiler tool, see the documentation on the
Synopsys SolvNet® online support site at the following address:

https://solvnet.synopsys.com/DocsOnWeb

You might also want to see the documentation for the following related Synopsys products:

• DFTMAX™

• Design Compiler®

• Design Vision™

• BSD Compiler

• TetraMAX®

Release Notes
Information about new features, enhancements, changes, known limitations, and resolved
Synopsys Technical Action Requests (STARs) is available in the DFT Compiler Release
Notes on the SolvNet site.

To see the DFT Compiler Release Notes,

1. Go to the SolvNet Download Center located at the following address:

https://solvnet.synopsys.com/DownloadCenter

2. Select DFT Compiler, and then select a release in the list that appears.
Preface
About This Guide xxii

https://solvnet.synopsys.com/DocsOnWeb
https://solvnet.synopsys.com/DownloadCenter

DFT Compiler Scan User Guide Version H-2013.03-SP4
Conventions
The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates syntax, such as write_file.

Courier italic Indicates a user-defined value in syntax, such as
write_file design_list.

Courier bold Indicates user input—text you type verbatim—in
examples, such as

prompt> write_file top

[] Denotes optional arguments in syntax, such as
write_file [-format fmt]

... Indicates that arguments can be repeated as many
times as needed, such as
pin1 pin2 ... pinN

| Indicates a choice among alternatives, such as
low | medium | high

Ctrl+C Indicates a keyboard combination, such as holding
down the Ctrl key and pressing C.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as
opening the Edit menu and choosing Copy.
Chapter 2: Preface
About This Guide 2-xxiii
Preface
About This Guide xxiii

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Customer Support

Customer support is available through SolvNet online customer support and through
contacting the Synopsys Technical Support Center.

Accessing SolvNet
The SolvNet site includes a knowledge base of technical articles and answers to frequently
asked questions about Synopsys tools. The SolvNet site also gives you access to a wide
range of Synopsys online services including software downloads, documentation, and
technical support.

To access the SolvNet site, go to the following address:

https://solvnet.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user name
and password, follow the instructions to sign up for an account.

If you need help using the SolvNet site, click HELP in the top-right menu bar.

Contacting the Synopsys Technical Support Center
If you have problems, questions, or suggestions, you can contact the Synopsys Technical
Support Center in the following ways:

• Open a support case to your local support center online by signing in to the SolvNet site
at https://solvnet.synopsys.com, clicking Support, and then clicking “Open A Support
Case.”

• Send an e-mail message to your local support center.

❍ E-mail support_center@synopsys.com from within North America.

❍ Find other local support center e-mail addresses at

http://www.synopsys.com/Support/GlobalSupportCenters/Pages

• Telephone your local support center.

❍ Call (800) 245-8005 from within North America.

❍ Find other local support center telephone numbers at

http://www.synopsys.com/Support/GlobalSupportCenters/Pages
Preface
Customer Support xxiv

https://solvnet.synopsys.com
https://solvnet.synopsys.com
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

1
Key Design-for-Test Flows and
Methodologies 1

This chapter describes the key flows, methodologies, processes, and default behavior to
consider when planning your design-for-test (DFT) project. For a complete introduction to
DFT processes and flows, see Chapter 2 of the DFT Overview User Guide.

This chapter includes the following sections:

• Design-for-Test Flows in the Logic Domain

• Hierarchical Scan Synthesis Flow

• DFT Flows in Design Compiler Topographical Mode

• Scan Insertion Methodologies

• DFT Compiler Default Scan Synthesis Approach

• Getting the Best Results With Scan Design

• DFT Compiler and Power Compiler Interoperability

1-1

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Design-for-Test Flows in the Logic Domain

This section introduces the recommended DFT flows for simple designs in the logic domain.
The flow you use depends on the state of the design before you start using DFT Compiler,
as detailed in the following sections:

• Unmapped Design Flow

• Mapped Design Flow

• Mapped Designs With Existing Scan Flow

• Designing Block by Block

• Controlling Scan Replacement During Scan Insertion

Unmapped Design Flow
This flow applies to unmapped designs. Using the command sequence provided in this
section, you can take a design from an HDL-level circuit description that does not contain
existing scans to a fully optimized design with internal scan circuitry. The command
sequence example applies to full-scan and partial-scan designs. The basic process consists
of the following tasks:

• Synthesizing Your Design

• Postprocessing Your Design

• Building Scan Chains

• Exporting a Design to TetraMAX ATPG

For information about how to pass the design to the TetraMAX ATPG tool to generate test
patterns, see Chapter 10, “Exporting Data to Other Tools.” Also, see the TetraMAX
Online Help for information about generating test patterns by using TetraMAX ATPG in a
DFT Compiler flow.

Figure 1-1 shows a typical unmapped design flow that uses the HDL Compiler and DFT
Compiler tools. At the end of the flow, TetraMAX ATPG produces a set of high fault-coverage
test vectors that you can readily adapt to your target tester.
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-2

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 1-1 Typical Flat Design Flow From an Unmapped Design

Run test-ready compile

Not

met

Correct problems

Set constraints

 HDL

 Build scan chains

Create and format
test patterns

HDL Compiler,

Check design rules

Optimized netlist with scan

Check design rules Correct problems

Set scan style

Check constraints

 Save testable design

Compacted high-fault-coverage
 test vectors

Adjust constraints or
try incremental compile

Check constraints

Design Compiler,

Adjust constraints
or compile strategy

Met

Not met

Met

DFT Compiler

Set scan configuration

TetraMAX ATPG

Check design rules Correct problems
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-3
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-3

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Synthesizing Your Design
To synthesize your design, perform the following steps:

1. Select the target logic library and the link logic library.

dc_shell> set target_library asic_vendor.ddc
dc_shell> set link_library \
 [list "*" asic_vendor.db]

2. Use one of the following commands to read in an HDL circuit description:

dc_shell> read_file -format verilog design_name.v
dc_shell> read_file -format vhdl design_name.vhdl

3. Explicitly link the design:

dc_shell> link

If DFT Compiler is unable to resolve any references, you must provide the missing
designs before proceeding. See the Design Compiler documentation for details.

4. Select the design constraints. In this example, the design is constrained to be no larger
than 1,000 vendor units in area and runs with a 20-ns clock period. Enter the following
commands:

dc_shell> set_max_area 1000
dc_shell> create_clock clock_port -period 20 -waveform [list 10 15]

For additional related information on setting design constraints, see Chapter 6,
“Architecting Your Test Design.”

5. Set the test timing variables to the values required by your ASIC vendor. If you are using
TetraMAX ATPG to generate test patterns, and your vendor does not have specific
requirements, the default settings produce the best results:

dc_shell> set_app_var test_default_delay 0
dc_shell> set_app_var test_default_bidir_delay 0
dc_shell> set_app_var test_default_strobe 40
dc_shell> set_app_var test_default_period 100

These are the default settings; you do not need to add them to your script.

6. Select the scan style if you did not previously set the test_default_scan_style
variable in the .synopsys_dc.setup file. In this example, the scan style is multiplexed
flip-flop.

Enter the following command:

dc_shell> set_app_var test_default_scan_style \
 multiplexed_flip_flop

You can also use the set_scan_configuration -style command instead.
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-4

DFT Compiler Scan User Guide Version H-2013.03-SP4
For more information on setting the scan style, see “Setting the Scan Style” on page 2-7.

7. Define clocks and asynchronous set and reset signals in your design, and then generate
a test protocol.

dc_shell> set_dft_signal -view existing_dft -type ScanClock ...
dc_shell> set_dft_signal -view existing_dft -type Reset ...
dc_shell> create_test_protocol

For more information on generating a test protocol, see “Defining an Initialization
Protocol” on page 5-30.

8. Check test design rules in the RTL source file, using RTL Test DRC.

dc_shell> dft_drc

For more information, see “Understanding the Violations” on page 2-13.

9. Synthesize a design that meets the constraints you set, and map your circuit description
to cells from the target logic library.

dc_shell> compile -scan

This performs a test-ready compile. DFT Compiler synthesizes and optimizes your
design relative to area and speed, and it removes redundant logic. This last feature
eliminates logically untestable circuitry and is an important part of the Synopsys test
methodology. Because of the -scan option, all flip-flops in the design are implemented
as scan flip-flops.

For details on test-ready compile, see “Test-Ready Compilation” on page 4-24.

Postprocessing Your Design
After your design is synthesized, perform the following postprocessing steps:

1. Check that you have satisfied the constraints you specified in step 5 of the previous
procedure. Enter the following command:

dc_shell> report_constraint -all_violators

2. This step is optional. You can save a copy of the design at this point. Enter the following
command:

dc_shell> write -format ddc -output design_test_ready.ddc

Note:
Do not save a copy as ASCII text (Verilog, VHDL, or EDIF formats) if you intend to
start a new session, using the saved design. DFT Compiler marks the test-ready logic
with attributes that are lost when you save the design as ASCII text.

3. Generate a new test protocol for the synthesized design.
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-5
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-5

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
4. Check the test design rules, according to the scan style you chose in step 7 of the
previous procedure.

dc_shell> dft_drc

At this stage, DFT Compiler checks for and describes potential problems with the
testability of your design. After you correct all the problems that cause warning
messages, you can proceed with the next step. Failure to correct the problems that cause
warning messages typically results in lower fault coverage.

For more information on Test DRC, see Chapter 5, “Pre-Scan Test Design Rule
Checking.”

Building Scan Chains
To build scan chains, perform the following steps:

1. Use the set_dft_signal command to identify the dedicated scan-enable port. Enter the
following commands:

dc_shell> set_dft_signal -view spec -port scan_enable_port \
 -type ScanEnable \
 -active_state 1

If you want DFT Compiler to buffer the scan-enable signal, use the set_driving_cell
command to specify the port’s drive characteristics:

dc_shell> set_driving_cell -lib_cell BUFX4 scan_enable_port

If you do not want DFT Compiler to buffer the scan-enable signal, use the
set_ideal_network command to configure the port as the driver of an ideal network:

dc_shell> set_ideal_network scan_enable_port

If no scan-enable port is identified, DFT Compiler creates a new scan-enable port.

2. If you are reusing functional ports as scan-in and scan-out ports, specify them with the
set_dft_signal command:

dc_shell> set_dft_signal -view spec -type ScanDataIn -port DAT_IN[7]
dc_shell> ...
dc_shell> set_dft_signal -view spec -type ScanDataIn -port DAT_IN[0]
dc_shell> set_dft_signal -view spec -type ScanDataOut -port DAT_OUT[7]
dc_shell> ...
dc_shell> set_dft_signal -view spec -type ScanDataOut -port DAT_OUT[0]

Otherwise, DFT Compiler creates new scan-in and scan-out ports as needed.

3. Build the scan chains in your design. Enter the following command:

dc_shell> insert_dft
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-6

DFT Compiler Scan User Guide Version H-2013.03-SP4
When you add scan-test circuitry to a design, its area and performance change. DFT
Compiler minimizes the effect of adding scan-test circuitry on compile design rules and
performance by using synthesis routines. For details of synthesis concepts such as
compile design rules, see the Design Compiler Optimization Reference Manual. For
details on how DFT Compiler fixes compile design rule violations and performance
constraint violations, see Chapter 5, “Pre-Scan Test Design Rule Checking.”

4. Check that you have satisfied the constraints you specified in step 5 of the preceding
section, “Synthesizing Your Design” on page 1-4. Enter the following command:

dc_shell> report_constraint -all_violators

5. Recheck the test design rules, according to the scan style you chose in step 7 of the
preceding section, “Synthesizing Your Design” on page 1-4.

dc_shell> dft_drc

At this stage, DFT Compiler checks for and describes potential problems with the
testability of your design. The checks that are run are more comprehensive than those in
step 10 of the “Synthesizing Your Design” on page 1-4 and also include checks for the
correct operation of the scan chain. After you correct all the problems that cause warning
messages, you can proceed with the next step. Failure to correct the problems that cause
warning messages typically results in lower fault coverage.

For more information on this process, see “Post-Scan Test Design Rule Checking” on
page 6-63.

The dft_drc command is an essential preprocess step to guarantee that the reports
generated by the report_scan_path command are correct. You must run the dft_drc
command if you want to generate reports with the report_scan_path command.

6. To generate test reports, use the report_scan_path command. For example, to view
details of the scan chain, use the following command:

dc_shell> report_scan_path -view existing_dft -chain all

Note:
Rerun the dft_drc command before running report_scan_path only if you have
modified your circuit since you last ran the dft_drc command.

7. Write out the complete design in the Synopsys database format. Enter the following
command:

dc_shell> write -format ddc -hierarchy -output design.ddc
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-7
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-7

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Mapped Design Flow
Using the command sequence provided in this section, you can take a mapped design that
does not contain existing scan to a fully optimized design with internal scan circuitry. The
command sequence example applies to a full-scan or partial-scan design. The basic
process consists of the following tasks:

• Reading In Your Design

• Performing Scan Replacement and Building Scan Chains

• Exporting a Design to TetraMAX ATPG

For information about how to pass the design to the TetraMAX ATPG tool to generate test
patterns, see Chapter 10, “Exporting Data to Other Tools.” Also, see the TetraMAX
Online Help for information about generating test patterns by using TetraMAX ATPG in a
DFT Compiler flow.

Figure 1-2 shows a typical mapped design flow for DFT Compiler and HDL Compiler. At the
end of the design flow, TetraMAX ATPG produces a set of high fault-coverage test vectors
that you can readily adapt to your target tester.
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-8

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 1-2 Typical Flat Design Flow From a Mapped Design

Not

met

Correct problems

Set constraints

 Mapped netlist

 Build scan chains

Create and format
test patterns

HDL Compiler,

Check design rules

Optimized netlist with scan

Check design rules Correct problems

Check constraints

 Save testable design

Set scan configuration

Compacted high-fault-coverage
 test vectors

Adjust constraints or
try incremental compile

Check constraints

Design Compiler,

Adjust constraints or
try incremental compile

Met

Not met

Met

DFT Compiler

TetraMAX ATPG

Set scan style
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-9
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-9

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Reading In Your Design
Perform the following steps to read in your design:

1. Select the target logic library and link logic library.

dc_shell> set target_library asic_vendor.ddc
dc_shell> set link_library [list * asic_vendor.ddc]

2. Use one of the following commands to read in an HDL circuit description:

dc_shell> read_file -format ddc design_name.ddc
dc_shell> read_file -format verilog design_name.v
dc_shell> read_file -format vhdl design_name.vhdl

If you want DFT Compiler to buffer the scan-enable signal, include a dedicated
scan-enable port in your design. At this stage, the scan-enable port should not be
connected.

3. Explicitly link the design:

dc_shell> link

If the tool is unable to resolve any references, you must provide the missing designs
before proceeding. See the Design Compiler documentation for details.

4. Select the target logic library and the design constraints. In this example, the design is
constrained to be no larger than 1,000 vendor units in area, and it runs with a 20-ns clock
period. Enter the following commands:

dc_shell> set_max_area 1000
dc_shell> create_clock clock_port -period 20 -waveform [list 10 15]

Note:
If the file you read is in the Synopsys logic database format (a .ddc file), the target
logic library and the design constraints might already be set.

5. Set the test timing variables to the values required by your ASIC vendor. If you are using
TetraMAX ATPG to generate test patterns and your vendor does not have specific
requirements, the default settings produce the best results:

dc_shell> set_app_var test_default_delay 0
dc_shell> set_app_var test_default_bidir_delay 0
dc_shell> set_app_var test_default_strobe 40
dc_shell> set_app_var test_default_period 100

These are the default settings; you do not need to add them to your script.

6. Select the scan style if you did not previously set the test_default_scan_style
variable in the .synopsys_dc.setup file. In this example, the scan style is multiplexed
flip-flop.
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-10

DFT Compiler Scan User Guide Version H-2013.03-SP4
Enter the following command:

dc_shell> set_app_var test_default_scan_style \
 multiplexed_flip_flop

You can also use the set_scan_configuration -style command.

For more information on setting the scan style, see “Setting the Scan Style” on page 2-7.

7. Check that you have satisfied the constraints you specified in step 4. Enter the following
command:

dc_shell> report_constraint -all_violators

8. Define clocks and asynchronous set and reset signals in your design, and then generate
a test protocol.

dc_shell> set_dft_signal -view existing_dft -type ScanClock ...
dc_shell> set_dft_signal -view existing_dft -type Reset ...
dc_shell> create_test_protocol

For more information on generating a test protocol, see “Defining an Initialization
Protocol” on page 5-30.

9. Check the test design rules:

dc_shell> dft_drc

At this stage, DFT Compiler checks for and describes potential problems with the
testability of your design. After you correct all the problems that cause warning
messages, you can proceed with the next step. Failure to correct the problems that cause
warning messages typically results in lower fault coverage. For more information on
design rule checking, see Chapter 5, “Pre-Scan Test Design Rule Checking.”

Because this design did not go through a test-ready flow, the dft_drc command checks
the library for equivalent scan cells for all the flip-flops in your design.

Performing Scan Replacement and Building Scan Chains
To perform scan replacement and build scan chains, follow these steps:

1. To identify the dedicated scan-enable port, use the set_dft_signal command. Enter
the following commands:

dc_shell> set_dft_signal -view spec -port scan_enable_port \
 -type ScanEnable \
 -active_state 1

If you want DFT Compiler to buffer the scan-enable signal, use the set_driving_cell
command to specify the port’s drive characteristics:

dc_shell> set_driving_cell -lib_cell BUFX4 scan_enable_port
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-11
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-11

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
If you do not want DFT Compiler to buffer the scan-enable signal, use the
set_ideal_network command to configure the port as the driver of an ideal network:

dc_shell> set_ideal_network scan_enable_port

If no scan-enable port is identified, DFT Compiler creates a new scan-enable port.

2. If you are reusing functional ports as scan-in and scan-out ports, specify them with the
set_dft_signal command:

dc_shell> set_dft_signal -view spec -type ScanDataIn -port DAT_IN[7]
dc_shell> ...
dc_shell> set_dft_signal -view spec -type ScanDataIn -port DAT_IN[0]
dc_shell> set_dft_signal -view spec -type ScanDataOut -port DAT_OUT[7]
dc_shell> ...
dc_shell> set_dft_signal -view spec -type ScanDataOut -port DAT_OUT[0]

Otherwise, DFT Compiler creates new scan-in and scan-out ports as needed.

3. Specify the scan architecture. In this example, direct DFT Compiler to build two scan
chains with the following command:

dc_shell> set_scan_configuration -chain_count 2

The set_scan_configuration command determines most of the aspects of how DFT
Compiler makes designs scannable. For more information about the
set_scan_configuration command, see Chapter 6, “Architecting Your Test Design.”

4. Build the scan chains in your design with the following command:

dc_shell> insert_dft

Because your design has no scan cells, DFT Compiler replaces the flip-flops in your
design with scannable equivalents before it builds scan chains.

When you add scan-test circuitry to a design, the design’s area and performance
change. DFT Compiler minimizes the effect of adding scan-test circuitry on the compile
design rules and design performance by using synthesis routines. For details about
synthesis concepts such as compile design rules, see the Design Compiler Optimization
Reference Manual. For details about how DFT Compiler fixes compile design rule
violations and performance constraint violations, see Chapter 5, “Pre-Scan Test Design
Rule Checking.”

5. Check that you have satisfied the constraints you specified in step 4 of the preceding
section, “Reading In Your Design” on page 1-10. Enter the following command:

dc_shell> report_constraint -all_violators

6. Recheck the test design rules, according to the scan style you chose in step 6 of the
preceding section. See “Reading In Your Design” on page 1-10.

dc_shell> dft_drc
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-12

DFT Compiler Scan User Guide Version H-2013.03-SP4
At this stage, DFT Compiler checks for and describes potential problems with the
testability of your design. The checks run are more comprehensive than those in step 8
of the “Reading In Your Design” on page 1-10 and include checks for the correct
operation of the scan chain. After you correct all the problems that cause warning
messages, you can proceed with the next step. Failure to correct the problems that cause
warning messages typically results in lower fault coverage.

The dft_drc command is an essential preprocess step to guarantee that the reports
generated by the report_scan_path command are correct. You must run the dft_drc
command if you want to generate reports with the report_scan_path command.

See “Post-Scan Test Design Rule Checking” on page 6-63 for more information on this
process.

7. To generate test reports, use the report_scan_path command. For example, to view
details of the scan chain, use the command:

dc_shell> report_scan_path -view existing_dft -chain all

Note:
Rerun the dft_drc command before running report_scan_path only if you have
modified your circuit since you last ran the dft_drc command.

8. Write out the complete design in Synopsys database format. Enter the following
command:

dc_shell> write -format ddc -hierarchy -output design.ddc

Mapped Designs With Existing Scan Flow
Using the command sequence provided in this section, you can take a design from an
HDL-level circuit description that contains existing scans to a fully optimized design with
internal scan circuitry. The command sequence example applies to a full-scan or
partial-scan design. The basic process consists of the following tasks:

• Reading In Your Design

• Checking Test Design Rules

• Exporting a Design to TetraMAX ATPG

For information about how to pass the design to TetraMAX ATPG to generate test
patterns, see Chapter 10, “Exporting Data to Other Tools.” Also, see the TetraMAX
Online Help for information about generating test patterns by using TetraMAX in a DFT
Compiler flow.

Figure 1-3 shows a typical flow for using DFT Compiler on a design with existing scan
chains. At the end of the design flow, TetraMAX ATPG produces a set of high fault-coverage
test vectors that you can readily adapt to your target tester.
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-13
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-13

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 1-3 Typical Flat Design Flow With Existing Scan Chains

Correct problems

Set constraints

 Existing netlist

Create and format
test patterns

HDL Compiler,

Check design rules

Optimized netlist with scan

Set scan style

 Save testable design

Compacted high fault-coverage
 test vectors

Check constraints

Design Compiler,

Not met

Met

DFT Compiler

Set scan configuration

Identify test ports

Adjust constraints or
try incremental compile

TetraMAX ATPG
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-14

DFT Compiler Scan User Guide Version H-2013.03-SP4
Reading In Your Design
To read in your design, follow these steps:

1. Select the target logic library and link logic library.

dc_shell> set target_library asic_vendor.ddc
dc_shell> set link_library [list * asic_vendor.ddc]

2. Use one of the following commands to read in an HDL circuit description:

dc_shell> read_file -format ddc design_name.ddc
dc_shell> read_file -format verilog design_name.v
dc_shell> read_file -format vhdl design_name.vhdl

3. Explicitly link the design:

dc_shell> link

If the tool is unable to resolve any references, you must provide the missing designs
before proceeding. See the Design Compiler documentation for details.

4. Select the target logic library and the design constraints. In this example, the design is
constrained to be no larger than 1,000 vendor units in area, and it runs with a 20ns clock
period. Enter the following commands:

dc_shell> set_max_area 1000
dc_shell> create_clock clock_port -period 20 -waveform [list 10 15]

Note:
If the file you read in is a .ddc file, the target logic library and the design constraints
might already be set.

5. Set the test timing variables to the values required by your ASIC vendor. If you are using
TetraMAX ATPG to generate test patterns and your vendor does not have specific
requirements, the default settings produce the best results:

dc_shell> set_app_var test_default_delay 0
dc_shell> set_app_var test_default_bidir_delay 0
dc_shell> set_app_var test_default_strobe 40
dc_shell> set_app_var test_default_period 100

These are the default settings; you do not need to add them to your script.

6. Select the scan style if you did not previously set the test_default_scan_style
variable in the .synopsys_dc.setup file. In this example, the scan style is multiplexed
flip-flop.

Enter the command:

dc_shell> set_app_var test_default_scan_style \
 multiplexed_flip_flop
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-15
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-15

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
You can also use the set_scan_configuration -style command. See “Architecting
Your Test Design” on page 6-1 for details.

7. Check that you have satisfied the constraints you specified in step 4. Enter the
command:

dc_shell> report_constraint -all_violators

Checking Test Design Rules
To check test design rules, follow these steps:

1. Identify the test ports to DFT Compiler. This example has a single scan chain. Enter the
commands:

dc_shell> set_scan_state scan_existing

dc_shell> set_scan_path c0 -view existing_dft \
 -scan_data_in [get_ports test_si] \
 -scan_data_out [get_ports test_so] \
 -scan_enable [get_ports test_se] \
 -infer_dft_signals

dc_shell> create_test_protocol -infer_clock \
 -infer_asynch

Note:
If you read in the design from a .ddc file, this attribute might already be set. You can
check this with the report_dft_signal -view existing_dft command.

2. Check the test design rules, according to the scan style you chose in step 6 of the
preceding section, “Reading In Your Design” on page 1-15, and using the test attributes
set in step 1 of this section.

dc_shell> dft_drc

At this stage, DFT Compiler checks for and describes potential problems with the
testability of your design. The checks include checking for the correct operation of the
scan chain during shift and capture. After you correct all the problems that cause warning
messages, you can proceed with the next step. Failure to correct the problems that cause
warning messages typically results in lower fault coverage.

Running the dft_drc command is an essential preprocess to guarantee that the reports
generated by the report_scan_path command are correct. You must run the dft_drc
command if you want to generate reports with the report_scan_path command.

For more information on design rule checking, see Chapter 5, “Pre-Scan Test Design
Rule Checking.”
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-16

DFT Compiler Scan User Guide Version H-2013.03-SP4
3. To generate test reports, use the report_scan_path command. For example, to view
details of the scan chain, use the following command:

dc_shell> report_scan_path -view existing_dft -chain all

Note:
Rerun the dft_drc command before running report_scan_path only if you have
modified your circuit since you last ran the dft_drc command.

4. Write out the complete design in Synopsys database format. Enter the following
command:

dc_shell> write -format ddc -hierarchy -output design.ddc

Designing Block by Block
Many designers prefer to develop their designs on a block-by-block basis. Most of the
processes described in the preceding sections can be applied to a particular block of your
design, as well as to the complete design. For example, you can check the design rules and
generate an initial fault coverage report on each block of your design as it is developed. The
report helps you identify the blocks that have unacceptable fault coverage, which enables
you to fix testability problems at an early stage. For more information on pre-scan DRC, see
Chapter 5, “Pre-Scan Test Design Rule Checking.”

Although fixing testability problems on a block-by-block basis is an important
“divide-and-conquer” technique, testability problems are global in nature. A completely
testable subblock might show testability problems when it is embedded in its environment.

Controlling Scan Replacement During Scan Insertion
By default, the insert_dft command performs scan replacement in your design before
scan stitching. Here, design rule checking determines if each sequential element has the
appropriate test pins (scan-in, scan-out, scan-enable, and so on) defined for the selected
scan style. If no violations are found and if the appropriate test pins are found, the cells are
included in the scan chain. Otherwise, DRC checks to see if each of the sequential elements
in your design has a scan equivalent for the selected scan style. If no violations are found on
the cells and if a scan equivalent is present, the cells are scan-replaced and included in the
scan chain.

If you have a design that is already scan-replaced and you do not want the insert_dft
command to perform scan replacement, specify the following command before stitching
scan chains:

set_scan_configuration -replace false
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-17
Chapter 1: Key Design-for-Test Flows and Methodologies
Design-for-Test Flows in the Logic Domain 1-17

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
When you specify this command, DRC only checks to see if each sequential element has
the appropriate test pins for the chosen scan style. If no violations are found on the cells and
the appropriate test pins are found, the cells are included in the scan chain.

However, if you have a .ddc file that is written out after test-ready compile, by using the
compile -scan or compile_ultra -scan commands, then you do not need to specify
again the set_scan_configuration -replace false command. Because the design is
already scan-replaced, the scan insertion process does not perform scan replacement.

Table 1-1 summarizes the scan replacement flow.

Hierarchical Scan Synthesis Flow

Hierarchical Scan Synthesis (HSS) enables you to specify scan chain designs and
implement a top-down, bottom-up, or middle-out hierarchical scan insertion flow. Because
HSS reduces memory usage and decreases runtime, it is useful when you are working with
large designs.

HSS enables you to do the following:

• Implement automatically balanced scan chains

• Specify complete scan chains

• Generate scan chains that enter and exit a design module multiple times

• Fix certain scan rule violations automatically

Table 1-1 Scan Replacement Using set_scan_configuration -replace

set_scan_configuration
-replace

false true (default)

Scan equivalent check Check based on
presence of test pins for
the scan style chosen

Check based on presence of
test pins for the scan style
chosen, and based on scan
equivalence for the scan
style chosen

Cells violated and message TEST-126: cells do not
have valid test pins for
the scan style

TEST-120: cells have no
scan equivalents based on
synthesis mapping

Scan replacement No Yes, if needed

preview_dft, insert_dft Valid cells included in
scan chain

Valid cells included in scan
chain
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-18

DFT Compiler Scan User Guide Version H-2013.03-SP4
• Reuse existing modules that already contain scan chains

• Control the routing order of scan chains in the hierarchy

• Perform scan insertion from the top or the bottom of the design

• Implement automatically enabling or disabling logic for bidirectional ports and internal
three-state logic

• Implement automatically multiplexed and enabling or disabling logic to shared function
ports as test data ports

In general, the hierarchical scan synthesis flow consists of four major steps:

• Performing DFT scan synthesis on the subdesigns of the design

• Generating Core Test Language (CTL) test models for the subdesigns

• Stitching the CTL test models together at the top-level (scan assembly)

• Performing DFT scan synthesis on the complete design with the CTL test models
replacing DFT inserted subdesigns

Introduction to Test Models
HSS automatically creates test models that describe only the portions of subdesigns that
are important for inserting the DFT flow. Test models store the following test information:

• Port names

• Port directions (input, output, bidirectional)

• Scan structures

• Scan clocks

• Asynchronous sets and resets

• Three-state disables

• Test attributes on ports

• Test protocol information, such as initialization, sequencing, and clock waveforms

Note the following limitations related to the use of test models:

• Because DFT Compiler saves the test model as an attribute to the design in .ddc binary
format, you cannot use a text editor to view the test model.

• Test models are not adequate for the generation of test patterns, so you must have an
actual netlist representation for use with automatic test pattern generation (ATPG).
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-19
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-19

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 1-4 shows a design schematic example.

Figure 1-4 Design Schematic Example

U1

CLK

TEST_SI

TEST_SE

U2 U3 U4

RESETN

HOURS_BUTTON

MINUTES_BUTTON

ALARM_BUTTON

MINS

HOURS
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-20

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 1-5 shows how a test model might represent the test attributes of that design.

Figure 1-5 Test Model Representation

U1

CLK

TEST_SI

TEST_SE

U2 U3 U4

RESETN

HOURS_BUTTON

MINUTES_BUTTON

ALARM_BUTTON

MINS

HOURS

Scan output

Clock

Scan input

Scan enable

Inputs

Output

Scan structure

Active low
asynchronous
reset
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-21
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-21

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 1-6 describes the module-level test synthesis flow used for HSS.

Figure 1-6 Module-Level Test Synthesis Flow

One-pass scan synthesis

Test configuration

DFT DRC

DFT configuration

DFT preview

DFT insertion

DFT DRC

Test model,

.ddc, netlist
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-22

DFT Compiler Scan User Guide Version H-2013.03-SP4
Linking Test Models to Library Cells
When complex library cells have built-in scan chains, Core Test Language (CTL) test models
must be linked to the library cells for DFT Compiler to connect the scan chains at the top
level.

If you have the original library source file, you can use the read_lib -test_model
command to annotate test model information to a library cell when the library is read in. After
the library has been read and annotated with the test model, a library .db file containing the
test model can be written out. For example,

read_lib lib_file.lib -test_model [lib_cell_name:]model_file.ctl
write_lib lib -output lib_file.db

If the CTL model name differs from the intended library cell name, an optional library cell
name prefix can be used to specify the model’s intended library cell.

To link multiple test models to multiple cells within a single library, supply the model files to
the -test_model option as a list:

read_lib lib_file.lib -test_model [list \
 [lib_cell_name:]model_file1.ctl \
 [lib_cell_name:]model_file2.ctl]

If you only have a compiled library .db file, you can use the read_test_model command to
link a test model to an existing library cell or design in memory. Specify the library cell or
design name with the -design option. The library cell name can be provided with or without
the logic library name prefix. For example,

read_test_model -format ctl \
 -design design_name model_file.ctl

read_test_model -format ctl \
 -design lib_cell_name model_file.ctl

read_test_model -format ctl \
 -design logic_lib/lib_cell_name model_file.ctl

If you have subdesigns that are modeled using extracted timing models (ETMs), you can
also link CTL test models to the ETM library cells just as you would with logic library cells.

You can use the report_lib command to determine if a library cell has CTL test model
information applied to it, by using either the read_lib -test_model or read_test_model
command.

Note:
When you link a test model to a library cell with the read_test_model command, it takes
precedence over any existing test model information present in the library.
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-23
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-23

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Checking Library Cells for CTL Model Information
To determine if a library cell has CTL model information attached to it, read in the library with
the link command or the compile command, and then run the report_lib command. If a
library cell in the library has CTL model information attached, the report will indicate ctl in
the attributes column, as shown in Example 1-1.

Example 1-1 Simple report_lib Output

Cell Footprint Attributes

my_memory "MEM" b, d, s, u, ctl, t

Scan Assembly Using Test Models
In practice, you should use test models to represent subdesigns, and then stitch the test
models together at the top level of the design. Because the test model stores less
information than a full gate-level representation in a .ddc database, a design with test
models uses less memory than a design with subdesigns represented by gate-level .ddc
files.

Figure 1-7 shows scan assembly at the top level of a design with several subdesigns
represented by test models. The top-level scan assembly process also works if some of the
subdesigns are implemented at the gate level or if user-defined logic exists at the top level.
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-24

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 1-7 Scan Assembly Using Test Models

The following sections contain more detail about creating and using test models.

Saving Test Models for Subdesigns
At the end of the flow, use the write_test_model command to save the test model to disk.
Alternatively, you can use the write command to generate a .ddc file containing both the
test model and gate information.

You should also write out a Verilog or VHDL netlist of the design to use with TetraMAX ATPG.

Example 1-2 shows a command sequence for creating and saving a test model on a design
that has no existing scan structures.

Example 1-2 Test Model Creation Steps for Nonscan Design

dc_shell> remove_design -all
dc_shell> read -format verilog ALARM_BLOCK.v
dc_shell> current_design ALARM_BLOCK
dc_shell> link
dc_shell> create_clock CLK -period 100 -waveform [list 0 50]
dc_shell> set_dft_signal -view existing_dft -type ScanClock \
 -timing [list 45 55] -port CLK
dc_shell> set_dft_signal -view existing_dft -port \
 RESETN -type Reset -active_state 0

Module 1

Test model

Module 3

Test model

Module 2

Test model

Module 1

Test model

Module 3

Test model

Module 2

Test model

Scan in

Scan out

Before top-level scan assembly After top-level scan assembly
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-25
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-25

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
dc_shell> compile -scan
dc_shell> create_test_protocol
dc_shell> dft_drc
dc_shell> preview_dft -show all
dc_shell> insert_dft
dc_shell> dft_drc -verbose
dc_shell> write -format ddc -hierarchy -output ALARM_BLOCK.ddc
dc_shell> write -format verilog -hierarchy -output ALARM_BLOCK.v
dc_shell> write_test_model -output ALARM_BLOCK.ctlddc
dc_shell> set_app_var test_stil_netlist_format verilog
dc_shell> write_test_protocol -output ALARM_BLOCK.spf
dc_shell> exit

Using Test Models
At the top level of your design, you have to read in the test models that you created for the
subdesigns and perform scan insertion.

To read in the test models at the top level, use the read_test_model command:

read_test_model test_model_filenames

Use the list_test_models command to create a list of the test models loaded and the
associated designs, or use the read command for the subdesign, as with any other .ddc file.
When reading this .ddc file at the top level, DFT Compiler automatically uses the test model
for the subdesign.

You can use the top-level DFT flow, described in “Top-Down Scan Insertion” on page 1-44,
to accomplish scan insertion at the top level of the design. DFT Compiler uses the test
models loaded instead of the .ddc files for subdesigns.

Important:
DFT Compiler does not touch scan chains within the test models. It combines scan
chains only at the top level to make the total lengths of the combined chains as close as
possible.

DFT Compiler recognizes when lock-up latches have been inserted in a test model and does
not insert another lock-up latch when connecting scan chains between two test models
unless it is necessary.

After top-level scan insertion, write out the test protocol file in Standard Test Interface
Language (STIL) format (the only supported format) and write out a Verilog or VHDL
top-level netlist for the top-level design. For example, write out top.spf and top.v, as shown in
the following commands:

dc_shell> write_test_protocol -output top.spf
dc_shell> write -format verilog -output top.v
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-26

DFT Compiler Scan User Guide Version H-2013.03-SP4
If your top-level design contains test models for a subdesign, DFT Compiler does not write
out a gate-level netlist for that subdesign, even if you use the -hierarchy option. The netlist
written contains an empty module for the test model subdesign. You must write a gate-level
netlist for each subdesign separately.

Example 1-3 shows how test models can be used at the top level of a design.

Example 1-3 Test Model Usage

dc_shell> remove_design -all
dc_shell> read_file -format verilog ALARM_BLOCK.v
dc_shell> read_file -format verilog TIME_BLOCK.v
dc_shell> read_file -format verilog COMPUTE_BLOCK.v
dc_shell> read_test_model alarm_sm_2.ctlddc
dc_shell> read_file -format verilog COMPARATOR.v
dc_shell> link
dc_shell> list_test_models
dc_shell> current_design COMPUTE_BLOCK
dc_shell> link
dc_shell> create_clock CLK -period 100 -waveform [list 0 50]
dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] -port CLK
dc_shell> set_dft_signal -view existing_dft \
 -port RESETN -type Reset -active_state 0
dc_shell> compile -scan
dc_shell> set_scan_configuration -chain_count 1
dc_shell> set_scan_path chain0 -view spec \
 -ordered_elements [list U1 U5/chain0 U2]
dc_shell> create_test_protocol
dc_shell> dft_drc
dc_shell> preview_dft -show all
dc_shell> insert_dft
dc_shell> dft_drc -verbose
dc_shell> report_scan_path -chain all
dc_shell> write -format ddc -hierarchy -output COMPUTE_BLOCK.ddc
dc_shell> write -format verilog -hierarchy -output COMPUTE_BLOCK.v
dc_shell> write_test_model -output COMPUTE_BLOCK.ctlddc
dc_shell> set_app_var test_stil_netlist_format verilog
dc_shell> write_test_protocol -output COMPUTE_BLOCK.spf
dc_shell> exit

Example 1-3 shows a typical script for the HSS flow. Note that the dft_drc command is run
right after the insert_dft command to verify that scan insertion is correct, without errors. If
the dft_drc command reports any serious violations, such as scan chain blockages, you
must fix these and rerun the script. After the dft_drc command is successful, you can run
the report_scan_path -chain all command to get more information about scan chains.

Note:
When you use the HSS flow, you must run the dft_drc command after scan insertion
and check the results. The results from the report_scan_path -chain all command
can be considered only after the dft_drc command is error-free.
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-27
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-27

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Reading Designs Into TetraMAX
By default, in the TetraMAX tool, if you read in two modules with the same name, the last one
takes precedence. If you have a top-level netlist with empty submodules, read it into the
TetraMAX tool first, and then read in the netlists for the submodules. For example,

BUILD> read_netlist top.v
BUILD> read_netlist module_1.v module_2.v ... module_n.v
BUILD> run_build_model top

Managing Test Models
Figure 1-8 shows the test models that DFT Compiler can create after you insert scan chains.
You can save the test models by using the write or write_test_model command.

Figure 1-8 Creating and Saving Test Models

Figure 1-9 shows how the test models can be read into DFT Compiler by using the
read_file or read_test_model command.

insert_dft

Test model

Gates (.ddc)

write -format ddc

DFT Compiler

write_test_model

Test model

Gates

Test model

External .ddc file

External .ddc file

Internal representation

Module interface
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-28

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 1-9 Using Test Models

The different commands that you can use to write and to read test models enable you to
tailor the flow you use to meet your needs. There are several possible flows:

• Use the write_test_model command to save a test model, and use read_file or
read_test_model to read it into DFT Compiler.

In this case, the file created by write_test_model contains only the test model and
module interface information, so this flow uses less memory and reduces execution time.

This flow is recommended for the greatest reduction in runtime and memory usage, but
you have the flexibility of using either of the following flows.

• Use the write command to save a design with a test model, and use read_test_model
to read it into DFT Compiler.

The file created by the write command contains both a test model and gate information.
But the read_test_model command reads in only the test model portion of the file and
notifies you that DFT Compiler has removed all implementation information. This flow
uses less memory and reduces execution time.

• Use the write command to save a design with a test model, and use the read_file
command to read it into DFT Compiler.

Test model

Gates (.ddc)

Internal representation

read_ddc

DFT Compiler

read_test_model

read -format ddc

read_test_model

Test model

Gates

Test model

External .ddc file

External .ddc file

Module interface

Test model

Module interface

Internal representation
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-29
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-29

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
The write command creates a file containing both the test model and the gate
information. The read_file command reads in both the test model and the gate
information, but DFT Compiler uses the test model by default. Because of the test model
usage, the execution time is reduced, but you do not save as much memory as with the
other flows. The flat design flow does not use commands specific to test models, so it
might fit into your existing flow with minimal changes.

Top-Level Integration
After the individual modules are complete, with scan chain and observe test logic inserted,
stitch the modules together at the top level.

When you use the HSS flow, keep the following points in mind:

• If you are inserting observe points, no observe analysis is performed for any user-defined
logic or glue logic at the top level.

• If dedicated clocks exist in some of the modules, they need to be stitched with a
chip-level pin to avoid creating another chip-level port.

• You cannot integrate blocks that were created using the internal pin flow.

Figure 1-10 shows the HSS flow.
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-30

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 1-10 Chip Level Integration Using the HSS Flow

Chip level integration
(Using HSS)

Generation of test logic, inserted netlist, and
database for chip level

Chip level test design rule checking

Extract test model
for Module 2

Extract test model
for Module 1

Extract test model
for Module N

Post-DFT netlist of
Module 1 with
observe points

Post-DFT netlist of
Module 2 with
observe points

Post-DFT netlist of
Module N with
observe points

. . . .

. . . .

. . . .

Verilog .ddc STIL
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-31
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-31

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Checking Connectivity to Test Models During Integration

In an integration flow, you must ensure that the TestMode and Constant signals entering a
block match what is required to shift the scan chains through the block. If conditions do not
match, scan blockages can result. Use design rule checking to confirm that these conditions
are met before DFT insertion. Before running the dft_drc command, set the following
variable to enable this connectivity checking functionality:

dc_shell> set_app_var test_validate_test_model_connectivity true

The dft_drc command simulates the test_setup procedure and reports any mismatches
between actual and expected values on the TestMode and Constant signals of instances
represented by the test models.

If a mismatch is detected, the scan segments represented in the test model are not stitched
onto the scan chains.

Using Test Fast Feedthrough Analysis

The dft_drc command can now better infer feedthrough logic through complex design
blocks or cells during pre-DFT checking. If you have complex design blocks that are
described using Verilog models through the test_simulation_library variable, you
should enable this new capability. Instances containing nested test models also benefit from
this new inference capability. To enable this feature, set the following variable:

dc_shell> set_app_var test_fast_feedthrough_analysis true

Hierarchical ScanEnable Integration
When you insert DFT at a top level that contains cores, the cores already contain complete
scan-enable networks. Instead of connecting the top-level ScanEnable signal to target pins
inside the core, DFT Compiler must connect to ScanEnable signal pins at the core boundary.

When ScanEnable signals at the core and/or top level are defined with the -usage option of
the set_dft_signal command, DFT Compiler attempts to determine which top-level signal
should drive each core-level signal, using the priorities shown in Table 1-2. The column
headers along the top denote various core-level scan-enable usages. For each usage, that
Chapter 1: Key Design-for-Test Flows and Methodologies
Hierarchical Scan Synthesis Flow 1-32

DFT Compiler Scan User Guide Version H-2013.03-SP4
column shows the priorities used to determine how top-level signals are connected to that
core-level signal.

These connection priorities propagate signal usages upward through the hierarchy while
preserving the original usage intent as much as possible. You can use the set_dft_signal
-connect_to command and related options to specify specific source-to-pin signal
connections that override these default signal connection behaviors. For more information,
see “Connecting the Scan-Enable Signal in Hierarchical Flows” on page 6-36.

DFT Flows in Design Compiler Topographical Mode

DFT Compiler also works within the Design Compiler topographical domain shell (dc_shell
-topographical_mode). Whereas dc_shell uses wire load models for timing and area
power optimizations, Design Compiler topographical mode uses placement timing values
instead. For more information, see the Design Compiler User Guide.

This section describes the DFT features that are supported in Design Compiler
topographical mode. The following topics are covered:

• Supported DFT Features

• DFT Insertion in Design Compiler Topographical Mode

• Hierarchical Support in Design Compiler Topographical Mode

Table 1-2 Core-Level and Top-Level Scan-Enable Usages With Priorities

 Core
Top

scan clock_gating scan plus
clock_gating

No usage
specified

scan 1 2 1

clock_gating 1

scan plus
clock_gating

2 2 1 2

No usage specified 3 3 3 3

New port created
(test_se)

41

1. Only one new port is created for all core pin configurations requiring a new port; this new port will
behave like a scan-enable signal with no usage specified for all further DFT integration purposes.

41 41 41
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Flows in Design Compiler Topographical Mode 1-33
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Flows in Design Compiler Topographical Mode 1-33

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Supported DFT Features
The following DFT features are supported:

• Basic scan and adaptive scan flows

• Multivoltage

• Multiple timing modes, that is, Design Compiler “multimode” (MM) timing for different
functional modes (see Design Compiler documentation for further information)

• Clock and asynchronous AutoFix flow for uncontrollable clocks and asynchronous set
and reset signals

• Automatic test point insertion

• User-defined test point insertion

• Internal pins flow

• Multiple user-defined test modes

• Hierarchical scan flows

• Boundary scan insertion with BSD Compiler

• On-chip clocking (OCC) controller support

• Memories with test models

DFT Insertion in Design Compiler Topographical Mode
In Design Compiler topographical mode, DFT Compiler creates an initial topographical
ordering during DFT insertion. The virtual layout information is used, where available, to
ensure that there is no severe impact on the functional timing.

Example 1-4 shows a script that performs DFT insertion in a Design Compiler topographical
mode flow.

Example 1-4 DFT Insertion Script for Design Compiler Topographical Mode

compile_ultra -scan
create_test_protocol
dft_drc
preview_dft

insert_dft
dft_drc

perform incremental optimization after DFT insertion
compile_ultra -incremental -scan
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Flows in Design Compiler Topographical Mode 1-34

DFT Compiler Scan User Guide Version H-2013.03-SP4
When you run DFT Compiler in this mode, the preview_dft and insert_dft commands
issue the following message to indicate that topographical information is used:

Running DFT insertion in topographical mode.

In Design Compiler topographical mode, only DFT insertion is supported by the insert_dft
command. New logic is mapped but not optimized. A warning message is issued if you
attempt to enable optimization:

dc_shell-topo> set_dft_insertion_configuration \
 -synthesis_optimization all

Warning: Synthesis optimizations for DFT are not allowed in
DC-Topographical flow. Turning off all the optimizations.
Accepted insert_dft configuration specification.

After the insert_dft command completes, perform an incremental topographical compile
to optimize the design. Design Compiler synthesis optimizes the newly inserted DFT logic,
and it optimizes the design to accommodate the additional area and timing overhead of the
DFT logic.

For DFTMAX compressed scan designs, if you are using Design Compiler Graphical by
specifying the -spg option of the compile_ultra command, the tool

• Builds congestion-aware decompressor and compressor structures to reduce
congestion.

• Performs scan chain reordering in the incremental compile to reduce scan chain wire
length.

For more information on scan compression, see the DFTMAX Compression User Guide.

When the design is transferred to the IC Compiler tool, use the SCANDEF-based scan chain
reordering flow to perform reordering using detailed placement information. See
“SCANDEF-Based Reordering Flow” on page 10-15.

Hierarchical Support in Design Compiler Topographical Mode
Design Compiler topographical mode supports two flows:

• Top-Level Design Stitching Flow

• Performing a Bottom-up or Hierarchical Compile

The top-level design stitching flow is used to stitch compiled physical blocks into the top-level
design.
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Flows in Design Compiler Topographical Mode 1-35
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Flows in Design Compiler Topographical Mode 1-35

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
The bottom-up hierarchical flow is used when you need to address design and runtime
challenges or when you want to use a divide-and-conquer synthesis approach. For more
information on the bottom-up HSS flow or the hierarchical adaptive scan synthesis (HASS)
flow, see “Hierarchical Scan Synthesis Flow” on page 1-18 and Chapter 3, “Hierarchical
Adaptive Scan Synthesis,” in the DFTMAX Compression User Guide, respectively.

Top-Level Design Stitching Flow
Figure 1-11 shows the top-level design stitching flow in Design Compiler topographical
mode.
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Flows in Design Compiler Topographical Mode 1-36

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 1-11 Top-Level Design Stitching Flow

To perform the top-level design stitching flow:

1. Set up the design and libraries.

2. Read in the top-level design.

3. Compile each subblock by performing the following steps:

a. Set the current design to the subblock.

b. Apply timing constraints and power constraints.

Design Compiler topographical
synthesis of top level
 compile_ultra -scan -top
 insert_dft
 compile_ultra -scan -top
 write_scan_def
 write -format ddc

Design Compiler
synthesis of subblock
 compile -scan
 insert_dft

Design Compiler topographical
synthesis of subblock
 compile_ultra -scan
 insert_dft

FloorplanIC Compiler

Constraints Libraries
 logic/physical

RTL
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Flows in Design Compiler Topographical Mode 1-37
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Flows in Design Compiler Topographical Mode 1-37

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
c. Perform test-ready compile by using the compile_ultra -scan command.

d. Apply the DFT constraints.

e. Use the insert_dft command in the subblock so that the inserted scan chains can
be included in the top-level scan chain.

f. Run the compile_ultra -scan -incremental command.

4. Set the current design to the top-level design, link the design, and apply the top-level
timing constraints.

5. Run the compile_ultra -scan -top command.

The -top option maps the top-level logic, and the -scan option enables the tool to map
sequential cells to the appropriate scan flip-flops.

6. Apply DFT constraints.

7. Run the insert_dft command to insert scan chains at the top level, followed by
compile_ultra -scan -top to map any additional unmapped logic that might have
been introduced.

Performing a Bottom-up or Hierarchical Compile
In a hierarchical topographical compile flow, you compile the subdesigns separately and
then incorporate them in the top-level design. This is also known as a bottom-up flow.

In topographical mode, the tool can read the following types of hierarchical blocks:

• Netlists generated in topographical mode

• Block abstractions generated in topographical mode or in the IC Compiler tool

• Interface logic models (ILMs) generated in topographical mode or in the IC Compiler tool

You cannot combine block abstractions and ILMs in the same flow. Figure 1-12 provides an
overview of the hierarchical flow for designs containing block abstractions. Figure 1-13
provides an overview of the hierarchical flow for designs containing ILMs. For detailed
information on the steps used in a bottom-up topographical compile flow, see the
topographical synthesis chapter of the Design Compiler User Guide.
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Flows in Design Compiler Topographical Mode 1-38

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 1-12 Overview of the Hierarchical Flow for Designs Containing Block Abstractions

blk.ddc

Top-level
RTL

top.ddc

blk.ddc

block RTL
Block-level

Top-level
compile

Design Compiler

Finish

block RTL block RTL

IC Compiler
 Block Abstractions

h
ar

d
 m

ac
ro

lo
g

ic
 m

ac
ro

Block Abstraction CEL

compile

lo
g

ic
 m

ac
ro

blk.ddc

 .ddc

top-only netlist

Block Abstractions
Design Compiler Design Compiler

create_floorplan / read_floorplan
place_opt
clock_opt
route_opt
create_block_abstraction

IC Compiler
Block Abstractions

Design Compiler

compile_ultra -scan -gate_clock
insert_dft
write_file -format ddc \
 -output blk.ddc

compile_ultra -scan \
 -gate_clock
insert_dft
create_block_abstraction
write_file -format ddc \
 -output blk.ddc

Design Compiler Design Compiler

compile_ultra -scan -gate_clock
insert_dft
write_file -format ddc \
 -output blk.ddc

set_top_implementation_options
...
compile_ultra -scan -gate_clock
insert_dft

IC Compiler
create_floorplan / read_floorplan
place_opt
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Flows in Design Compiler Topographical Mode 1-39
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Flows in Design Compiler Topographical Mode 1-39

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 1-13 Overview of the Hierarchical Flow for Designs Containing ILMs

IC Compiler ILMs

blk.ddc

blk.ilm.ddc

top.ddc

blk.ddc

IC Compiler

block RTL
Block-level

Top-level
compile

Finish

block RTL block RTL

IC Compiler ILMs

h
ar

d
 m

ac
ro

ILM +FRAM

blk.ilm

compile

blk.ddc

top-only netlist

ILMs
Design Compiler

.ddc
Design Compiler

Design Compiler

Design Compiler

Top-level
RTL

compile_ultra -scan -gate_clock
insert_dft

create_floorplan / read_floorplan
place_opt
create_macro_fram
create_ilm

compile_ultra -scan -gate_clock
insert_dft
write_file -format ddc \
 -output blk.ddc

compile_ultra -scan \
 -gate_clock
insert_dft
create_ilm
write_file -format ddc \
 -output blk.ilm.ddc

lo
g

ic
 m

ac
ro

lo
g

ic
 m

ac
ro Design Compiler Design Compiler

compile_ultra -scan -gate_clock
insert_dft
write_file -format ddc \
 -output blk.ddc

create_floorplan / read_floorplan
place_opt
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Flows in Design Compiler Topographical Mode 1-40

DFT Compiler Scan User Guide Version H-2013.03-SP4
In these flows, DFT is inserted as each block is compiled. As a result, a hierarchical
topographical flow is also a hierarchical DFT flow. Hierarchical DFT flows include the
hierarchical scan synthesis (HSS), hierarchical adaptive scan synthesis (HASS), and Hybrid
flows. The hierarchical DFT flow depends on whether scan compression is used, and if so,
where it is applied. For more information on the HSS flow, see “Hierarchical Scan Synthesis
Flow” on page 1-18. For more information on the HASS and Hybrid flows, see Chapter 3,
“Hierarchical Adaptive Scan Synthesis,” in the DFTMAX Compression User Guide.

At the block level, SCANDEF and CTL model files are generated for each block. The
SCANDEF file contains information about scan ordering requirements, and the .ctl file
contains information about the DFT logic. The information in these files is also stored in the
.ddc file, to be used by top-level topographical DFT insertion and reordering. However, the
ASCII files can be used for reference.

At the top level, a SCANDEF file is created for the layout tool. For topographical full-netlist
blocks, block abstractions, and ILMs, use the -expand_elements option of the
write_scan_def command to include all scan elements in the SCANDEF. This allows
detailed reordering in layout. The scan elements of IC Compiler block abstractions and ILMs
are abstracted in the SCANDEF file using the BITS construct, as detailed reordering has
already been performed for these blocks.

For more information on SCANDEF files, see “SCANDEF-Based Reordering Flow” on
page 10-15.

The top level can also contain hierarchical blocks that are not physically aware. Examples
are hierarchical blocks that are elaborated from the RTL at the top level or full .ddc netlist
files created in the Design Compiler tool. These blocks can be DFT-inserted, but it is not a
requirement; DFT Compiler can insert DFT in these blocks during top-level DFT insertion.

Scan Insertion Methodologies

DFT Compiler supports bottom-up and top-down scan insertion. To improve DFT Compiler
performance on multimillion-gate designs, use the hierarchical scan synthesis (HSS) flow.
The HSS flow reduces runtime and memory usage, and significantly increases the capacity
of DFT Compiler.

For more information on HSS, see “Hierarchical Scan Synthesis Flow” on page 1-18.

 This section discusses the following scan insertion methodologies:

• Bottom-Up Scan Insertion

• Top-Down Scan Insertion
Chapter 1: Key Design-for-Test Flows and Methodologies
Scan Insertion Methodologies 1-41
Chapter 1: Key Design-for-Test Flows and Methodologies
Scan Insertion Methodologies 1-41

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Bottom-Up Scan Insertion
For bottom-up scan insertion, follow the flows outlined earlier in this chapter for each module
of the design. For each subdesign, save a test model for the scan-inserted design. At higher
levels, stitch together the test models instead of using the .ddc files containing the gate
information of the subdesigns. Figure 1-14 shows the bottom-up scan insertion flow.
Chapter 1: Key Design-for-Test Flows and Methodologies
Scan Insertion Methodologies 1-42

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 1-14 Bottom-Up Scan Insertion Flow

Create test
model

Define test

protocol

Check scan

design rules

Assemble scan

chains

Check scan

design rules

Write test

protocol

ATPG

Synthesize and
replace scan

Assemble scan
chains

Module 1

Synthesize and
replace scan

Assemble scan
chains

Module 2

Synthesize and
replace scan

Assemble scan
chains

Module n

…

…

Create test
model

Create test
model
Chapter 1: Key Design-for-Test Flows and Methodologies
Scan Insertion Methodologies 1-43
Chapter 1: Key Design-for-Test Flows and Methodologies
Scan Insertion Methodologies 1-43

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
To use the bottom-up scan insertion flow, follow these steps:

1. Synthesize your design, performing scan replacement.

2. Build scan chains in each module of the design.

3. Define the test protocol at the top level.

The test protocol provides information about your design to the test design rule checker.

4. Check design rules at the top level.

Evaluate the scan conformance of your design, and determine if any sequential cells
violate the test design rules. Test design rule checking also highlights design issues that
can lower your fault coverage results.

If the results of your analysis show that the design does not meet your requirements, you
can often improve the results by modifying the test protocol. However, in some cases,
you might have to modify the HDL description.

5. Assemble the scan chains.

After inserting scan cells in all modules, assemble the scan chains at the top level of the
design. Use the same procedure for assembling scan chains at the top level that you
used at the module level, and then run dft_drc to make sure the resulting scan chains
operate properly.

6. Write out the Verilog netlist and the test protocol, and then proceed to the TetraMAX tool
to perform DRC, and ATPG.

Top-Down Scan Insertion
With top-down scan insertion, perform scan insertion only at the top level of the design.
Figure 1-15 shows the top-down scan insertion flow.
Chapter 1: Key Design-for-Test Flows and Methodologies
Scan Insertion Methodologies 1-44

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 1-15 Top-Down Scan Insertion

To use the top-down scan insertion flow, follow these steps:

1. Synthesize your design, performing scan replacement.

2. Build scan chains at the top level of the design.

3. Write out the Verilog netlist and the test protocol, and then proceed to the TetraMAX tool
to perform DRC, and ATPG.

DFT Compiler Default Scan Synthesis Approach

If you do not specify scan detail, the insert_dft command implements a default scan
design by using the full-scan methodology. This section describes the ground rules that the
preview_dft and insert_dft commands apply to generate a default scan design.

The section includes the following subsections:

• Scan Replacement

• Scan Element Allocation

Write test
protocol

ATPG

Synthesize and
replace scan

Assemble scan
chains

Complete design
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler Default Scan Synthesis Approach 1-45
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler Default Scan Synthesis Approach 1-45

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
• Test Signals

• Pad Cells

• Area and Timing Optimization

Scan Replacement
DFT Compiler performs the following scan replacement tasks during the insert_dft
command:

• Scan-replaces sequential elements if a scan replacement on the sequential elements
was not performed previously, and the cell does not violate test DRC.

• Converts the scan elements that resulted from a test-ready compile or a previous scan
insertion back to nonscan elements if test DRC violations prevent their inclusion in a
scan chain, and the set_dft_insertion_configuration -unscan true command
has been issued.

Scan Element Allocation
DFT Compiler allocates scan elements to scan chains in the following manner:

• Allocates scan elements to produce the minimum number of scan chains consistent with
clock domain requirements. By default, the insert_dft command generates a scan
design with the number of scan chains being equal to the number of clock domains. The
resulting design contains one scan chain for each set of sequential elements clocked by
the same edge of the same test clock.

• Automatically infers existing scan chains both in the current design and in subdesigns.
This is true only if the design has the proper attributes.

• Does not reroute existing scan chains built by the insert_dft command or subdesign
scan chains built by the insert_dft command, even if the existing routing does not
conform to default behavior.

• Orders scan elements in scan chains alphanumerically. By default, the insert_dft
command alphanumerically orders scan elements within scan chains across the full
hierarchical path specification of the scan element name.
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler Default Scan Synthesis Approach 1-46

DFT Compiler Scan User Guide Version H-2013.03-SP4
Test Signals
DFT Compiler inserts and routes test signals in the following manner:

• Automatically inserts and routes global test signals to support the specified scan style.
These test signals include clocks and enable signals.

• Allocates ports to carry test signals. Where possible, the insert_dft command uses
“mission” ports (that is, normal function ports) to carry scan-out ports and inserts
multiplexing logic, if required. The insert_dft command performs limited checking for
existing multiplexing logic to prevent redundant insertion.

• Inserts three-state and bidirectional disabling logic during default scan synthesis. The
insert_dft command checks for existing disabling logic to prevent redundant insertion.

Pad Cells
If the current design includes pad cells, the insert_dft command identifies the pad cells
and correctly inserts test structures next to them by

• Ensuring correct core-side hookup to all pad cells and three-state drivers

• Inserting required logic to force bidirectional pads carrying scan-out signals into output
mode during scan shift

• Inserting required logic to force bidirectional pads carrying scan-in, control, and clock
signals into input mode during scan shift

• Determining requirements and, if necessary, inserting required logic to force all other
nondegenerated bidirectional ports into input mode during scan shift

• Inserting required logic to enable three-state output pads associated with scan-out ports
during scan shift

• Inserting required logic to disable three-state outputs that are not associated with
scan-out ports during scan shift

Area and Timing Optimization
By default, the insert_dft command uses constraint-optimized scan insertion to reduce
the scan-related impact on performance and area. This process minimizes constraint
violations and eliminates compile design rule errors. The insert_dft command uses the
clock waveforms described by the create_clock command to determine whether a logic
path meets performance constraints. The insert_dft command does not use the timing
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler Default Scan Synthesis Approach 1-47
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler Default Scan Synthesis Approach 1-47

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
values described by using set_dft_signal for constraint optimization. The insert_dft
command also selects scan-out signal connections (Q or QN) to minimize constraint
violations.

Scan chain synthesis is concerned primarily with the scan shift operation. The dft_drc
command identifies problems associated with scan capture that might require you to resolve
problems caused by functional clock waveforms.

Scan chains synthesized by the insert_dft command are functional under zero-delay
assumptions. Before you perform scan synthesis, you can specify test clocks, using the
create_clock command. All test clocks have the same period.

Getting the Best Results With Scan Design

To get the best scan design results, your ATPG tool must be able to control the inputs and
observe the outputs of individual cells in a circuit. By observing all the states of a circuit
(complete fault coverage), the ATPG tool can check whether the circuitry is good or faulty for
each output. The quality of the fault coverage depends on how well a device’s circuitry can
be observed and controlled.

If the ATPG tool cannot observe the states of individual sequential elements in the circuit,
fault coverage is lowered because the distinction between a good circuit and a faulty circuit
is not visible at a given output.

To maximize your fault coverage, follow these recommendations:

• Use full scan.

• Fix all design rule violations.

• Follow these design guidelines:

❍ Be careful when you use gated clocks. If the clock signal at a flip-flop or latch is gated,
a primary clock input might not be able to control its state. If your design has
extensive clock gating, use AutoFix or provide another way to disable the gating logic
in test mode.

Note:
DFT Compiler supports gated-clock structures inserted by the Power Compiler
tool.

❍ Generate clock signals off-chip or use clock controllers compatible with DFT
Compiler. If uncontrollable clock signals are generated on-chip, as in frequency
dividers, you cannot control the state of the sequential cells driven by these signals.
If your design includes internally generated, uncontrollable clock signals, use AutoFix
or provide another way to bypass these signals during testing.
Chapter 1: Key Design-for-Test Flows and Methodologies
Getting the Best Results With Scan Design 1-48

DFT Compiler Scan User Guide Version H-2013.03-SP4
❍ Minimize combinational feedback loops. Combinational feedback loops are difficult to
test because they are hard to place in a known state.

❍ Use scan-compatible sequential elements. Be sure that the library you select has
scannable equivalents for the sequential cells in your design.

❍ Avoid uncontrollable asynchronous behavior. If you have asynchronous functions in
your design, such as flip-flop preset and clear, use AutoFix so that you can control the
asynchronous pins or make sure you can hold the asynchronous inputs inactive
during testing.

❍ Control bidirectional signals from primary inputs.

The scan design technique does not work well with certain circuit structures, such as

• Large, nonscan macro functions, such as microprocessor cores

• Compiled cells, such as RAM and arithmetic logic units

• Analog circuitry

For these structures, you must provide a test method that you can integrate with the overall
scan-test scheme.

DFT Compiler and Power Compiler Interoperability

This section discusses issues associated with the interoperability of DFT Compiler and
Power Compiler. It includes the following subsections:

• Improving Testability in Clock Gating

• Power Compiler/DFT Compiler Interoperability Flows

• Connecting Test Pins to Clock-Gating Cells Using the insert_dft Command

• Specifying Signals for Automatic Clock-Gating Cell Test Pin Connections

• Limitations

Improving Testability in Clock Gating
Clock gating raises some concerns for ATPG. These concerns involve enabling clock
controllability and scan testing as well as optimizing ATPG results.

DFT Compiler might not include a clock-gated register in a scan chain during scan synthesis
if gating the register clock makes it uncontrollable for test. When the register is excluded
from the scan chain, test controllability is reduced at the register input and test observability
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-49
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-49

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
is reduced at the register output. If many registers are gated, the fault coverage can be
reduced significantly.

If you add control points during clock gating, you can enable scan testing, thus improving the
testability of the design. However, by controlling the clock signal, you might introduce
untestable faults into the design. To optimize the ATPG results, you might need to insert
observation points during clock gating.

This section includes the following subsections:

• Inserting Control Points in Control Clock Gating

• Scan-Enable Signal Versus Test-Mode Signal

• Inserting Observation Points to Control Clock Gating

• Choosing a Depth for Observability Logic

Inserting Control Points in Control Clock Gating
A control point is an OR gate driven by a control signal. This signal eliminates the gating of
the clock signal during test, thus restoring the controllability of the clock signal.

Figure 1-16 shows a control point (OR gate) placed before a latch connected to a
test_control port. When the test_control signal is high, it overrides clock gating, thus making
the gated clock and CLK signals identical.

Figure 1-16 Control Point in Gated Clock Circuitry

You can place the control point OR gate in front of or behind the latch. Latch-based clock
gating requires that the enable signal always arrives after the trailing edge of the clock signal
or the rising edge for a falling-edge clock signal. If the control point is inserted before the
latch, it is impossible for the control point to violate this requirement. If it is inserted behind
the latch, it benefits the circuit by adding an extra hold time margin for the clock glitch hold

D Q

ENFSM D Q

G

test_control

D

I

CLK

Register

Latch

Control Point

Clock Gating

Q

Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-50

DFT Compiler Scan User Guide Version H-2013.03-SP4
check. It does this by delaying the data signal, which helps the clock pulse arrive ahead of
the data.

Inserting the control point after the latch causes performance degradation because a gate is
added between the latch and the register. In addition, the test_control signal must then
transition after the trailing edge (rising edge for falling-edge signal) of the clock signal during
test because it does not go through the latch; otherwise glitches in the resulting signal
corrupt the clock signal.

You can choose to make the test_control port either a scan-enable signal or a test-mode
signal. The scan-enable signal is active only during scan shifting. The test-mode signal is
active during the entire test.

The set_clock_gating_style command has two options for determining the location and
type of the control point for test:

• The -control_point option can be none, before, or after. The default is none. When
you use a latch-free clock-gating style, the before and after options are equivalent.

• The -control_signal option can be test_mode or scan_enable. The default is
scan_enable. This option uses an existing test port or creates a new test port and
connects the test port to the control point OR gate.

You can use the -control_signal option only if the -control_point option is used.
For existing test ports, you must use the set_dft_signal command to define the
scan-enable or test-mode signal.

Scan-Enable Signal Versus Test-Mode Signal
The scan-enable and test-mode signals differ in the following ways:

• A scan-enable signal is active only during scan mode.

• A test-mode signal is active during the entire test (scan mode and parallel mode).

The scan-enable signal typically provides higher fault coverage than the test-mode signal.
Fault coverage with the scan-enable signal is comparable to a circuit without clock gating, as
shown in Figure 1-17. During the ATPG capture mode, the register bank is clocked
whenever the output of the flip-flop is a 1; this behavior matches functional operation.
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-51
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-51

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 1-17 Test Coverage With Scan-Enable Signal

In some situations, you must use a test-mode signal. The control logic preceding the
clock-gating circuitry is not tested, as shown in Figure 1-18. In addition, the clock-gating
logic can be tested only for stuck-at-1 faults. During test, the test-mode signal is always a
logic 1, which forces the clock at the register bank to switch at all times. One way to test the
clock-gating logic circuitry is to add observability logic to the design.

D

D Q

LD

LG

LQ

scan_enable

EN

Latch
Data out

Data in

Enclk
clk

clk

1 during shift
0 during capture

Flip-
flop

Register
bank

= tested by other vectors

= fully tested

Q

Levels of
design

hierarchy

Control
logic
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-52

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 1-18 Test Coverage With Test-Mode Signal

Inserting Observation Points to Control Clock Gating
When you use the test-mode signal, the EN signal and other signals in the control logic are
untestable. You can add observation points during clock gating to increase the fault
coverage.

Figure 1-19 shows clock-gating circuitry, including an XOR tree and a scan register, to
observe the ENL and ENL1 signals, which are outputs of the clock-gating latches.

D

D Q

LD

LG

LQ

test_mode

Latch
Data out

Data in

Enclkclk

clk

Flip-
flop

Register
bank

= tested by other vectors

= fully tested

1

Q

= partially tested

= not tested

Levels of
design

hierarchy

EN
Control

logic
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-53
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-53

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 1-19 Observability Circuitry in Clock-Gating Circuits

During testing, observability circuitry allows observation of the ENL and ENL1 signals. In
normal operation of the circuit, the XOR tree does not consume power, because the NAND
gates block all signal transitions of the ENL and ENL1 signals.

The insertion of observation test points has high testability and is power-efficient because
the XOR tree consumes power only during test and the clock of the observation register is
also gated.

The set_clock_gating_style command has two options for increasing observability
when you use the -control_signal test_mode option:

• The -observation_point option can be true or false. The default is false. When you
set this option to true, the set_clock_gating_style command adds a cell that
contains at least one observation register and an appropriate number of XOR trees. The

test_mode

D
I

CLK

FSM
EN

Latch

Register
D D

G

Q

Q

Q

Clock gating Control point

ENL

Q

Observation
register

scan_in

scan_enable

ENL1

Observability circuitry
XOR tree

Power saving logic
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-54

DFT Compiler Scan User Guide Version H-2013.03-SP4
scan chain includes the observation register. The output of the observation register is not
functionally connected to the circuit.

• The -observation_logic_depth option allows a depth_value specification. The
default is 5. The value determines the depth of the XOR tree.

Choosing a Depth for Observability Logic
Use the -observation_logic_depth option of the set_clock_gating_style command
to set the logic depth of the XOR tree in the observability cell. The default for this option is 5.

Clock-gating software builds one observability cell for each clock-gated design. Each gated
register in the design provides a gated enable signal as input to the XOR tree in the
observability cell.

If you set the logic depth of your XOR tree too small, clock gating creates more XOR trees
and associated registers to provide enough XOR inputs to accommodate signals from all the
gated registers. Each additional XOR tree adds some overhead for area and power. Using
one XOR tree adds the least amount of overhead to the design.

If you set the logic depth of your XOR tree too high, clock gating can create one XOR tree
with plenty of inputs. However, too large a tree can cause the delay in the observability
circuitry to become critical.

Use a value that meets the following two criteria in choosing or changing the XOR logic tree
depth:

1. High enough to create the fewest possible XOR trees

2. Low enough to prevent critical delay in the observability circuitry

Power Compiler/DFT Compiler Interoperability Flows
This section suggests methodologies that can help you avoid interoperability problems
between Power Compiler and DFT Compiler. You can apply these methodologies directly
within the current Power Compiler/DFT Compiler flow.

Using Test-Mode Signals With Power Compiler
The -control_signal test_mode option of the set_clock_gating_style command
relies on the DFT signal definition to stitch an existing test-mode signal to the clock-gating
control point.
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-55
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-55

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Power Compiler identifies the test-mode signal in the following way:

1. Power Compiler looks for an existing test-mode signal, defined using the
set_dft_signal -type TestMode command. The signal can be defined with either
-active_state 1 or -active_state 0.

2. If a test-mode signal has not been defined with the set_dft_signal command, Power
Compiler creates a test_cgtm signal, driven by an input port of the same name.

Using Scan-Enable Signals With Power Compiler
To achieve high-fault-coverage in clock-gated designs, the scan chain must be shifted when
the scan-enable signal is asserted. The easiest way to ensure this is to disable all gating
elements when the scan-enable signal is asserted. You can achieve this by placing an OR
gate or a NOR gate on the EN input, which forces EN on when the scan-enable signal is
asserted.

In parallel capture mode, the scan chain must also be clocked to ensure that data is
captured in the scan registers. However, using the scan-enable signal to control latch-based
and latch-free clock gating might not guarantee this. Furthermore, using the signal to control
latch-free clock gating might make the clock pin of the clock-gated registers uncontrollable.

In Figure 1-20, the latch-based clock gating does not have violations that prevent scan
insertion. The clock pin is correctly forced to a known state at time = 0, and it correctly
changes state as a result of the test clock toggling (toggling to an unknown state X is a
change of state). Test DRC verifies that the test clock pulse arrives at the test clock pin to
check the scan shift process. Because the scan-enable port is constrained to logic state 1
during this process, the clock pin is controllable.

Figure 1-20 Violation-Free Clock Gating

0/X/0

signal_type

scan_enable

X/X/X

0/1/0

X/X/X

0/1/0

DI

CLK

FSM
EN

Latch

Register
D D

G

Q

Q

Q

Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-56

DFT Compiler Scan User Guide Version H-2013.03-SP4
Table 1-3 shows the possible combinations of latch-based clock gating, clock waveforms,
control signals and control point location. For each combination, the last column indicates
whether scan insertion can be performed on the clock-gated register. Two special cases
(marked by **) require that you modify the test protocol.

Consider the case of high latch-based clock gating controlled by a test-mode signal and
driven by a return-to-1 clock. If the control point is inserted before the latch, then when the
clock port is off (time = 0), the latch is blocked and the clock pin is not controllable. This
violation also occurs in the case of a low latch-based clock gating controlled by a test-mode
signal and driven by return-to-0.

Table 1-3 Latched-Based Clock-Gating Configurations

Clock gating CLK Control signal Control point
location

Register can
be inserted?

High

Latch-based

test_mode Before latch Yes

After latch Yes

scan_enable Before latch Yes

After latch Yes

test_mode Before latch Yes**

After latch Yes

Low

Latch-based

test_mode Before latch Yes

After latch Yes

scan_enable Before latch Yes

After latch Yes

test_mode Before latch Yes**

After latch Yes

High

Latch-based

scan_enable Before latch Yes

After latch No

Low

Latch-based

scan_enable Before latch Yes

After latch No
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-57
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-57

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
To achieve a known state in the latch, add a clock pulse to the test_setup section of the
test protocol. Use the following set_dft_drc_configuration command to update the
test_setup section with the clock pulse:

set_dft_drc_configuration -clock_gating_init_cycles 1

If you have multiple cascaded latches and the first latch is loaded with the test-mode signal,
use the following set_dft_drc_configuration command to update the test_setup
section with the specified number of clock pulses:

set_dft_drc_configuration -clock_gating_init_cycles n

Here, n equals the number of clock pulses required to initialize clock-gating latches.

Note the following:

• The set of clock cycles should equal the depth of the chain of latches. Make sure this is
the case.

• Violations still occur when there are multiple cascaded latches and the scan-enable and
control point location are used as before, with mixed active-high and active-low latches.

Consider a latch state that is known, as in the case of a high latch-based clock gating
controlled by the scan-enable signal with a return-to-1 clock. When the clock port is off (time
= 0), the register does not hold its state. During pre-DFT DRC capture check, the EN signal
goes through the control point and the system clock pulse might not arrive at the register
clock pin. Because the register might receive invalid data during the capture phase of ATPG,
it will not be scan-inserted. The same DRC violations occur for the low latch-based clock
gating controlled by the scan-enable signal with a return-to-0 clock.

Latch-Free Clock-Gating Configurations

Table 1-4 shows combinations of latch-free clock gating, clock waveforms, and control
signals. For each combination, the last column indicates when the clock-gated register can
be scan-inserted and when it cannot.

Table 1-4 Latched-Free Clock-Gating Configurations

Clock gating CLK Control signal Control point
location

Register can
be inserted?

High
Latch-based

test_mode Before Yes

scan_enable Before Yes
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-58

DFT Compiler Scan User Guide Version H-2013.03-SP4
Connecting Test Pins to Clock-Gating Cells Using the insert_dft
Command
You can use the insert_dft command to connect clock-gating cells to the test ports.

The insert_dft command has a hookup-test-ports capability that makes clock-gating cell
connections as well as carries out the construction of DFT logic in one step. The command
makes the connections of the top level test ports to the test pins of the clock-gating cells
through the hierarchy. If the design does not have a test port at any level of hierarchy, a new
test port is created. If a test port exists, it is used.

Note:
The insert_dft command will honor and preserve any clock-gating connections
previously made; the command will create only the missing connections.

This feature is enabled by default. You can control whether this functionality is enabled by
using the following command:

set_dft_configuration -connect_clock_gating enable | disable

test_mode Before Yes

scan_enable Before Yes

Low
Latch-based

test_mode Before Yes

scan_enable Before Yes

test_mode Before Yes

scan_enable Before Yes

Table 1-4 Latched-Free Clock-Gating Configurations (Continued)

Clock gating CLK Control signal Control point
location

Register can
be inserted?
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-59
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-59

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
After you have inserted the clock-gating cells, if this functionality is enabled, you only need
to use the insert_dft command to connect test ports in a flow similar to the following:

read_ddc design.ddc
set_clock_gating_style -control_signal test_mode
compile_ultra -scan -gate_clock
set_dft_signal -type TestMode -port test_mode
. . .
create_test_protocol
preview_dft
insert_dft

You can use the report_dft_configuration command to report what was previously set
and the reset_dft_configuration command to restore the setting to the default.

All existing DFT flows except those mentioned in “Limitations” on page 1-64 are supported.

Design Requirements
For the feature to work, the design must have the clock-gating cells inserted before you run
the insert_dft command. Insertion of clock-gating cells can be done either by using either
the compile_ultra -gate_clock command or the insert_clock_gating command. The
design must have the clock-gating attributes present in order for dft_drc and insert_dft
to recognize them as valid clock-gating cells. The attributes help to distinguish between a
design that has an erroneous connectivity for which DRC should flag violations and a design
that is correct but for which the connectivity is yet to be established by the insert_dft
command.

If you start with the .ddc format, the clock-gating cell attributes will generally be present.
However, if clock-gating cell attributes are not present (for example, if you start with a Verilog
netlist), you need to ensure that the required attributes are present for the clock-gating cells
so that the dft_drc and insert_dft commands can recognize them. You can do this by
using the identify_clock_gating command or by following a Power Compiler
recommended flow and manually identifying the clock-gating cells.
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-60

DFT Compiler Scan User Guide Version H-2013.03-SP4
Hookup Testport Connections
Table 1-5 describes the connections made by the insert_dft command.

Note:
The DFT signal specifications intended for clock-gating cell connections are not
mode-specific. Therefore you cannot specify a test mode using the -test_mode option
of the set_dft_signal command.

Design Rule Checking Changes
The test pin connections of valid clock-gating cells, that is, those identified with Power
Compiler clock-gating attributes, are checked by the dft_drc command.

After the clock-gating cells are identified, the dft_drc command performs the following
checks:

1. If the test pin is already connected, no violation will be reported by the dft_drc
command, and the flip-flops controlled by the clock-gating cell are put onto the scan
chain during the insert_dft command provided no other violations exist for the cell.

2. If the test pin is not connected, the dft_drc command will generate the following
warning message for the clock-gating cells:

Warning: Clock gating cell %s has unconnected test pin. (TEST-130)

Table 1-5 Connections Made to the Clock-Gating Cells by insert_dft

Clock-gating
control signal

DFT command Top-level port used

1 scan_enable No set_dft_signal defined
with -type ScanEnable

test_se created and connected to
test pin of clock-gating cell.

2 scan_enable set_dft_signal
-view spec|exist
-type ScanEnable
-port test_se
-active_state 0|1

No new port created. test_se used to
connect to test pin of clock-gating cell.

3 test_mode No set_dft_signal defined
with -type TestMode

New port. test_cgtm created to
connect to test pin of clock-gating cell.

4 test_mode set_dft_signal
-view spec|exist
-type TestMode
-port test_mode
-active_state 0|1

No new port created. test_mode used
to connect to test pin of clock-gating
cell.
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-61
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-61

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
This warning is issued irrespective of whether the set_dft_configuration
-connect_clock_gating option is enabled or disabled.

For all cells controlled by clock-gating cells that are flagged with TEST-130 violations for
which the set_dft_configuration -connect_clock_gating option is set to disable,
the dft_drc command will not report that flip-flops driven by these clock-gating cells will
have clock violations (D1 or D9) and will not be included in scan chains (unless AutoFix is
enabled).

For all cells controlled by clock-gating cells that are flagged with TEST-130 violations for
which the set_dft_configuration -connect_clock_gating option is set to enable, the
dft_drc command will not report that these flip-flops as having clock violations and will
stitch these flip-flops into the scan chains.

Specifying Signals for Automatic Clock-Gating Cell Test Pin
Connections
By default, DFT Compiler chooses an available ScanEnable or TestMode signal to connect
to clock-gating cell test pins, depending on the type of control signal specified with the
set_clock_gating_style command. However, you can also define a dedicated
ScanEnable or TestMode signal to use for these test pin connections.

Specifying a Global Clock-Gating Control Signal

You can define a global clock-gating ScanEnable or TestMode control signal by using the
-usage clock_gating option when defining the signal with the set_dft_signal
command:

set_dft_signal
 -type ScanEnable | TestMode
 -view spec
 -usage clock_gating
 -port port_list

To define a signal with the clock_gating usage, the -type option must be set to
ScanEnable or TestMode, and the -view option must be set to spec.

When you define a clock-gating control signal with the clock_gating usage, the
insert_dft command is limited to using only that signal to connect to the test pins of
clock-gating cells. If there are insufficient ScanEnable or TestMode signals for other
purposes, DFT Compiler creates additional ScanEnable or TestMode signals as needed.

You can use the report_dft_signal and remove_dft_signal commands for reporting
and removing the specification, respectively.
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-62

DFT Compiler Scan User Guide Version H-2013.03-SP4
Specifying Object-Specific Clock-Gating Control Signals

You can also define dedicated ScanEnable or TestMode clock-gating control signals for
specific parts of the design by using the -connect_to option of the set_dft_signal
command:

set_dft_signal
 -type ScanEnable | TestMode
 -view spec
 -usage clock_gating
 -port port_list
 [-connect_to object_list]
 [-exclude object_list]

The -connect_to option specifies a list of design objects that are to use the specified
clock-gating control signal. The supported object types are

• Clock-gating cells

For Power Compiler clock-gating cells, specify the hierarchical clock-gating cell. For
existing clock-gating cells identified with the set_dft_clock_gating_pin command,
specify the leaf clock-gating cell.

• Hierarchical cells

• Designs

• Test clock ports

This allows you to make clock-domain-based signal connections. It includes clock-gating
cells that gate the specified test clocks. The functional clock behavior is not considered.

Note:
This specification requires that a functional clock also be defined on the test clock
port.

• Scan-enable or test-mode pins of CTL-modeled cores

You can also use the -exclude option to specify a list of clock-gating cells, hierarchical cells,
or design names to exclude from the object-specific control signal.

The following example defines a ScanEnable signal named SE_CG to connect to the test
pins of existing clock-gating cells ICG_CLK100 and ICG_CLK200:

dc_shell> set_dft_signal \
 -type ScanEnable -view spec -port SE_CG \
 -usage clock_gating -connect_to {ICG_CLK100 ICG_CLK200}
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-63
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-63

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Limitations
Note the following limitations:

• The insert_dft command cannot be used on an unmapped design to connect to
clock-gating cells, that is, when a design is still in the RTL stage.

• Only the clock-gating cells recognized by Power Compiler are supported for automatic
test pin connection. The methodologies recommended for Power Compiler must be
followed to enable successful recognition of these clock-gating cells and their test pins.

• For user-instantiated clock-gating cells, test pins must be manually specified. For more
information, see “Connecting User-Instantiated Clock-Gating Cells” on page 7-84.

• Clock-gating cell connections are not mode-specific.

• The insert_dft and preview_dft commands do not report connections made to
clock-gating cells.
Chapter 1: Key Design-for-Test Flows and Methodologies
DFT Compiler and Power Compiler Interoperability 1-64

2
Running RTL Test Design Rule Checking 2

This chapter describes how to prepare for and run RTL test design rule checking (DRC) and
analyze DRC violations.

The RTL test design rule checking (DRC) process provides early warnings of test-related
issues. This feedback is crucial because it provides you with an opportunity to correct your
RTL code before the compile phase of the design flow. By correcting these problems during
this stage, you can reduce time-consuming iterations that would occur later in the
design process.

This chapter includes the following sections:

• Understanding the Flow

• Specifying Setup Variables

• Generating a Test Protocol

• Running RTL Test DRC

• Understanding the Violations

• Limitations

2-1

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Understanding the Flow

Figure 2-1 shows a typical RTL test DRC flow.

Figure 2-1 RTL Test DRC Design Flow

Set variables

Read HDL source

Set scan style

Define test protocol

Review report

Manually fix RTL

Violation report

No violations

Violations

dc_shell

Run RTL test DRC

Finished with
RTL test DRC
Chapter 2: Running RTL Test Design Rule Checking
Understanding the Flow 2-2

DFT Compiler Scan User Guide Version H-2013.03-SP4
Specifying Setup Variables

To begin preparing for RTL test DRC checking, you need to specify a series of setup
variables, as described in the following steps:

1. Set the hdlin_enable_rtldrc_info variable to true. This variable reports file names
and line numbers associated with each violation, which makes it easier for you to later
edit the source code and fix violations.

dc_shell> set hdlin_enable_rtldrc_info true

2. Make sure you define the list of searched logic libraries by using the link_library
variable.

3. Read in your HDL source code by using the read variable. The following variable reads
in a Verilog file called my_design.v:

dc_shell> read_file -format verilog my_design.v

Generating a Test Protocol

A test protocol is required for specifying signals and initialization requirements associated
with design rule checking. This section has the following subsections related to generating
a test protocol:

• Defining a Test Protocol

• Setting the Scan Style

• Design Examples

Defining a Test Protocol
To define the test protocol, you need to

• Identify all test clock signals by using the set_dft_signal command, as shown in the
following example:

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing {45 55}

Make sure you identify a clock signal as a clock and not as any other signal type, even if
it has more than one attribute. An error message will appear if you identify a clock signal
with any other attribute.

• Identify all nonclock control signals, such as asynchronous presets and clears or
scan-enable signals, using the set_dft_signal command.
Chapter 2: Running RTL Test Design Rule Checking
Specifying Setup Variables 2-3
Chapter 2: Running RTL Test Design Rule Checking
Specifying Setup Variables 2-3

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
You should identify the following nonclock control signals:

❍ Reset

❍ ScanEnable

❍ Constant

❍ ScanDataIn

❍ ScanDataOut

❍ TestData

❍ TestMode

For example,

dc_shell> set_dft_signal -view existing_dft \
 -type Reset -active_state 1

• Define constant logic value requirements.

If a signal must be set to a fixed constant value, use the set_dft_signal command, as
shown in the following example:

dc_shell> set_dft_signal -view existing_dft \
 -type constant -active_state 1

• Define test-mode initialization requirements.

Your design might require initialization to function in test mode. Use the
read_test_protocol command to read in a custom initialization sequence. You can
define a custom initialization sequence by modifying the protocol created by the
create_test_protocol command.

Reading in an Initialization Protocol in STIL Format
The following example reads in a STIL initialization protocol:

dc_shell> read_test_protocol -section test_setup my_protocol_file.spf

Example 2-1 shows a complete STIL procedure file, including an initialization sequence.
The initialization sequence is found in the test_setup section of the MacroDefs block.

Example 2-1 Complete Protocol File (init.spf)

STIL 1.0 {
 Design P2000.9;
}
Header {
 Title "DFT Compiler 2000.11 STIL output";
 Date "Wed Jan 3 17:36:04 2001";
Chapter 2: Running RTL Test Design Rule Checking
Generating a Test Protocol 2-4

DFT Compiler Scan User Guide Version H-2013.03-SP4
 History {
 }
}
Signals {
 "ALARM" In; "BSD_TDI" In; "BSD_TEST_CLK" In; "BSD_TMS" In;
 "BSD_TRST" In; "CLK" In; "HRS" In; "MINS" In; "RESETN" In;
 "SET_TIME" In; "TEST_MODE" In; "TEST_SE" In; "TEST_SI" In;
 "TOGGLE_SWITCH" In;
 "AM_PM_OUT" Out; "BSD_TDO" Out; "HR_DISPLAY[0]" Out;
 "HR_DISPLAY[1]" Out; "HR_DISPLAY[2]" Out; "HR_DISPLAY[3]"
Out;
 "HR_DISPLAY[4]" Out; "HR_DISPLAY[5]" Out; "HR_DISPLAY[6]"
Out;
 "HR_DISPLAY[7]" Out; "HR_DISPLAY[8]" Out; "HR_DISPLAY[9]"
Out;
 "HR_DISPLAY[10]" Out; "HR_DISPLAY[11]" Out;
"HR_DISPLAY[12]" Out;
 "HR_DISPLAY[13]" Out; "MIN_DISPLAY[0]" Out;
"MIN_DISPLAY[1]" Out;
 "MIN_DISPLAY[2]" Out; "MIN_DISPLAY[3]" Out;
"MIN_DISPLAY[4]" Out;
 "MIN_DISPLAY[5]" Out; "MIN_DISPLAY[6]" Out;
"MIN_DISPLAY[7]" Out;
 "MIN_DISPLAY[8]" Out; "MIN_DISPLAY[9]" Out;
"MIN_DISPLAY[10]" Out;
 "MIN_DISPLAY[11]" Out; "MIN_DISPLAY[12]" Out;
"MIN_DISPLAY[13]" Out;
 "SPEAKER_OUT" Out;
}
SignalGroups {
 "all_inputs" ’"ALARM" + "BSD_TDI" + "BSD_TEST_CLK" +
"BSD_TMS" +
 "BSD_TRST" + "CLK" + "HRS" + "MINS" + "RESETN" + "SET_TIME" +
 "TEST_MODE" + "TEST_SE" + "TEST_SI" + "TOGGLE_SWITCH"’; //
#signals=14
 "all_outputs" ’"AM_PM_OUT" + "BSD_TDO" + "HR_DISPLAY[0]"
+
 "HR_DISPLAY[1]" + "HR_DISPLAY[2]" + "HR_DISPLAY[3]" +
 "HR_DISPLAY[4]" + "HR_DISPLAY[5]" + "HR_DISPLAY[6]" +
 "HR_DISPLAY[7]" + "HR_DISPLAY[8]" + "HR_DISPLAY[9]" +
 "HR_DISPLAY[10]" + "HR_DISPLAY[11]" + "HR_DISPLAY[12]" +
 "HR_DISPLAY[13]" + "MIN_DISPLAY[0]" + "MIN_DISPLAY[1]" +
 "MIN_DISPLAY[2]" + "MIN_DISPLAY[3]" + "MIN_DISPLAY[4]" +
 "MIN_DISPLAY[5]" + "MIN_DISPLAY[6]" + "MIN_DISPLAY[7]" +
 "MIN_DISPLAY[8]" + "MIN_DISPLAY[9]" + "MIN_DISPLAY[10]" +
 "MIN_DISPLAY[11]" + "MIN_DISPLAY[12]" + "MIN_DISPLAY[13]"
+
 "SPEAKER_OUT"’; // #signals=31
 "all_ports" ’"all_inputs" + "all_outputs"’; //
#signals=45
 "_pi" ’"all_inputs"’; // #signals=14
 "_po" ’"all_outputs"’; // #signals=31
}
Chapter 2: Running RTL Test Design Rule Checking
Generating a Test Protocol 2-5
Chapter 2: Running RTL Test Design Rule Checking
Generating a Test Protocol 2-5

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
ScanStructures {
 ScanChain "c0" {
 ScanLength 40;
 ScanIn "TEST_SI";
 ScanOut "SPEAKER_OUT";
 }
}
Timing {
 WaveformTable "_default_WFT_" {
 Period ’100ns’;
 Waveforms {
 "all_inputs" { 0 { ’5ns’ D; } }
 "all_inputs" { 1 { ’5ns’ U; } }
 "all_inputs" { Z { ’5ns’ Z; } }
 "all_outputs" { X { ’0ns’ X; } }
 "all_outputs" { H { ’0ns’ X; ’95ns’ H; } }
 "all_outputs" { T { ’0ns’ X; ’95ns’ T; } }
 "all_outputs" { L { ’0ns’ X; ’95ns’ L; } }
 "CLK" { P { ’0ns’ D; ’45ns’ U; ’55ns’ D; } }
 "BSD_TEST_CLK" { P { ’0ns’ D; ’45ns’ U; ’55ns’ D; } }
 "RESETN" { P { ’0ns’ U; ’45ns’ D; ’55ns’ U; } }
 }
 }
}
PatternBurst "__burst__" {
 "__pattern__" {
 }
}
PatternExec {
 Timing "";
 PatternBurst "__burst__";
}
Procedures {
 "load_unload" {
 W "_default_WFT_";
 V { "BSD_TEST_CLK"=0; "BSD_TRST"=0; "CLK"=0; "RESETN"=1;
 "TEST_MODE"=1; "TEST_SE"=1; "_so"=#; }
 Shift {
 W "_default_WFT_";
 V { "BSD_TEST_CLK"=P; "BSD_TRST"=0; "CLK"=P;
"RESETN"=1;
 "TEST_MODE"=1; "TEST_SE"=1; "_so"=#; "_si"=#; }
 }
}
 "capture" {
 W "_default_WFT_";
 F { "BSD_TRST"=0; "TEST_MODE"=1; }
 V { "_pi"=\r14 #; "_po"=\r31 #; }
 }
 "capture_CLK" {
 W "_default_WFT_";
Chapter 2: Running RTL Test Design Rule Checking
Generating a Test Protocol 2-6

DFT Compiler Scan User Guide Version H-2013.03-SP4
 F { "BSD_TRST"=0; "TEST_MODE"=1; }
 "forcePI": V { "_pi"=\r14 #; }
 "measurePO": V { "_po"=\r31 #; }
 "pulse": V { "CLK"=P; }
 }
 "capture_BSD_TEST_CLK" {
 W "_default_WFT_";
 F { "BSD_TRST"=0; "TEST_MODE"=1; }
 "forcePI": V { "_pi"=\r14 #; }
 "measurePO": V { "_po"=\r31 #; }
 "pulse": V { "BSD_TEST_CLK"=P; }
 }
 "capture_RESETN" {
 W "_default_WFT_";
 F { "BSD_TRST"=0; "TEST_MODE"=1; }
 "forcePI": V { "_pi"=\r14 #; }
 "measurePO": V { "_po"=\r31 #; }
 "pulse": V { "RESETN"=P; }
 }
}
MacroDefs {
 "test_setup" {
 W "_default_WFT_";
 V { "BSD_TEST_CLK"=0; "CLK"=0; }
 V { "BSD_TEST_CLK"=0; "BSD_TRST"=0; "CLK"=0; "RESETN"=1;
 "TEST_MODE"=1; }
 }
}

Note:
The read_test_protocol -section test_setup command imports only the
test_setup section of the protocol file and ignores the remaining sections.

Setting the Scan Style
The scan style setting affects messages generated by test design rule checking. This is
because some design rules apply only to specific scan styles. To set the scan style, use the
following syntax for the set_scan_configuration command:

set_scan_configuration -style scan_style

You can use any of the following arguments for the scan_style value:

• multiplexed_flip_flop

• clocked_scan

• lssd
Chapter 2: Running RTL Test Design Rule Checking
Generating a Test Protocol 2-7
Chapter 2: Running RTL Test Design Rule Checking
Generating a Test Protocol 2-7

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
• scan_enabled_lssd

• combinational

Alternatively, you can set the test_default_scan_style variable instead of using the
set_scan_configuration command.

If you do not set the scan style before performing test design rule checking,
multiplexed_flip_flop is used as the default scan stye.

Design Examples
This section contains two simple design examples that illustrate how to generate test
protocols. The first example shows how to use the set_dft_signal command to control the
clock signal, the scan-enable signal, and the asynchronous reset. The second example
describes a two-pass process for defining an initialization sequence in a test protocol.

Test Protocol Example 1
Figure 2-2 shows a schematic and the Verilog code for a simple RTL design that needs a
test protocol.

Figure 2-2 RTL Design That Needs a Simple Protocol

module tcrm (in1, in2, in3, clk, cdn, out1, out2);
input in1, in2, in3, clk, cdn;
output out1, out2;
reg U1, U2;
wire gated_clk;

always @(posedge clk or negedge cdn) begin

U1

U2

in2

out1

out2

in3
in1

cdn

clk
Chapter 2: Running RTL Test Design Rule Checking
Generating a Test Protocol 2-8

DFT Compiler Scan User Guide Version H-2013.03-SP4
 if (!cdn) U1 <= 1'b0;
 else U1 <= in1;
end

assign gated_clk = clk & in3;

always @(posedge gated_clk or negedge cdn) begin
 if (!cdn) U2 <= 1'b0;
 else U2 <= in2;
 end

assign out1 = U1;
assign out2 = U2;

endmodule

In this design, you must define the clock signal, clk. You must also specify that in3 be held
at 1 during scan input to enable the clock signal for U2. Finally, you must hold the cdn signal
at 1 during scan input so that the reset signal is not applied to the registers.

The following command sequence specifies a test protocol for the design example:

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] \
 -port clk

dc_shell> set_dft_signal -view existing_dft -port cdn \
 -type Reset -active_state 0

dc_shell> set_dft_signal -view spec -port in3 \
 -type ScanEnable -active_state 1

dc_shell> create_test_protocol

dc_shell> write_test_protocol -output design.spf

Test Protocol Example 2
Figure 2-3 shows a schematic and the corresponding Verilog code for an RTL design that
requires initialization.
Chapter 2: Running RTL Test Design Rule Checking
Generating a Test Protocol 2-9
Chapter 2: Running RTL Test Design Rule Checking
Generating a Test Protocol 2-9

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 2-3 Design That Requires an Initialization Sequence

module ssug (in1, in2, clk, cdn, out1, out2);
input in1, in2, clk, cdn;
output out1, out2;
reg ff_a, ff_b, ff_c, ff_d;
wire resetn;

 always @(posedge clk) begin
 ff_b <= ff_a;
 ff_a <= cdn;
 end
 assign resetn = cdn & ff_b;
 always @(posedge clk or negedge resetn) begin
 if (!resetn) begin
 ff_c <= 1'b0;
 ff_d <= 1'b0;
 end
 else begin
 ff_c <= in1;
 ff_d <= in2;
 end
 end
 assign out1 = ff_c;
 assign out2 = ff_d;
endmodule

ff_a_reg/Q ff_b_reg/Q

resetn

in1 out1

out2in2

cdn

clk

ff_a ff_b

ff_d

ff_c
Chapter 2: Running RTL Test Design Rule Checking
Generating a Test Protocol 2-10

DFT Compiler Scan User Guide Version H-2013.03-SP4
In this design, you must define the clock signal, clk. You must also make sure that cdn and
the Q output of ff_b_reg remain at 1 during the test cycle, so that the resetn signal
remains at 1.

If you do not initialize the design, test DRC assumes that the resetn signal is not
controllable and marks the ff_c and ff_d flip-flops as having design rule violations.

To initialize the design, you must hold cdn at 1 and pulse the clk signal twice so that the
resetn signal is at 1.

For this example, the protocol is generated in a two-pass process. In the first pass, the
generated protocol contains an initialization sequence based on the test attributes placed on
clk and cdn ports. The command sequence that defines the preliminary protocol is as
follows:

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] \
 -port clk

dc_shell> set_dft_signal -view existing_dft \
 -type Constant -active_state 1 -port cdn

dc_shell> create_test_protocol

dc_shell> write_test_protocol -output first.spf

The resulting protocol contains the initialization steps shown in Example 2-2.

Example 2-2 Preliminary Initialization Sequence

MacroDefs {
 "test_setup" {
 W "_default_WFT_";
 V { "clk"=0; }
 V { "cdn"=1; "clk"=0; }
 }
}

If you run test design rule checking without modifying these initialization steps, it reports the
following violation:

Warning: Reset input of DFF ff_d_reg was not controlled. (D3-1)

For the second pass of the protocol generation process, modify the initialization sequence
as shown:

1. Add the three lines shown in bold to the test_setup section of the MacroDefs block:

MacroDefs {
 "test_setup" {
 W "_default_WFT_";
 V { "clk"=0; }
Chapter 2: Running RTL Test Design Rule Checking
Generating a Test Protocol 2-11
Chapter 2: Running RTL Test Design Rule Checking
Generating a Test Protocol 2-11

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
 V { "cdn"=1; "clk"=0; }
 V { "cdn"=1; "clk"=P; }
 V { "cdn"=1; "clk"=P; }
 V { "cdn"=1; "clk"=0; } }
}

The added steps pulse the clock signal twice while holding the cdn port to 1. The final
step holds clk to 0 because the test design rule checker expects all clocks to be in an
inactive state at the end of the initialization sequence.

2. Save the protocol into a new file. In this case, the file is called second.spf.

3. Read in the new macro in one of two ways:

a. Reread the whole modified protocol file:

 read_test_protocol second.spf

b. Read just the initialization portion of the protocol, and use the
create_test_protocol command to fill in the remaining sections of the protocol:

 remove_test_protocol
 read_test_protocol -section test_setup second.spf
 create_test_protocol

4. After you have read in the initialization protocol, perform test DRC again. The following
violation is reported:

Warning: Cell ff_b_reg has constant 1 value. (TEST-505)

This is to be expected because the outputs of ff_a and ff_b did not reach 0. Constant
flip-flops are not included in the scan chain.

Running RTL Test DRC

After generating the test protocol, you are ready to run the test DRC process. To do this,
specify the dft_drc command at the shell prompt, as shown in the following example:

dc_shell> dft_drc

This command generates a set of report files containing all known design violations. You’ll
need to review these reports and manually fix any violations before advancing to design
compilation and scan insertion.
Chapter 2: Running RTL Test Design Rule Checking
Running RTL Test DRC 2-12

DFT Compiler Scan User Guide Version H-2013.03-SP4
Understanding the Violations

The Test DRC process checks your design to determine if you have any test design rule
violations. Before you can fix your design, you must understand what types of violations are
checked and why these checks are necessary.

This section explains the test design rule checks that are performed on your design,
describes messages you see when you encounter test design rule violations, and describes
the methods you can use to fix the violations.

The section has the following subsections:

• Violations That Prevent Scan Insertion

• Violations That Prevent Data Capture

• Violations That Reduce Fault Coverage

Violations That Prevent Scan Insertion
Scan design rules require that in test mode the registers have the functionality to operate as
cells within a large shift register. This enables data to get into and out of the chip. The
following violations prevent a register from being scannable:

• The flip-flop clock signal is uncontrollable.

• The latch is enabled at the beginning of the clock cycle.

• The asynchronous controls of registers are uncontrollable or are held active.

Uncontrollable Clocks
This violation can be caused by undefined or unconditioned clocks. DFT Compiler considers
a clock to be controlled only if both of these conditions are true:

• The clock is forced to a known state at time = 0 in the clock period, which is the same as
the “clock off state” in the TetraMAX tool.

• The clock changes state as a result of the test clock toggling.

Going to an unknown state (X) is considered to be a change of state. However, if the
clock stays in a single known state no matter what state the test clock is in, the clock will
generate a violation for not being reached by any test clock.

You must use the set_dft_signal command to define test clocks in your design. For more
information, see “Defining a Test Protocol” on page 2-3.
Chapter 2: Running RTL Test Design Rule Checking
Understanding the Violations 2-13
Chapter 2: Running RTL Test Design Rule Checking
Understanding the Violations 2-13

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Also use the set_dft_signal command to condition gated clocks to reach their
destinations, as shown in the following example:

dc_shell> set_dft_signal -view existing_dft \
 -type constant -active_state 1

The violation message provides the name of the signal that drives the clock inputs and the
registers that ATPG cannot control.

If a design has an uncontrollable register clock pin, it generates one of the following warning
messages:

Warning: Clock input I of DFF S was not controlled. (D1-N)

Warning: Clock input I of DLAT S was not controlled. (D4-N)

Asynchronous Control Pins in Active State
Asynchronous pins of a register must be capable of being disabled by an input of the design.
If they cannot be disabled, this is reported as a violation. This violation can be caused by
asynchronous control signals, such as the preset or clear pin of the flip-flop or latch, that are
not properly conditioned before you run DFT Compiler. You might be able to fix this by
setting a signal as active_state that has a hold value of 0 during scan shift or by defining
a signal as active_state that has a hold value of 1. If you create all signal definitions
correctly before running DFT Compiler, this violation indicates registers that ATPG cannot
control.

If a register has an asynchronous pin that is not controlled by an asynchronous control
signal, you get one of the following warning messages:

Warning: Set input I of DFF S was not controlled. (D2-N)

Warning: Reset input I of DFF S was not controlled. (D3-N)

Warning: Set input I of DLAT S was not controlled. (D5-N)

Warning: Reset input I of DLAT S was not controlled. (D6-N)

Violations That Prevent Data Capture
After DFT Compiler checks for violations that prevent scan insertion, the next step is to verify
that your design can get valid data during the capture phase of ATPG.

Note that ATPG does not consider timing when generating vectors for a scan design. If you
do not fix the violations in this section, ATPG might generate vectors that fail functional
simulation or fail on the tester, although in the TetraMAX tool you would also have to override
the TetraMAX default settings.
Chapter 2: Running RTL Test Design Rule Checking
Understanding the Violations 2-14

DFT Compiler Scan User Guide Version H-2013.03-SP4
The violations are described in the following sections:

• Clock Used As Data

• Black Box Feeds Into Clock or Asynchronous Control

• Source Register Launch Before Destination Register Capture

• Registered Clock-Gating Circuitry

• Three-State Contention

• Clock Feeding Multiple Register Inputs

Clock Used As Data
When a clock signal drives the data pin of a cell, as in Figure 2-4, ATPG tools cannot
determine the captured value. Modify the logic leading to the datapath to eliminate
dependency on the clock.

Figure 2-4 Clock Signal Used As Data Input

If the clock and data input to a register are interdependent, you might get the following
warning message:

Warning: Clock C connects to clock and data inputs I1/I2 of DFF S.
 (D11-N)

Black Box Feeds Into Clock or Asynchronous Control
If the output of a black box indirectly feeds into the clock of a register, the register might not
be able to capture data. An example is shown in Figure 2-5.

D Q
U1

CP

U3

D1
my_clock
Chapter 2: Running RTL Test Design Rule Checking
Understanding the Violations 2-15
Chapter 2: Running RTL Test Design Rule Checking
Understanding the Violations 2-15

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 2-5 Black Box Feeds Clock Input

For more information about black boxes, see “Black Boxes” on page 2-21.

Source Register Launch Before Destination
Register Capture
This section describes the violations caused by source registers that launch new data to the
destination registers before they can capture and shift out the original data.

When two latches are enabled by the same clock but have a combinational datapath
between them, data can propagate through both latches in a single clock cycle. This
reduces the ability of ATPG to observe logic along this path. Modify the logic leading to the
affected latches to eliminate any paths affected by latches that are enabled by the same
clock.

An example of this violation is shown in Figure 2-6. When the clock turns off, that is, pulses
from an inactive state to an active state and then back, the second latch (U2) can capture
the value originally on port D1 or on its data pin, depending on the relationship between the
clock width and the delay on the datapath. The possibility of data feedthrough causes the
destination latch (U2) to capture data unreliably.

Figure 2-6 Latch-Based Circuit With Source Register Launch Before Destination Register
Capture

D QD1

OP1D Q
my_black_box

U2

CP

G
CLK

D

G

QD1 OP1

G

D Q

U2my_latch

my_clock
Chapter 2: Running RTL Test Design Rule Checking
Understanding the Violations 2-16

DFT Compiler Scan User Guide Version H-2013.03-SP4
If multiple latches are enabled so that the latches feed through capture data, you get the
following warning message:

Warning: Clock C cannot capture data with other clocks off. (D8-N)

Registered Clock-Gating Circuitry
If you gate the register output with the same clock signal that is used to clock the register,
you cannot use the same phase of the resulting signal as a clock. An example is shown in
Figure 2-7.

Figure 2-7 Invalid Clock-Gating Circuit

The U1 output invalidly clocks register U2. The OR gate, U1, has two inputs, where one is
the output of register U3 and the other is the signal used to clock U3.

Note that Power Compiler clock gating does not lead to this violation because Power
Compiler uses opposite edge-triggered flip-flops or latches to create the clock-gating
signals.

This circuit configuration results in timing hazards, including clock glitches and clock skew.
Modify the clock-gating logic to eliminate this type of logic.

If you implement this type of clock-gating circuitry, you get the following warning message:

Warning: Clock input I of DFF S was not controlled. (D1-N)

Three-State Contention
DFT Compiler can check to see if your RTL code contains three-state contention conditions.
If floating or contention is found, one of the following three warning messages is issued:

Warning: Bus gate N failed contention ability check for drivers G1 and
G2. (D20-N)

Warning: Bus gate N failed Z state ability check. (D21-N)

my_clock

U1

U2

D Q

D QD_2

D_1 OP

U3 my_inv_clk
CP

CP
Chapter 2: Running RTL Test Design Rule Checking
Understanding the Violations 2-17
Chapter 2: Running RTL Test Design Rule Checking
Understanding the Violations 2-17

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Warning: Wire gate N failed contention ability check for drivers G1 and
G2. (D22-N)

Clock Feeding Multiple Register Inputs
A clock that feeds multiple register inputs reduces the fault coverage attainable by ATPG.
The signal can be one of the following:

• A clock signal that feeds into more than one register clock pin

• A clock signal that feeds into a clock pin and an asynchronous control of a register

The logic that feeds the same clock into multiple clock pins or asynchronous pins should be
modified so that the clock reaches only one port on the register. Figure 2-8 shows an
example of this violation.

Figure 2-8 Clock Signal Feeds Register Clock Pin and Asynchronous Reset

If you implement this type of design circuitry, you get the following warning message:

Warning: D12 Clock C connects to clock/set/reset inputs (G1 / G2) of
DFF I. (D12-N)

Violations That Reduce Fault Coverage
Violations that can reduce your fault coverage are discussed in the following sections:

• Combinational Feedback Loops

• Clocks That Interact With Register Input

• Multiple Clocks That Feed Into Latches and Flip-Flops

• Black Boxes

my_clock

OP1D Q

U2

CP

RST
Chapter 2: Running RTL Test Design Rule Checking
Understanding the Violations 2-18

DFT Compiler Scan User Guide Version H-2013.03-SP4
Combinational Feedback Loops
An active (or sensitizable) feedback loop reduces the fault coverage that ATPG can achieve
by increasing the difficulty of controlling values on paths containing parts of the loop.

A loop that oscillates causes severe problems for ATPG and for fault simulation. You can
break these loops by placing test constraints on the design. This creates a feedback loop
that is not active. DFT Compiler does not report violations on loops that you have broken by
setting constraints.

If you are using the loop as a latch, convert the combinational elements that make up this
feedback loop into a latch from your ASIC vendor library. Figure 2-9 shows this type of loop.

Figure 2-9 Highlighted Combinational Feedback Loop

If your design contains a sensitizable feedback loop, you get the following warning message:

Warning: Feedback path network X is sensitizable through source gate G.
(D23-N)

Clocks That Interact With Register Input
A clock that affects the data input of a register reduces the fault coverage attainable by
ATPG, because ATPG pulses only one clock at a time, keeping all other clocks in their off
states. Attempting to fix this purely in the ATPG setup can result in timing hazards. Do not
use the circuit shown in Figure 2-10, because testing this logic requires multiple ATPG
iterations and might also require special scan chain design considerations (not discussed
here). Redesign the logic feeding the data inputs of the registers to eliminate dependency
on other clocks.

Q
in1

U2
U1

in2
Chapter 2: Running RTL Test Design Rule Checking
Understanding the Violations 2-19
Chapter 2: Running RTL Test Design Rule Checking
Understanding the Violations 2-19

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 2-10 Clock Interacting With Register Input

If a clock affects the data of a register, you might get the following warning message:

Warning: Clock C connects to data input of DFF S. (D10-N)

Multiple Clocks That Feed Into Latches and Flip-Flops
This section describes the types of clock-gating configurations that can reduce fault
coverage. For more information on other clock-gating configurations that prevent scan
insertion and data capture, see “Violations That Prevent Scan Insertion” on page 2-13 and
“Violations That Prevent Data Capture” on page 2-14.

Latch Requires Multiple Clocks to Capture Data

For a latch to be usable as part of a scan chain, it must be enabled by one clock or by a clock
ANDed with data derived from sources other than that clock. Multiple clocks and gated
clocks must be ORed together so that any one of the clocks can capture data. ATPG forces
all but one clock off at any time. Latches that can capture data as a result of more than one
clock must be able to capture data with one clock active and all others off.

If your design has an OR gate with clock and data inputs, the output clock of the OR gate
has extra pulses that depend on the data input. If your design has an AND gate with more
than one clock input, the output of the AND gate never generates a clock pulse. Both of
these cases are violations, and DFT Compiler generates a warning message.

You can create valid clock-gating logic for latches if your circuitry contains an

• AND gate with only one clock input and one or more data inputs

• OR gate with clock or gated clock inputs

A combination of these valid clocking rules is shown in Figure 2-11.

clk2

OP1D Q

U2

CP

RST

clk1
Chapter 2: Running RTL Test Design Rule Checking
Understanding the Violations 2-20

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 2-11 Valid Latch Clock Gating

If you generate logic that violates these clock rules, you get the following warning message:

Warning: Clock C cannot capture data with other clocks off. (D8-N)

Latches Are Not Transparent

Latches should be transparent in certain types of scan styles. If a latch is not transparent,
ATPG might have more difficulty controlling it. This could cause a loss of fault coverage on
the path through the latch.

Black Boxes
Logic that drives or is driven by black boxes cannot be tested because it is unobservable or
uncontrollable. This violation can drastically reduce fault coverage, because the logic that
surrounds the black box is unobservable or uncontrollable. Figure 2-12 shows an example.

Figure 2-12 Effect of Black Boxes on Surrounding Logic

U1
A

B
Z

OPD

G

Q

U4

my_clock1

D_1
U2

A

B

my_clock2

D_2
U3

A

B

IN OUTIN1 OP1IN OUT

my_bb1 my_bb2

Unobservable logic Uncontrollable logic
Chapter 2: Running RTL Test Design Rule Checking
Understanding the Violations 2-21
Chapter 2: Running RTL Test Design Rule Checking
Understanding the Violations 2-21

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
If there are any black boxes in your design, the dft_drc command issues the following
warning message:

Warning: Cell U0 (black_box) is unknown (black box) because
functionality for output pin Z is bad or incomplete. (TEST-451)

Limitations

Note the following limitations:

• The set_svf command is not supported in the RTL test DRC flow. You should comment
out any dft_drc command that performs test DRC checking on elaborated RTL before
you perform design synthesis, which generates the verification setup file.

• The compile_ultra -gate_clock -scan command is not supported in the RTL test
DRC flow. When the create_test_protocol command is run on the elaborated RTL,
subsequent compile_ultra -gate_clock -scan commands might not properly
incorporate clock-gating cells into the scan chains. You should comment out any
create_test_protocol commands performed on elaborated RTL before you perform
design synthesis with this command.
Chapter 2: Running RTL Test Design Rule Checking
Limitations 2-22

3
Running the Test DRC Debugger 3

This chapter describes debugging design rule checking (DRC) violations by using the
Design Vision graphical user interface (GUI).

Design Vision provides analysis tools for viewing and analyzing your design. It allows you to
view the design violations, and it can provide an early warning of test-related issues. The
GUI provides the debug environment for pre-DFT DRC violations, post-DFT DRC violations,
and Core Test Language (CTL) models.

This chapter includes the following sections:

• Starting and Exiting the Graphical User Interface

• Exploring the Graphical User Interface

• Viewing Design Violations

• Commands Specific to the DFT Tools in the GUI

3-1

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Starting and Exiting the Graphical User Interface

To invoke Design Vision and view test DRC results, you need to

• Execute the design_vision command or, for topographical mode, the design_vision
-topographical_mode command from the command line.

• Choose File > Execute Script to run dc_shell script.

• Choose Test > Run DFT DRC to check the design for DRC violations. This brings up the
violation browser.

Alternatively,

• Enter the dft_drc command on the Design Vision command line. Then choose Test >
Browse Violations to invoke the violation browser.

To exit Design Vision,

• Choose File > Exit

You can also enter exit or quit on the command line or press Control-c three times in the
UNIX or Linux shell.

To invoke Design Vision directly from dc_shell, enter

dc_shell> gui_start

To use options with this command, see the Design Vision User Guide for further information.

Note:
Before invoking Design Vision or opening the GUI, make sure you have correctly set your
display environment variable. See the Design Compiler User Guide for information on
setting this variable.

Exploring the Graphical User Interface

The Design Vision window is a top-level window in which you can display design information
in various types of analysis views. The GUI functions as a visual analysis tool to help you to
visualize and analyze the violations in your design.

Figure 3-1 shows the Design Vision window running in the Design Vision foreground.
Chapter 3: Running the Test DRC Debugger
Starting and Exiting the Graphical User Interface 3-2

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 3-1 The Design Vision Window

The window consists of a title bar, a menu bar, and several toolbars at the top of the window
and a status bar at the bottom of the window.

Logic hierarchy view

Command line

Menu bar

Status barPrompt and
replay button

Console

Test menu: Click Browse
Violations to see all violations in
the design.

Help

Log/History
view
Chapter 3: Running the Test DRC Debugger
Exploring the Graphical User Interface 3-3
Chapter 3: Running the Test DRC Debugger
Exploring the Graphical User Interface 3-3

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
You use the workspace between the toolbars and the status bar to display view windows
containing graphical and textual design information. You can open multiple windows and use
them to compare views, or different design information within a view, side by side.

Logic Hierarchy View
The logic hierarchy view helps you navigate through your design and gather information.
The view is divided into the following two panes:

• Instance tree

• Objects list

The instance tree lets you quickly navigate the design hierarchy and see the relationships
among its levels. If you select the instance name of a hierarchical cell (one that contains
subblocks), information about that instance appears in the object table. You can Shift-click or
Control-click instance names to select combinations of instances.

By default, the object table displays information about hierarchical cells belonging to the
selected instance in the instance tree. To display information about other types of objects,
select the object types in the list above the table. You can display information about
hierarchical cells, all cells, pins and ports, pins of child cells, and nets.

Console
The console provides a command-line interface and displays information about the
commands you use in the session in the following two views:

• Log view

• History view

The log view is displayed by default when you start Design Vision. The log view provides the
session transcript. The history view provides a list of the commands that you have used
during the session. To select a view, click the tab at the bottom of the console.

Command Line
You can enter dc_shell commands on the command line at the bottom of the console. Enter
these commands just as you would enter them at the dc_shell prompt in a standard UNIX or
Linux shell. When you issue a command by pressing Return or clicking the prompt button to
the left of the command line, the command output, including processing messages and any
warnings or error messages, is displayed in the console log view.
Chapter 3: Running the Test DRC Debugger
Exploring the Graphical User Interface 3-4

DFT Compiler Scan User Guide Version H-2013.03-SP4
You can display, edit, and reissue commands on the console command line by using the
arrow keys to scroll up or down the command stack and to move the insertion point to the
left or right on the command line. You can copy text in the log view and paste it on the
command line.

You can also select commands in the history view and edit or reissue them on the command
line.

Viewing Man Pages
The GUI provides an HTML-based browser that lets you view, search, and print man pages
for commands, variables, and error messages.

To view a man page in the man page viewer,

1. Choose Help > Man Pages.

2. Click the category link for the type of man page you want to view: Commands, Variables,
or Messages.

3. Click the title link for the man page you want to view.

Menus
The menu bar provides menus with the commands you need to use the GUI. Choose
commands on the Test menu to view design violations and to open the violation browser.

Checking Scan Test Design Rules
Check the current design for DRC violations in your scan test implementation before you
perform other DFT Compiler operations such as inserting scan cells. You can use the
violation browser and the violation inspector to examine and debug any DRC violations that
you find.

To view DRC violations,

• Choose Test > Run DFT DRC.

DFT Compiler checks the design for DRC violations and displays messages in the console
log view. If violations exist, Design Vision automatically opens a new Design Vision window
and displays the violation messages in the violation browser.
Chapter 3: Running the Test DRC Debugger
Exploring the Graphical User Interface 3-5
Chapter 3: Running the Test DRC Debugger
Exploring the Graphical User Interface 3-5

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Examining DRC Violations
You can use the DRC violation browser to search for and view information about DFT unified
DRC violations in the current design. The violation browser can display both static and
dynamic violation messages. Static violations occur as a result of the design topology. To
detect dynamic violations, you must simulate the design in the violation inspector.

To open the violation browser and view violations,

• Choose Test > Browse Violations

The violation browser view window appears in a new Design Vision window, docked to the
left side of the window.

See “Viewing Design Violations” on page 3-6.

Viewing Test Protocols
You can view details about the default test protocol and any user-defined test protocols that
you created for the design.

To view test protocols,

• Choose Test > Browse Test Modes. The Test Modes Details dialog box appears.
Alternatively, you can open this dialog box by clicking the Test Modes button in the
violation inspector.

• Select a test protocol name in the Test Modes list.

Viewing Design Violations

This section covers the following topics:

• Examining DRC Violations

• Inspecting DRC Violations

• Inspecting Static DRC Violations

• Inspecting Dynamic DRC Violations
Chapter 3: Running the Test DRC Debugger
Viewing Design Violations 3-6

DFT Compiler Scan User Guide Version H-2013.03-SP4
Examining DRC Violations
The violation browser lets you examine detailed information about violations and also
provides a variety of tools for viewing the different aspects of a violation. The violation
browser groups the warning and error messages into categories that help you find the
problems you are concerned about.

To view a violation,

• Choose Test > Browse Violations.

This opens the violation browser view window, as shown in Figure 3-2.

Figure 3-2 Violation Browser View Window

The violation browser window consists of two panes: a violation category tree on the left and
a violation pin list on the right. The Violation Categories pane lists different categories of
violations, for example, Modeling and Pre-DFT.

Violation D1-13
selected

Violation description
pane

Click the Inspect Violation button to inspect the
selected violation(s).

Man page

All D1 violations

All violations
Chapter 3: Running the Test DRC Debugger
Viewing Design Violations 3-7
Chapter 3: Running the Test DRC Debugger
Viewing Design Violations 3-7

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
To see the violations:

• Click the expansion button (plus sign) of the violation category to display the violations of
that group.

The expanded view displays the types and number of violations.

When you select a violation in the left pane, a list of pins where the violations occur appears
in the right pane.

For example,

• Expand the Pre-DFT category view.

• Select violation D1.

The resulting D1 violations are shown in the right-side pane.

• Click a specific violation pin or violation ID, and the corresponding description is
displayed in the description pane.

• Click the Inspect Violation button to view the violation schematic. For more details, see
“Inspecting Static DRC Violations” on page 3-8.

(Optional) To view the man page of a violation, click the Help button.

Inspecting DRC Violations
You can analyze and debug DFT unified DRC violations by inspecting them in a violation
inspector window. You can inspect one or more violations of the same type. The violation
inspector provides both a schematic view for inspecting static violations and a coordinated
waveform view for simulating dynamic violations.

This section has the following subsections:

• Inspecting Static DRC Violations

• Inspecting Dynamic DRC Violations

Inspecting Static DRC Violations
The violation inspector integrates the schematic viewer with the waveform viewer to debug
violations. However, the waveform view within the violation inspector is useful only for
debugging dynamic violations and only for pin data that consists of data values over a
sequence of events or a period of time. For pin data types that are constant or do not fit the
concept of values over time or sequence of events, pin data values are represented as
strings on schematics, and the waveform view in the violation inspector is hidden in such
cases.
Chapter 3: Running the Test DRC Debugger
Viewing Design Violations 3-8

DFT Compiler Scan User Guide Version H-2013.03-SP4
This section has the following subsections:

• Viewing a Violation

• Viewing Multiple Violations

• Viewing CTL Models

Viewing a Violation

When you select a violation in the violation browser, the corresponding path schematic is
displayed in the violation inspector so that you can investigate the violations. A path
schematic can contain cells, pins, ports, and nets.

To open the violation schematic,

• Click the Inspect Violation tab at the bottom of the console.

This opens the violation inspector window, as shown in Figure 3-3.

This window displays the path schematic for visually examining any violations and the
violation source. A path schematic provides contextual information and details about the
path and its components. Red-colored cells indicate pins with violations.
Chapter 3: Running the Test DRC Debugger
Viewing Design Violations 3-9
Chapter 3: Running the Test DRC Debugger
Viewing Design Violations 3-9

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 3-3 Schematic Viewer: Viewing a Violation

• (Optional) Select the data type name in the “Pin data type” menu to display a different pin
data type.

• Display object information in an InfoTip by moving the pointer over a pin, cell, net, or
other type of object.

• Pin information includes the cell name, pin direction, and simulation values.

• Cell information includes the cell name and the names and directions of the attached
pins.

• Net information includes the net name, local fanout value, and fanout value.

Observe the simulation values displayed at the input and output pins in Figure 3-4.

Pin data

CTL model

D1 violation source Feedthrough clock

Violation

View tabs
Chapter 3: Running the Test DRC Debugger
Viewing Design Violations 3-10

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 3-4 Viewing Simulation Values

Note that you can browse back and forth between the path schematics of D1 and D2
violations by clicking the corresponding D1 and D2 tabs at the bottom of the console
window.

• If you define a test pin with the set_dft_signal command, the pin appears with a
hatched fill pattern and the InfoTip displays the pin information. See how the test pins are
specified in Figure 3-5.

View tabs Violation

D2 violation

Simulation shows 1 on
pin: Register initialized.

Simulation shows X on pin.
Register not initialized.

Pin name
Chapter 3: Running the Test DRC Debugger
Viewing Design Violations 3-11
Chapter 3: Running the Test DRC Debugger
Viewing Design Violations 3-11

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 3-5 Test Pin Defined

Viewing Multiple Violations

To view the path schematics for multiple violations,

1. Shift-click to select multiple violation IDs in the violation browser.

2. Click the Inspect Violation button at the bottom of the window.

The schematics of the selected violations are displayed in the schematic viewer of the
violation inspector.

3. (Optional) Click the Help button to bring up the Man Page Viewer.

Figure 3-6 shows the selection of multiple violations.
Chapter 3: Running the Test DRC Debugger
Viewing Design Violations 3-12

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 3-6 Viewing Multiple Violations

Viewing CTL Models

A CTL model provides information about scan cells and the test modes in which they are
active. It also describes the number of scan cells in a chain and the pins associated with the
particular scan chain.

If your design contains CTL models, the violation schematic displays them as black boxes
with a hatched fill pattern to distinguish them from other cells.

A CTL model allows you to view the feedthrough signals, like clocks and asynchronous
signals. You can view the fanin and fanout for the path schematics. This step can provide
useful information about the logic that drives, or is driven by, the problem path.

Select D-15,
D-16, D-17,
and D-18
violations

Violation D-17

Violation D-15 Violation D-18 Violation D-16 To inspect multiple violations,
select the violations and click
the Inspect Violation button.
Chapter 3: Running the Test DRC Debugger
Viewing Design Violations 3-13
Chapter 3: Running the Test DRC Debugger
Viewing Design Violations 3-13

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
The following pins are displayed in a CTL model:

• Scan input

• Scan output

• Scan enable

• Scan clock

To display the feedthrough flylines for a CTL model,

1. Select an input or output pin on the model.

2. Right-click and choose “Show feed throughs”.

See the design schematics of the CTL model in Figure 3-7.

Figure 3-7 CTL Scan Chain Information

Scan output Scan input

Clock

Scan enable

Chain info:
Number of
scan cells
Chapter 3: Running the Test DRC Debugger
Viewing Design Violations 3-14

DFT Compiler Scan User Guide Version H-2013.03-SP4
Inspecting Dynamic DRC Violations
The waveform viewer displays a coordinated waveform view for simulating dynamic
violations. The violation inspector provides both a schematic view (violation schematic) for
inspecting static violations and a coordinated waveform view for simulating dynamic
violations.

The pin data for dynamic violations represents simulation values for a series of initialization
cycles. To debug dynamic violations, you can select pins in the violation schematic and view
their simulation values in the waveform view. Simulation values can be constant, or they can
vary over time in a series of simulation “events.”

The violation inspector displays the pin data that corresponds to the most suitable pin data
type for debugging the violation. To simulate the pin data for a dynamic violation, you must
change to a pin data type that supports simulation values.

To display waveforms for pins with dynamic violations,

• Select one or more pin names in the violation browser.

• Click the Inspect Violation button.

• Select “Test setup” in the “Pin data type” list.

The waveform view appears below the schematic view in the violation inspector window,
as shown in Figure 3-8. You can adjust the relative heights of these views by dragging
the split bar up or down.

The waveform view consists of two panes: an expandable signal list on the left and the
waveform viewer on the right. You can adjust the relative widths of the panes by dragging
the split bars left or right.

• Select one or more objects (pins, cells, nets, or buses) for the signals that you want to
inspect.

• Click the “Add to Wave View” button.

The signal names and values appear in the signal list, and a waveform for each signal
appears in the waveform viewer.
Chapter 3: Running the Test DRC Debugger
Viewing Design Violations 3-15
Chapter 3: Running the Test DRC Debugger
Viewing Design Violations 3-15

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 3-8 Waveform Viewer

To change the visible time range,

• Drag the pointer left or right over the portion of the global time range that you want to
view.

You can use the reference and target markers, C1 and C2, to measure the time between
events. C1 marks the current event and C2 marks the event you want to measure. The

Waveform viewer
selected

“Test setup” pin data
launches waveform viewer

Schematic viewer

Reference marker C1 Signal names Magnify/shrink
waveforms

Signal values Target marker C2
Chapter 3: Running the Test DRC Debugger
Viewing Design Violations 3-16

DFT Compiler Scan User Guide Version H-2013.03-SP4
number of events or time units between the markers appears in the marker region above the
upper time scale.

• To move C1, click or drag the pointer in the marker region.

• To move C2, middle-click or drag the pointer with the middle mouse button in the marker
region

You can move or copy signals into a group or from one group to another. You can also
remove selected signals or clear the waveform view.

To move signals into a group or from one group to another,

1. Select the signal names in the signal list pane.

2. Drag the selected signals over the group name.

To copy signals into a group or from one group to another,

1. Select the signal names in the signal list pane.

2. Shift-drag the selected signals over the group name.

To remove signals from the waveform view,

1. Select the signal names in the signal list pane.

2. Click the Selected button.

To clear the waveform view, click the All button.

Commands Specific to the DFT Tools in the GUI

Detailed descriptions of the DFT-specific commands and options in the GUI are listed in this
section.

gui_inspect_violations
The gui_inspect_violations command brings up the specified DFT DRC violations in a
new violation inspector window unless a violation inspector window has been marked for
reuse. If no violation inspector window exists, a new violation inspector window is created as
a new top-level window. Subsequent windows are created in the active top-level window.
The new violation inspector window that is created is not marked reusable.

The syntax for this command is

gui_inspect_violations -type violation_type violation_list
Chapter 3: Running the Test DRC Debugger
Commands Specific to the DFT Tools in the GUI 3-17
Chapter 3: Running the Test DRC Debugger
Commands Specific to the DFT Tools in the GUI 3-17

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
To inspect multiple violations (5, 9,13) of type D1, for example, use the following syntax:

gui_inspect_violations -type D1 {5 9 13}

To inspect a single violation 4 of type D2, for example, use the following syntax:

gui_inspect_violations -type D2 4

or

gui_inspect_violations D2-4

gui_wave_add_signal
The gui_wave_add_signal command adds specified objects to the waveform view of a
specified violation inspector window. If you specify a cell, a group is created in the waveform
view and all the pins of the cell are added to this group as a list of signals. For a bus, all nets
are added. The objects that are added will be selected.

The syntax of the command is

gui_wave_add_signal
 [-window inspector_window]
 [-clct list]

To add a port object i_rd, for example, use the following syntax:

This command adds the port object to the first violation in
the inspector window with a waveform view
gui_wave_add_signal i_rd

To add selected objects, use the following syntax:

Adds selected objects to the waveform view of the violation inspector
named ViolationInspector.3
gui_wave_add_signal -window ViolationInspector.3 -clct [get_selection]

gui_violation_schematic_add_objects
The gui_violation_schematic_add_objects command adds specified objects to the
schematic view of a specified violation inspector window and selects them.
Chapter 3: Running the Test DRC Debugger
Commands Specific to the DFT Tools in the GUI 3-18

DFT Compiler Scan User Guide Version H-2013.03-SP4
The syntax of this command is

gui_violation_schematic_add_objects
 [-window inspector_window]
 [-clct list]

Table 3-1 gui_violation_schematic_add_objects Command Syntax

Options Descriptions

-window

inspector_window

Specifies a signal to be added to the specified violation
inspector window.

If inspector_window is not a valid violation in the inspector
window, an error message displays and the command exits.

If no -window option is specified, the signal is added to the
waveform viewer of the first launched violation inspector.

-clct list Specifies that list is to be considered as a collection of
object handles.

In the absence of the -clct option, list is considered as a
collection of object names.
Chapter 3: Running the Test DRC Debugger
Commands Specific to the DFT Tools in the GUI 3-19
Chapter 3: Running the Test DRC Debugger
Commands Specific to the DFT Tools in the GUI 3-19

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Chapter 3: Running the Test DRC Debugger
Commands Specific to the DFT Tools in the GUI 3-20

4
Performing Scan Replacement 4

This chapter describes the scan replacement process, including constraint-optimized scan
insertion.

The scan replacement process inserts scan cells into your design by replacing nonscan
sequential cells with their scan equivalents. If you start with an HDL description of your
design, scan replacement occurs during the initial mapping of your design to gates. You can
also start with a gate-level netlist; in this case, scan replacement occurs as an independent
process.

With either approach, scan synthesis considers the design constraints and the impact of
both the scan cells themselves and the additional loading due to scan chain routing to
minimize the impact of the scan structures on the design.

This chapter includes the following sections:

• Scan Replacement Flow

• Preparing for Scan Replacement

• Specifying a Scan Style

• Verifying Scan Equivalents in the Logic Library

• Scan Cell Replacement Strategies

• Test-Ready Compilation

4-1

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
• Validating Your Netlist

• Performing Constraint-Optimized Scan Insertion
Chapter 4: Performing Scan Replacement
4-2

DFT Compiler Scan User Guide Version H-2013.03-SP4
Scan Replacement Flow

Figure 4-1 shows the flow for the scan replacement process. This flow assumes that you are
starting with an HDL description of the design. If you are starting with a gate-level netlist, you
must use constraint-optimized scan insertion. (See “Preparing for Constraint-Optimized
Scan Insertion” on page 4-35).

Figure 4-1 Synthesis and Scan Replacement Flow

Select scan style

Read HDL source

Check test

Prepare for synthesis

Synthesize and

Assemble scan chains

design rules

replace scan

Violations

Change design

HDL
source

violations
No
Chapter 4: Performing Scan Replacement
Scan Replacement Flow 4-3
Chapter 4: Performing Scan Replacement
Scan Replacement Flow 4-3

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
The following steps explain the scan replacement process:

1. Select a scan style.

DFT Compiler requires a scan style to perform scan synthesis. The scan style dictates
the appropriate scan cells to insert during optimization. You must select a single scan
style and use this style on all the modules of your design.

2. Check test design rules of the HDL-level design description.

3. Synthesize your design.

Test-ready compile maps all sequential cells directly to scan cells. During optimization,
DFT Compiler considers the design constraints and the impact of both the scan cells
themselves and the additional loading due to scan chain routing to minimize the impact
of the scan structures on the design.

Preparing for Scan Replacement

This section discusses what to consider before starting the scan replacement process, and
has the following subsections:

• Selecting a Scan Replacement Strategy

• Identifying Barriers to Scan Replacement

• Preventing Scan Replacement

Selecting a Scan Replacement Strategy
You should select the scan replacement strategy based on the status of your design. If you
have an optimized gate-level design and will not be using the compile command to perform
further optimization, you should use constraint-optimized scan insertion. In all other cases,
you should use test-ready compile to insert the scan cells.

Figure 4-2 shows how to determine the appropriate scan replacement strategy.
Chapter 4: Performing Scan Replacement
Preparing for Scan Replacement 4-4

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 4-2 Selecting a Scan Replacement Strategy

Test-ready compile offers the following advantages:

• Single-pass synthesis

With test-ready compile, the Synopsys tools converge on true one-pass scan synthesis.
As a practical matter, design constraints usually result in some cleanup and additional
optimization after compile, but test-ready compile is more straightforward compared with
other methods.

• Better quality of results

Test-ready compile offers better quality of results (QoR) compared with past methods.
Including scan cells at the time of first optimization results in fewer design rule violations
and other constraint violations due to scan circuitry.

• Simpler overall flow

Test-ready compile requires fewer optimization iterations compared with previous
methods.

Note:
For details on constraint-optimized scan insertion, see “Performing Constraint-Optimized
Scan Insertion” on page 4-32.

Optimized
gate-level
design?

Yes

No

Use
constraint-optimized

scan insertion

Use
test-ready compile
Chapter 4: Performing Scan Replacement
Preparing for Scan Replacement 4-5
Chapter 4: Performing Scan Replacement
Preparing for Scan Replacement 4-5

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Identifying Barriers to Scan Replacement
You should perform test DRC to identify conditions that prevent scan replacement. Test DRC
identifies the following conditions that prevent scan replacement:

• The logic library does not contain an appropriate scan cell for the sequential cell.

• DFT Compiler does not support scan replacement for the sequential cell.

• The sequential cell has an attribute that prevents scan replacement.

• An invalid net drives the clock pin of the sequential cell.

• An invalid net drives the asynchronous pin of the sequential cell.

The following sections provide details about each of these conditions.

Note:
For full details on performing test DRC, see Chapter 5, “Pre-Scan Test Design Rule
Checking.”

Logic Library Does Not Contain Appropriate Scan Cells
If a scan equivalent does not exist for a sequential cell, scan replacement cannot occur for
that cell. DFT Compiler generates the following warning message when a scan equivalent
does not exist for a sequential cell:

Warning: No scan equivalent exists for cell %s (%s). (TEST-120)

This warning message can occur when

• The logic library does not contain scan cells.

• The logic library contains scan cells, but it does not provide a scan equivalent for the
indicated nonscan cell.

• The logic library contains scan cells, but it incorrectly models the scan equivalent for the
nonscan cell.

• The logic library contains scan cells, but all possible scan equivalents have the dont_use
attribute applied.

If DFT Compiler cannot find scan equivalents for any sequential cell in the logic library, it
generates the following warning message:

Warning: Target library for design contains no scan-cell models.
(TEST-224)

If you see this warning, check with your library vendor to see if the vendor provides a logic
library that supports scan synthesis.
Chapter 4: Performing Scan Replacement
Preparing for Scan Replacement 4-6

DFT Compiler Scan User Guide Version H-2013.03-SP4
If DFT Compiler finds a scan cell in the logic library that is not the obvious replacement cell
you expect, the reason could be that

• The chosen scan equivalent results in a lower-cost implementation overall.

• The exact scan equivalent does not exist in the logic library or it has the dont_use
attribute applied.

• The logic library has a problem. In that case, contact the library vendor for more
information.

Support for Different Types of Sequential Cells and Violations
DFT Compiler supports sequential cells that have the following characteristics:

• During functional operation, the cell functions as a D flip-flop, a D latch, or a master-slave
latch.

• During scan operation, the cell functions as a D flip-flop or a master-slave latch.

• The cell stores a single bit of data.

Edge-triggered cells that violate this requirement cause DFT Compiler to generate the
following warning message:

Warning: Cell %s (%s) is not supported because it has
too many states (%d states). This cell is being
black-boxed. (TEST-462)

Master-slave latch pairs with extra states cause DFT Compiler to generate one of these
warning messages, depending on the situation:

Warning: Master-slave cell %s (%s) is not supported
because state pin %s is neither master nor slave. This
cell is being black-boxed. (TEST-463)

Warning: Master-slave cell %s (%s) is not supported
because there are two or more master states. This cell
is being black-boxed. (TEST-464)

Warning: Master-slave cell %s (%s) is not supported
because there are two or more slave states. This cell
is being black-boxed. (TEST-465)

• The cell has a three-state output.

Cells that violate this requirement cause DFT Compiler to generate this warning
message:

Warning: Cell %s (%s) is not supported because it is a
sequential cell with three-state outputs. This cell is
being black-boxed. (TEST-468)
Chapter 4: Performing Scan Replacement
Preparing for Scan Replacement 4-7
Chapter 4: Performing Scan Replacement
Preparing for Scan Replacement 4-7

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
• The cell uses a single clock per internal state.

Cells that violate this requirement cause DFT Compiler to generate one of these warning
messages:

Warning: Cell %s (%s) is not supported because state
pin %s has no clocks. This cell is being black-boxed. (TEST-466)

Warning: Cell %s (%s) is not supported because state
pin %s is multi-port. This cell is being black-boxed. (TEST-467)

Note that the cell might use different clocks for functional and test operations.

Note:
Your design will contain unsupported sequential cells only if you explicitly instantiate
them. DFT Compiler does not insert unsupported sequential cells.

Attributes That Can Prevent Scan Replacement
The following attributes affect scan replacement:

• scan_element == false

The scan_element attribute is applied by the set_scan_element command. When set
to false, it excludes sequential cells from scan replacement and scan stitching. The
behavior depends on the type of cell the attribute is applied to:

❍ If the scan_element attribute is set to false on an unmapped sequential cell or a
nonscan cell, the cell is never scan-replaced or scan-stitched.

❍ If the scan_element attribute is set to false on a test-ready cell,

■ Subsequent test-ready compile commands do not unscan it.

■ In wire load mode, the insert_dft command unscans it (unless the
set_dft_insertion_configuration -synthesis_optimization option is set
to none) and does not stitch it into scan chains.

■ In topographical mode, the insert_dft command keeps the cell scan-replaced
(to minimize layout disturbance) but does not stitch it into scan chains.

• dont_touch == true

The dont_touch attribute is applied by the set_dont_touch command. When set to
true, it prevents the cell type from being changed, which indirectly affects scan
replacement. The behavior depends on the type of cell the attribute is applied to:

❍ Test-ready cell: If the dont_touch attribute is set to true on a test-ready cell, the cell
is kept as a scan-replaced cell. If the cell is a valid scan cell, it is stitched into scan
chains. If not, due to other directives such as set_scan_element false, it remains
as an unstitched test-ready cell.
Chapter 4: Performing Scan Replacement
Preparing for Scan Replacement 4-8

DFT Compiler Scan User Guide Version H-2013.03-SP4
❍ Nonscan cell: If the dont_touch attribute is set to true on a nonscan cell, the cell is
kept as a nonscan cell. It is not scan-replaced or stitched into scan chains. Pre-DFT
DRC notes such cells with the following information message:

Information: Cell %s (%s) could not be made scannable as
it is dont_touched. (TEST-121)

Nonscan cells identified as shift register elements can be stitched into scan chains.

❍ Unmapped sequential cell: If the dont_touch attribute is set to true on an unmapped
sequential cell before the initial compile, the attribute prevents the cell from being
mapped. As a result, DFT insertion fails with the following error message:

Error: DFT insertion isn't supported on designs with unmapped cells.
(TEST-269)

The dont_touch attribute is ignored when an identified shift register is split by the scan
architect; the head scan flip-flops of any new shift register segments are scan-replaced
even if they have the dont_touch attribute applied.

A dont_touch attribute on the top-level design does not affect scan replacement of the
design.

Note:
Although the -exclude_elements option of the set_scan_configuration excludes
cells from scan stitching, it does not prevent scan replacement, and it does not cause
excluded test-ready cells to be unscanned. To prevent cells from being scan-replaced,
use the set_scan_element false command.

Nonscan sequential cells generally reduce the fault coverage results for full-scan designs. If
you do not want to exclude affected cells from scan replacement, remove the script
commands that apply the attributes, then rerun the script.

Invalid Clock Nets
The term system clock refers to a clock used in the parallel capture cycle. The term test
clock refers to a clock used during scan shift. Multiplexed flip-flop designs use the same
clock as both the system clock and the test clock.

In a nonscan design, an invalid clock net, whether a system clock or a test clock, prevents
scan replacement of all sequential cells driven by that clock net.

The requirements for valid clocks in DFT Compiler include the following:

• A system or test clock used during scan testing must be driven from a single top-level
port.

An active clock edge at a sequential cell must be the result of a clock pulse applied at a
top-level port, not the result of combinational logic driving the clock net.
Chapter 4: Performing Scan Replacement
Preparing for Scan Replacement 4-9
Chapter 4: Performing Scan Replacement
Preparing for Scan Replacement 4-9

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
• A system or test clock used during scan testing can be driven from a bidirectional port.

DFT Compiler supports the use of bidirectional ports as clock ports if the bidirectional
ports are designed as input ports during chip test. If a bidirectional port drives a clock net
but the port is not designed as an input port during chip test mode, DFT Compiler forces
the net to X and cells clocked by the net to become black-box sequential cells.

• A system or test clock used during scan testing must be generated in a single tester
cycle.

The clock pulse applied at the clock port must reach the sequential cells in the same
tester cycle. DFT Compiler does not support sequential gating of clocks, such as clock
divider circuitry.

• A system or a test clock used during scan testing cannot be the result of multiple clock
inputs.

DFT Compiler does not support the use of combinationally combined clock signals, even
if the same port drives the signal.

Note:
If the same port drives the combinationally combined clock signal, as shown in the
design on the left in Figure 4-3 or the design in Figure 4-4, DFT Compiler does not
detect the problem in nonscan or unrouted scan designs.

Figure 4-3 shows design examples that use combinationally combined clocks. When
multiple clock signals drive a clock net, DFT Compiler forces the net to X and cells
clocked by the net become black-box sequential cells.

Figure 4-3 Examples of Combinationally Combined Clock Nets

DFT Compiler supports the use of reconvergent clocks, such as clocks driven by parallel
clock buffers. Figure 4-4 shows a design example that uses a reconvergent clock net.

d

clk

q d

clk1
clk2

q

Chapter 4: Performing Scan Replacement
Preparing for Scan Replacement 4-10

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 4-4 Example of a Reconvergent Clock Net

• A test clock must remain active throughout the scan shift process.

To load the scan chain reliably, make sure the test clock remains active until scan shift
completes. For combinationally gated clocks, you must configure the design to disable
the clock gating during scan shift.

DFT Compiler supports combinational clock gating during the parallel capture cycle.

Test design rule checking on a nonscan design might not detect invalid clock nets. DFT
Compiler identifies all invalid clock nets only in existing scan designs.

DFT Compiler cannot control the clock net when

• A sequential cell drives the clock net

• A multiplexer with an unspecified select line drives the net of a test clock

• Combinational clock-gating logic can generate an active edge on the clock net

DFT Compiler generates this warning message when it detects an uncontrollable clock:

Warning: Normal mode clock pin %s of cell %s (%s) is
uncontrollable. (TEST-169)

Because uncontrollable clock nets prevent scan replacement, you should correct
uncontrollable clocks. Sequentially driven clocks require test-mode logic to bypass the
violation. You can bypass violations caused by other sources of uncontrollable clocks by
using test configuration or test-mode logic.

DFT Compiler can control a combinationally gated test clock that cannot generate an active
clock edge. However, DFT Compiler considers this type of clock invalid, because the clock

d q

clk
Chapter 4: Performing Scan Replacement
Preparing for Scan Replacement 4-11
Chapter 4: Performing Scan Replacement
Preparing for Scan Replacement 4-11

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
might not remain active throughout scan shift. In this case, DFT Compiler generates this
warning message:

Warning: Shift clock pin %s of cell %s (%s) is illegally
gated. (TEST-186)

Because invalid gated-clock nets prevent scan replacement, you should correct invalid
gated clocks. You can use AutoFix to bypass invalid gated clocks when using the multiplexed
flip-flop scan style. You might also be able to change the test configuration to bypass the
violation. For more information on AutoFix, see “Using AutoFix” on page 7-22.

Invalid Asynchronous Pins
DFT Compiler considers a net that drives an asynchronous pin as valid if it can disable the
net from an input port or from a combination of input ports. DFT Compiler cannot control an
asynchronous pin driven by ungated sequential logic.

In a nonscan design, a net with an uncontrollable asynchronous pin prevents scan
replacement of all sequential cells connected to that net.

DFT Compiler generates this warning message when it detects an uncontrollable
asynchronous pin:

Warning: Asynchronous pins of cell FF_A (FD2) are uncontrollable.
(TEST-116)

Because nets with an uncontrollable asynchronous pin prevent scan replacement, you
should correct uncontrollable nets. Use AutoFix if you are using the multiplexed flip-flop scan
style, test configuration, or test-mode logic to bypass uncontrollable asynchronous pin
violations.

Preventing Scan Replacement
You can use the following attributes to prevent scan replacement during test-ready compile
and DFT insertion:

• scan_element == false

• dont_touch == true

Setting the scan_element attribute to false prevents a cell from being scan-replaced and
scan stitched. Setting the dont_touch attribute to true on a nonscan cell prevents it from
being scan replaced and scan stitched. For more information on these attributes, see
“Attributes That Can Prevent Scan Replacement” on page 4-8.
Chapter 4: Performing Scan Replacement
Preparing for Scan Replacement 4-12

DFT Compiler Scan User Guide Version H-2013.03-SP4
Specifying a Scan Style

This section explains the process for selecting and specifying a scan style for your design. It
has the following subsections:

• Types of Scan Styles

• Scan Style Considerations

• Setting the Scan Style

Types of Scan Styles
DFT Compiler supports the scan styles listed in the following subsections:

• Multiplexed Flip-Flop Scan Style

• Clocked Scan Style

• LSSD Scan Style

• Scan-Enabled LSSD Scan Style

Note:
The LSSD scan style includes the LSSD and clocked LSSD scan styles.

This section briefly describes each scan style. For more detailed information on scan styles,
see the “Scan Styles” chapter of the DFT Overview User Guide.

Multiplexed Flip-Flop Scan Style
DFT Compiler supports multiplexed flip-flop scan equivalents for D flip-flops and
master-slave flip-flops. The multiplexed flip-flop scan equivalents for all flip-flop styles must
be fully functionally modeled in the logic library. This scan style has the following
advantages:

• Multiplexed flip-flop is the most widely known and understood scan style.

• Multiplexed flip-flop scan cells are easy to design and characterize, as they consist of a
conventional flip-flop plus a data selection MUX.

The multiplexed flip-flop scan style has the disadvantage that hold time or clock skew
problems can occur on the scan path because of a short path from a scan cell’s scan output
pin to the next scan cell’s scan input pin. DFT Compiler can reduce the occurrence of these
problems by considering hold time violations during optimization.
Chapter 4: Performing Scan Replacement
Specifying a Scan Style 4-13
Chapter 4: Performing Scan Replacement
Specifying a Scan Style 4-13

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Clocked Scan Style
DFT Compiler supports clocked-scan equivalents for D flip-flops and latches. The
clocked-scan style is well suited for use in multiple-clock designs because of the dedicated
test clock.

The clocked-scan style also has some disadvantages:

• Hold time or clock skew problems can occur on the scan path because the path from a
scan cell’s scan output pin to the next scan cell’s scan input pin is too short. DFT
Compiler can reduce the occurrence of these problems by considering hold time
violations during optimization.

• This scan style requires the routing of two edge-triggered clocks. Routing clock lines is
difficult because you must carefully control the clock skew.

LSSD Scan Style
DFT Compiler supports level-sensitive scan design (LSSD) equivalents for D flip-flops,
master-slave flip-flops, and D latches. Timing problems on the scan path are unlikely in
LSSD designs because of the use of nonoverlapping two-phase clocks during the scan
operation.

The LSSD scan style also has some disadvantages:

• This scan style requires a greater wiring area than the multiplexed flip-flop or
clocked-scan styles.

• DFT Compiler does not support the scan replacement of more complex LSSD cells, such
as multiple data port master latches.

When you use the LSSD scan style, define the clock waveforms so that the master and slave
clocks have nonoverlapping waveforms because master and slave latches should never be
active simultaneously.

Scan-Enabled LSSD Scan Style
DFT Compiler supports scan-enabled level-sensitive scan design (LSSD) equivalents for D
flip-flops. This scan style is similar to the LSSD scan style, except that a global scan-enable
signal is used to repurpose the functional clock as the slave test clock in test mode. Timing
problems on the scan path are unlikely in LSSD designs because of the use of
nonoverlapping two-phase clocks during the scan operation.
Chapter 4: Performing Scan Replacement
Specifying a Scan Style 4-14

DFT Compiler Scan User Guide Version H-2013.03-SP4
The scan-enabled LSSD scan style also has some disadvantages:

• This scan style requires a greater wiring area than the multiplexed flip-flop or
clocked-scan styles.

• DFT Compiler only supports the scan replacement of flip-flops.

When you use the scan-enabled LSSD scan style, define the clock waveforms so that the
master and slave clocks have nonoverlapping waveforms because master and slave latches
should never be active simultaneously.

Scan Style Considerations
You must select a single scan style and use this style for all modules of your design.
Consider the following questions when selecting a scan style:

• Which scan styles are supported in your logic library?

To make it possible to implement internal scan structures in the scan style you select,
appropriate scan cells must be present in the technology libraries specified in the
target_library variable.

Use of sequential cells that do not have a scan equivalent always results in a loss of fault
coverage in full-scan designs. Techniques to verify scan equivalents are discussed in
“Verifying Scan Equivalents in the Logic Library” on page 4-17.

• What is your design style?

If your design is predominantly edge-triggered, use the multiplexed flip-flop, clocked
scan, clocked LSSD, or scan-enabled LSSD scan style.

If your design has a mix of latches and flip-flops, use the clocked scan or LSSD scan
style.

If your design is predominantly level-sensitive, use the LSSD scan style.

• How complete are the models in your logic library?

The quality and accuracy of the scan and nonscan sequential cell models in the
Synopsys logic library affect the behavior of DFT Compiler. Incorrect or incomplete
library models can cause incorrect results during test design rule checking.

DFT Compiler requires a complete functional model of a scan cell to perform test design
rule checking. The Library Compiler UNIGEN model supports complete functional
modeling of all supported scan cells. However, the usual Library Compiler sequential
modeling syntax supports only complete functional modeling for multiplexed flip-flop
scan cells.

When the logic library does not provide a functional model for a scan cell, the cell is a
black box for DFT Compiler.
Chapter 4: Performing Scan Replacement
Specifying a Scan Style 4-15
Chapter 4: Performing Scan Replacement
Specifying a Scan Style 4-15

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
For information on the scan cells in the logic library you are using, see your ASIC vendor.
For information on creating logic library elements or to learn more about modeling scan
cells, see the information about defining test cells in the Library Compiler documentation.

Setting the Scan Style
You can specify the scan style by using either the test_default_scan_style variable or
the set_scan_configuration -style command:

• test_default_scan_style – applies to all designs in the current session. The syntax
is as follows:

set_app_var test_default_scan_style style

• set_scan_configuration -style – applies only to the current design. If your selected
scan style differs from the default scan style, you must execute this command for each
module. The syntax is as follows:

set_scan_configuration -style style

Table 4-1 shows the scan style keywords used to specify the scan style. Use these keywords
with either the test_default_scan_style variable or the set_scan_configuration
-style command.

The following examples show how to specify the scan style by using either the
test_default_scan_style variable or the set_scan_configuration command:

dc_shell> set_app_var test_default_scan_style \
 multiplexed_flip_flop

dc_shell> set_scan_configuration -style clocked_scan

Table 4-1 Scan Style Keywords

Scan style Keyword

Multiplexed flip-flop multiplexed_flip_flop

Clocked scan clocked_scan

Level-sensitive scan design lssd

Scan-enabled level-sensitive scan design scan_enabled_lssd
Chapter 4: Performing Scan Replacement
Specifying a Scan Style 4-16

DFT Compiler Scan User Guide Version H-2013.03-SP4
Verifying Scan Equivalents in the Logic Library

Before starting scan synthesis, you need to confirm that your logic library contains scan cells
and then verify that the scan cells are suitable for the selected scan style.

This section has the following subsections:

• Checking the Logic Library for Scan Cells

• Checking for Scan Equivalents

Checking the Logic Library for Scan Cells
You can determine whether the logic library contains scan cells by using either of the
following methods:

• Search the library .ddc file.

Every scan cell, regardless of the scan style, must have a scan input pin and a scan
output pin. You can determine whether the logic library contains scan cells by using the
filter command to search for scan input or scan output pins.

Depending on its polarity, a scan input pin can have a signal_type attribute of either
test_scan_in or test_scan_in_inverted in the logic library. A scan output pin can
have a signal_type attribute of either test_scan_out or test_scan_out_inverted in
the logic library, depending on its polarity.

The following command sequence shows the use of the filter command:

dc_shell> read_ddc class.ddc

dc_shell> get_pins class/*/* -filter "@signal_type = test_scan_in"

If the library contains scan cells, the filter command returns a list of pins; if the library
does not contain scan cells, the filter command returns an empty list.

• Check the test design rules.

As one of the first checks it performs, the dft_drc command determines the presence
of scan cells in the logic library. If the technology libraries identified in the
target_library variable do not contain scan cells, the dft_drc command generates
the following warning message:

Warning: Target library for design contains no scan-cell models.
(TEST-224)

You must define the current_design before you run the dft_drc command.
Chapter 4: Performing Scan Replacement
Verifying Scan Equivalents in the Logic Library 4-17
Chapter 4: Performing Scan Replacement
Verifying Scan Equivalents in the Logic Library 4-17

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
If your logic library does not contain scan cells, check with your semiconductor vendor to see
if the vendor provides a logic library that supports test synthesis.

Checking for Scan Equivalents
To verify that the logic library contains scan equivalents for the sequential cells in your
design, run the dft_drc command on your design or on a design containing the sequential
cells likely to be used in your design.

If the logic library does not contain a scan equivalent for a sequential cell in a nonscan
design or the scan equivalent has the dont_use attribute applied, the dft_drc command
generates the following warning message:

Warning: No scan equivalent exists for cell instance (reference).
(TEST-120)

In verbose mode (dft_drc -verbose), the TEST-120 message lists all scan equivalent
pairs available in the target library in the selected scan style. If the target library contains no
scan equivalents in the chosen scan style, no scan equivalents are listed.

Suppose you have a design containing D flip-flops but the target logic library contains scan
equivalents only for JK flip-flops. Example 4-1 shows the warning message issued by the
dft_drc command, along with the scan equivalent mappings to the available scan cells.

Example 4-1 Scan Equivalent Listing

Warning: No scan equivalent exists for cell q_reg (FD1P). (TEST-120)

Scan equivalent mappings for target library are:

 FJK3 -> FJK3S
 FJK2 -> FJK2S
 FJK1 -> FJK1S

Scan Cell Replacement Strategies

This section describes how to select the set of scan cells and multibit components to use in
your scan replacement strategy. It includes the following subsections:

• Specifying Scan Cells

• Multibit Components
Chapter 4: Performing Scan Replacement
Scan Cell Replacement Strategies 4-18

DFT Compiler Scan User Guide Version H-2013.03-SP4
Specifying Scan Cells
Before you perform scan cell replacement, you need to specify the set of scan cells to be
used by DFT Compiler. This section has the following subsections:

• Restricting the List of Available Scan Cells

• Scan Cell Replacement Strategies

• Mapping Sequential Gates in Scan Replacement

Restricting the List of Available Scan Cells
The set_scan_register_type command lets you specify which flip-flop scan cells are to
be used by compile -scan to replace nonscan cells. The command restricts the choices of
scan cells available for scan replacement. You can apply this restriction to the current
design, to particular designs, or to particular cell instances in the design.

Note:
The set_scan_register_type command applies to the operation of both the compile
-scan command and the insert_dft command.

The set_scan_register_type command has the following syntax:

 set_scan_register_type [-exact]
 -type scan_flip_flop_list [cell_or_design_list]

The scan_flip_flop_list value is the list of scan cells that the compile -scan command
is allowed to use for scan replacement. There must be at least one such cell named in the
command. Specify each scan cell by its cell name alone, without the library name.

The cell_or_design_list value is a list of designs or cell instances where the restriction
on scan cell selection is to be applied. In the absence of such a list, the restriction applies to
the current design, set by the current_design command, and to all lower-level designs in
the design hierarchy.

The -exact option determines whether the restriction on scan cell selection also applies to
back-end delay and area optimization done by the insert_dft command or by subsequent
synthesis operations such as the compile -incremental command. If the -exact option
is used, the restriction still applies to back-end optimization. In other words, scan cells can
be replaced only by other scan cells in the specified list. If the -exact option is not used, the
optimization algorithm is free to use any scan cell in the target library.

Scan Cell Replacement Strategies
Here are some examples of set_scan_register_type commands:

dc_shell> set_scan_register_type -exact -type FD1S
Chapter 4: Performing Scan Replacement
Scan Cell Replacement Strategies 4-19
Chapter 4: Performing Scan Replacement
Scan Cell Replacement Strategies 4-19

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
This command causes the compile -scan command to use only FD1S scan cells to replace
nonscan cells in the current design. Because of the -exact option, this restriction applies to
both initial scan replacement and subsequent optimization.

dc_shell> set_scan_register_type -exact \
 -type {FD1S FD2S} {add2 U1}

This command causes compile -scan to use only FD1S or FD2S scan cells to replace each
nonscan cell in all designs and cell instances named add2 or U1. In all other designs and
cell instances, compile -scan can use any scan cells available in the target library. The
-exact option forces any back-end delay optimization to respect the scan cell list, thus
allowing only FD1S and FD2S to be used.

dc_shell> set_scan_register_type \
 -type {FD1S FD2S} {add2 U1}

This command is the same as the one in the previous example, except that the -exact
option is not used. This means that the back-end optimization algorithm is free to replace the
FD1S and FD2S cells with any compatible scan cells in the target library.

If you use the set_scan_register_type command on generic cell instances, be sure to
use the -scan option with the compile command. Otherwise, the scan specification will be
lost.

To report scan paths, scan chains, and scan cells in the design, use the report_scan_path
command, as shown in the following examples:

dc_shell> report_scan_path -view existing_dft \
 -chain all

dc_shell> report_scan_path -view existing_dft -cell all

To cancel all set_scan_register_type settings currently in effect, execute the following
command:

dc_shell> remove_scan_register_type

Mapping Sequential Gates in Scan Replacement
To use the set_scan_register_type command effectively, understanding the scan
replacement process is important.

The compile -scan command maps sequential gates into scan flip-flops and latches, using
three steps:

1. The compile -scan command maps each sequential gate in the generic design
description into an initial nonscan latch or flip-flop from the target library. In the absence
of any set_scan_register_type specification, compile -scan chooses the smallest
area-cost flip-flop or latch. For a design or cell instance that has a
Chapter 4: Performing Scan Replacement
Scan Cell Replacement Strategies 4-20

DFT Compiler Scan User Guide Version H-2013.03-SP4
set_scan_register_type setting in effect, compile -scan chooses the nonscan
equivalent of a scan cell in the scan_flip_flop_list.

2. The compile -scan command replaces the nonscan flip-flops with scan flip-flops, using
only the scan cells specified in the set_scan_register_type command, where
applicable. If compile -scan is unable to use a scan cell from the
scan_flip_flop_list, it uses the best matching scan cell from the target library and
issues a warning.

3. If the -exact option is not used in the set_scan_register_type command, the Design
Compiler and DFT Compiler tools attempt to remap each scan flip-flop into another
component from the target library to optimize the delay or area characteristics of the
circuit. If the -exact option is used, optimization is restricted to using the scan cells in
the scan_flip_flop_list.

The operation of step 1 can be controlled by the set_register_type command. The
set_register_type command specifies a list of allowed cells for implementing functions
specified in the HDL description of the design, but you need to be careful about using this
command in conjunction with scan replacement. For example, if you tell the compile
command to use a sequential cell that has no scan equivalent, DFT Compiler will not be able
to replace the cell with a corresponding scan cell.

The set_scan_register_type command affects only the replacement of nonscan cells
with scan cells. It cannot be used to force existing scan cells to be replaced by new scan
cells. To make this type of design change, you need to go back to the original nonscan
design and apply a new set_scan_register_type specification, followed by a new
compile -scan or insert_dft operation.

Multibit Components
Multibit components are supported by DFT Compiler during scan replacement. This section
has the following subsections:

• What Are Multibit Components?

• How DFT Compiler Assimilates Multibit Components

• Controlling Multibit Test Synthesis

• Performing Multibit Component Scan Replacement

• Disabling Multibit Component Support
Chapter 4: Performing Scan Replacement
Scan Cell Replacement Strategies 4-21
Chapter 4: Performing Scan Replacement
Scan Cell Replacement Strategies 4-21

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
What Are Multibit Components?
A multibit component is a sequence of cells with identical functionality. It can consist of
single-bit cells or the set of multibit cells supported by Design Compiler synthesis. Cells can
have identical functionality even if they have different bit-widths. Multibit synthesis ensures
regularity and predictability of layout.

HDL Compiler infers multibit components through HDL directives. See the HDL Compiler for
Verilog User Guide for more information about multibit inference. Specify multibit
components by using the Design Compiler create_multibit command and
remove_multibit command. Control multibit synthesis by using the
set_multibit_options command. For further information, see the
Design Compiler Optimization Reference Manual.

When you create a new multibit component with the create_multibit command, choose
a name that is different from the name of any existing object in your design. This will prevent
possible conflicts later when you use the set_scan_path command.

Structured logic synthesis is a special case of multibit synthesis in which the individual bits
of a multibit component are implemented as distinct elements. Use the
set_multibit_options -mode structured command to enable structured logic
synthesis.

How DFT Compiler Assimilates Multibit Components
Multibit components have the following properties:

• All the synthesis and optimization that DFT Compiler performs is as prescribed by the
multibit mode in effect.

• Scan chain allocation and routing result in a layout that is as regular as possible.

To achieve these goals, DFT Compiler assimilates sequential multibit components into
synthesizable segments.

A synthesizable segment, an extension of the user segment concept, has the following
properties:

• Its implementation is not fixed at the time of specification.

• It consists of a name and a sequence of cells that implicitly determine an internal routing
order.

• It lacks access pins and possibly internal routing.

• It does not need to be scan-replaced.

• Test synthesis controls the implementation.
Chapter 4: Performing Scan Replacement
Scan Cell Replacement Strategies 4-22

DFT Compiler Scan User Guide Version H-2013.03-SP4
A synthesizable segment that cannot be synthesized into a valid user segment is invalid.
Only multibit synthesizable segments are supported.

Controlling Multibit Test Synthesis
You control multibit test synthesis through the specification of the scan configuration by
using the following commands:

• set_scan_configuration

• reset_scan_configuration

• set_scan_path

• set_scan_element

Commands that accept segment arguments also accept multibit components. You can refer
by instance name to multibit components from the top-level design through the design
hierarchy. Commands that accept sets of cells also accept multibit components. When you
specify a multibit component as being a part of a larger segment, the multibit component is
included in the larger user-defined segment without modification.

Performing Multibit Component Scan Replacement
Use the compile -scan command or the insert_dft command to perform multibit
component scan replacement. These commands perform a homogeneous scan
replacement. Bits of a multibit component are either all scan-replaced or all not
scan-replaced. Bits are then assembled into multibit cells as specified by the
set_multibit_options command.

The number of cells after scan replacement can change. For example, a 4-bit cell can be
scan-replaced by two 2-bit cells. If this occurs, the two 2-bit cells get new names. If the cell
is scan-replaced with a cell of equal width, a 4-bit cell replaced by a 4-bit cell for example,
the name of the cell remains the same.

You control the scan replacement of multibit components by using the set_scan_element
command.

When specifying individual cells by using either of these commands, do not specify an
incomplete multibit component unless you previously disabled multibit optimization.
Chapter 4: Performing Scan Replacement
Scan Cell Replacement Strategies 4-23
Chapter 4: Performing Scan Replacement
Scan Cell Replacement Strategies 4-23

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Disabling Multibit Component Support
You can disable structured logic and multibit component support by doing one of the
following:

• Remove some or all of the multibit components by using the remove_multibit
command.

• Turn off scan synthesis by using the set_scan_configuration
-preserve_multibit_segment false command.

• Remove a previously defined scan path by using the remove_scan_path command.

Test-Ready Compilation

Scan cell replacement works most efficiently if it is done when you compile your design. This
section describes the following topics related to the test-ready compilation process:

• What Is Test-Ready Compile?

• Preparing for Test-Ready Compile

• Controlling Test-Ready Compile

• Comparing Default Compile and Test-Ready Compile

• Complex Compile Strategies

What Is Test-Ready Compile?
Test-ready compile integrates logic optimization and scan replacement. During the first
synthesis pass of each HDL design or module, test-ready compile maps all sequential cells
directly to scan cells. The optimization cost function considers the impact of the scan cells
themselves and the additional loading due to the scan chain routing. By accounting for the
timing impact of internal scan design from the start of the synthesis process, test-ready
compile eliminates the need for an incremental compile after scan insertion.

During optimization, DFT Compiler cannot determine whether the sequential cells in your
HDL description meet the test design rules, so it maps all sequential cells to scan cells. Later
in the scan synthesis process, DFT Compiler can convert some sequential cells back to
nonscan cells. For example, test design rule checking might find scan cells with test design
rule violations. In other circumstances, you might manually specify some sequential cells as
nonscan elements. In such cases, DFT Compiler converts the scan cells to nonscan
equivalents during execution of the insert_dft command.
Chapter 4: Performing Scan Replacement
Test-Ready Compilation 4-24

DFT Compiler Scan User Guide Version H-2013.03-SP4
Typically, the input to test-ready compile is an HDL design description. You can also perform
test-ready compile on a nonscan gate-level netlist that requires optimization. For example, a
gate-level netlist resulting from technology translation usually requires logic optimization to
meet constraints. In such a case, use test-ready compile to perform scan replacement.

The Test-Ready Compile Flow
Figure 4-5 shows the test-ready compile flow and the commands required to complete this
flow.

Figure 4-5 Test-Ready Compile Flow

Before performing test-ready compile:

• Select a scan style

For information about selecting a scan style, see “Specifying a Scan Style” on page 4-13.

Select scan style

(test_default_scan_style=style)

Read design description

(read)

Prepare for synthesis

Perform test-ready compile

(compile -scan)
Chapter 4: Performing Scan Replacement
Test-Ready Compilation 4-25
Chapter 4: Performing Scan Replacement
Test-Ready Compilation 4-25

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
• Prepare for logic synthesis

For information about preparing for logic synthesis, see “Preparing for Test-Ready
Compile” on page 4-26.

The result of test-ready compile is an optimized design that contains unrouted scan cells.
The optimization performed during test-ready compile accounts for both the impact of the
scan cells and the additional loading due to the scan chain routing. A design in this state is
known as an unrouted scan design.

Preparing for Test-Ready Compile
Figure 4-6 shows the synthesis preparation steps. For more information about these steps,
see the Design Compiler User Guide.

Figure 4-6 Synthesis Preparation Steps

Define design
environment

Specify technology
requirements

set_drive
set_driving_cell

set_operating_conditions

set_load

set_wire_load

set_fanout_load

set_max_transition

set_max_capacitance

set_max_fanout

Library objects
link_library
target_library
symbol_library

Design rules

Select compile
strategy

Set design
constraints

create_clock

set_input_delay

set_clock_uncertainty

set_output_delay
set_max_area

Top-down hierarchical compile

Bottom-up hierarchical compile
Time-budget compile

Resolve multiple
design instances
Chapter 4: Performing Scan Replacement
Test-Ready Compilation 4-26

DFT Compiler Scan User Guide Version H-2013.03-SP4
Performing Test-Ready Compile in the Logic Domain
The compile -scan command invokes test-ready compile. You must enter this command
from the dc_shell-xg-t command line; the Design Analyzer menus do not support the
-scan option.

dc_shell> compile -scan

For details of how to constrain your design and for other compile options, see the Design
Compiler Optimization Reference Manual.

Controlling Test-Ready Compile
You can use the following variable and commands to control scan implementation by
compile -scan:

• test_default_scan_style or set_scan_configuration -style

• set_scan_element element_name true | false

• set_scan_register_type [-exact] -type scan_flip_flop_list
[cell_or_design_list]

• set_scan_configuration -preserve_multibit_segment

The test_default_scan_style variable determines which scan style the compile -scan
command uses for scan implementation. You can also use the set_scan_configuration
-style command for the same purpose.

You might not want to include a particular element in a scan chain. If this is the case, first
analyze and elaborate the design. Then, use the set_scan_element false command in
the generic technology (GTECH) sequential element. Subsequently, when you use the
compile -scan command, this element is implemented as an ordinary sequential element
and not as a scan cell. The following example shows a script that uses the
set_scan_element false command on generics:

analyze -format VHDL -library WORK switch.vhd
elaborate -library WORK -architecture rtl switch
set_scan_element false Q_reg
compile -scan

Note:
Use the set_scan_element false statement sparingly. For combinational ATPG, using
nonscan elements generally results in lower fault coverage.

You might want to specify which flip-flop scan cells are to be used for replacing nonscan cells
in the design. In that case, use the set_scan_register_type command as described in
“Specifying Scan Cells” on page 4-19.
Chapter 4: Performing Scan Replacement
Test-Ready Compilation 4-27
Chapter 4: Performing Scan Replacement
Test-Ready Compilation 4-27

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Comparing Default Compile and Test-Ready Compile
The following example shows the effect of test-ready compile on a small design. The Verilog
description shown in Example 4-2 describes a small design containing two flip-flops: one a
simple D flip-flop and one a flip-flop with a multiplexed data input.

Example 4-2 Verilog Design Example

module example (d1,d2,d3,sel,clk,q1,q2);
input d1,d2,d3,sel,clk;
output q1,q2;
reg q1,q2;
 always @ (posedge clk) begin
 q1 = d1;
 if (sel) begin
 q2=d2;
 end else begin
 q2=d3;
 end
 end
endmodule

The following command sequence performs the default compile process on the Verilog
design example:

dc_shell> set target_library class.db
dc_shell> read_file -format verilog example.v
dc_shell> set_max_area 0
dc_shell> compile

Example 4-3 shows the VHDL equivalent to the Verilog design example provided in
Example 4-2.

Example 4-3 VHDL Design Example

--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
--
entity EXAMPLE is
 port(d1:in STD_LOGIC;
 d2:in STD_LOGIC;
 d3:in STD_LOGIC;
 sel:in STD_LOGIC;
 clk:in STD_LOGIC;
 q1:out STD_LOGIC;
 q2:out STD_LOGIC
);
end EXAMPLE;
--
architecture RTL of EXAMPLE is
Chapter 4: Performing Scan Replacement
Test-Ready Compilation 4-28

DFT Compiler Scan User Guide Version H-2013.03-SP4
begin
 process
 begin
 wait until (clk'event and clk = '1');
 q1 <= d1;
 if (sel = '1') then
 q2 <= d2;
 else
 q2 <= d3;
 end if;
 end process;
end RTL;

The following command sequence performs the default compile process on the VHDL
design example:

dc_shell> set target_library class.db
dc_shell> analyze -format vhdl \
 -library work example.vhd
dc_shell> elaborate -library work EXAMPLE
dc_shell> set_max_area 0
dc_shell> compile

Figure 4-7 shows the result of the default compile process on the design example. Design
Compiler synthesis uses the D flip-flop (FD1) and the multiplexed flip-flop scan cell (FD1S)
from the class logic library to implement the specified functional logic.

Figure 4-7 Gate-Level Design: Default Compile

Using default compile increases the scan replacement runtime and can result in sequential
cells that do not have scan equivalents.

FD1

FD1S

d1

d3
clk

d2
sel

q1

q2
Chapter 4: Performing Scan Replacement
Test-Ready Compilation 4-29
Chapter 4: Performing Scan Replacement
Test-Ready Compilation 4-29

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
To invoke test-ready compile, specify the scan style before optimization and use the -scan
option of the compile command.

dc_shell> set_app_var test_default_scan_style \
 multiplexed_flip_flop
dc_shell> compile -scan

Figure 4-8 shows the result of the test-ready compile process on the design example.

Figure 4-8 Gate-Level Design: Test-Ready Compile

During test-ready compile, DFT Compiler

• Implements the scan equivalent cells by using the multiplexed flip-flop scan cell (FD1S)

• Ties the scan-enable pins (SE) to logic 0 so that the functional data input pins are active

• Ties the inactive scan input pins (SI) to logic 0

During scan routing, DFT Compiler replaces the temporary scan connections with the final
scan connections.

A scan equivalent might not exist for the exact implementation defined, such as for the
simple D flip-flop in the previous example. In that case, DFT Compiler might use a scan cell
that can be logically modified to meet the required implementation. For example, if the target
library contains a scan cell with asynchronous pins that can be tied off, test-ready compile
automatically uses that scan cell.

d1

d2

clk

d3

sel

q2

q1
Chapter 4: Performing Scan Replacement
Test-Ready Compilation 4-30

DFT Compiler Scan User Guide Version H-2013.03-SP4
Complex Compile Strategies
For larger designs or for designs with more aggressive timing goals, you might need to use
more complex compile strategies, such as bottom-up compile, or you might need to use
incremental compile a number of times. To include test-ready compile in your compile
scripts, always use the -scan option of the compile command when compiling each current
design, even if there are no sequential elements in the top level of the current design.

Example 4-4 illustrates this guideline. It shows you how to perform a bottom-up compile for
the a design, TOP, that has no sequential elements at the top level but instantiates two
sequential modules A and B. (For clarity, details on how you might constrain the designs are
omitted.) Note that the compile -scan command is used at the top level even though there
are no sequential elements at the top level of the design.

Example 4-4 Bottom-Up Compile Script

dc_shell> current_design A
dc_shell> compile -scan

dc_shell> current_design B
dc_shell> compile -scan

dc_shell> current_design TOP
dc_shell> compile -scan

Validating Your Netlist

Before you assemble the scan structures, you need to use the link and check_design
commands to check the correctness of your design. You should fix any errors reported by
these commands to guarantee the maximum fault coverage.

This section discusses the procedures for running the link and check_design commands.

Running the link Command
The link command attempts to find models for the references in your design. The
command searches the design files and library files defined by the link_library variable.
If the link_library variable does not specify a path for a design file or library file, the link
command uses the directory names defined in the search path. Specifying the asterisk
character (*) in the link_library variable forces the link command to search the designs
in memory. See the man pages for more information about the link command.

If the link command reports unresolved references, such as missing designs or library cells
in the netlist, resolve these references to provide a complete netlist to DFT Compiler. DFT
Compiler operates on the complete netlist. DFT Compiler does not know the functional
Chapter 4: Performing Scan Replacement
Validating Your Netlist 4-31
Chapter 4: Performing Scan Replacement
Validating Your Netlist 4-31

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
behavior of a missing cell, so it cannot predict the output of that cell. As a result, output from
the missing reference is not observable. Each missing reference results in a large number of
untestable faults in the vicinity of that cell and lower total fault coverage.

If the unresolved reference involves a simple cell, you can often fix the problem by adding
the cell to the library or by replacing the reference with a valid library cell.

Handling a compiled cell requires a more complex solution. If the compiled cell does not
contain internal gates, such as a ROM or programmable logic array, you can compile a
behavioral model of the cell into gates and then run DFT Compiler on the equivalent gates.

For more information about missing references or link errors, see the Design Compiler User
Guide.

Running the check_design Command
The check_design command reports electrical design errors, such as port mismatches and
shorted outputs that might lower fault coverage. For best fault coverage results, correct any
design errors identified in your design. For more information about the check_design
command, see the Design Compiler User Guide.

Performing Constraint-Optimized Scan Insertion

During the scan replacement process, constraint-optimized scan insertion does the
following:

• Inserts the scan cells

• Optimizes the scan logic, based on the design constraints

• Fixes all compile-related design rule violations

Scan insertion is the process of performing scan replacement and scan assembly in a single
step. You use the insert_dft command to invoke constraint-optimized scan insertion.
However, you can also perform scan replacement and scan assembly in separate steps.

This section contains the following subsections related to constraint-optimized scan
insertion:

• Supported Scan States

• Locating Scan Equivalents

• Preparing for Constraint-Optimized Scan Insertion

• Scan Insertion
Chapter 4: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion 4-32

DFT Compiler Scan User Guide Version H-2013.03-SP4
Supported Scan States
Constraint-optimized scan insertion supports mixed scan states during scan insertion.
Modules can have the following scan states:

• Nonscan

The design contains nonscan sequential cells. Constraint-optimized scan insertion must
scan-replace and route these cells.

• Unrouted scan

The design contains unrouted scan cells. These unrouted scan cells can result from
test-ready compile or from the scan replacement phase of constraint-optimized scan
insertion. Constraint-optimized scan insertion must include these cells in the final scan
architecture.

• Scan

The design contains routed scan chains. Constraint-optimized scan insertion must
include these chains in the final scan architecture.

Because the focus of this chapter is the scan replacement process, this discussion assumes
that

• The input to constraint-optimized scan insertion is an optimized nonscan gate-level
design

• The output from constraint-optimized scan insertion is an optimized design that contains
unrouted scan cells. Note that constraint-optimized scan insertion performs scan
replacement only.

Note:
When you do not route the scan chains, the optimization performed during
constraint-optimized scan insertion accounts for the timing impact of the scan cell, but it
does not take into account the additional loading due to the scan chain routing.

Locating Scan Equivalents
To perform scan replacement, constraint-optimized scan insertion first locates simple scan
equivalents by using the identical-function method. If the
insert_test_map_effort_enabled variable is true and if constraint-optimized scan
insertion does not achieve scan replacement using this method, it then uses
sequential-mapping-based scan replacement. See the scan insertion information in the
Design Compiler Optimization Reference Manual for details about scan replacement
methods.
Chapter 4: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion 4-33
Chapter 4: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion 4-33

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Like test-ready compile, constraint-optimized scan insertion supports degeneration of scan
cells to create the required scan equivalent functionality.

Replacing sequential cells with their scan equivalents modifies the design timing, as shown
in Figure 4-9. DFT Compiler performs scan-specific optimizations to reduce the timing
impact of scan replacement. By using focused techniques, constraint-optimized scan
insertion optimizes the scan logic faster than the incremental compile process could.

Figure 4-9 Timing Changes Due to Scan Replacement

Figure 4-10 shows the flow used to insert scan cells with constraint-optimized scan insertion
and the commands required to complete this flow.

d q d
qscan_in

scan_enable

clk

Change in
input load

Change inIncrease in
setup and
hold times

Change in
drive resistance

clk

intrinsics
Chapter 4: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion 4-34

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 4-10 Constraint-Optimized Scan Insertion Flow
(Scan Replacement Only)

Preparing for Constraint-Optimized Scan Insertion
Before performing constraint-optimized scan insertion,

• Verify the timing characteristics of the design.

Constraint-optimized scan insertion results in a violation-free design when the design
has the following timing characteristics:

❍ The nonscan design does not have constraint violations.

❍ The timing budget is good.

❍ You have properly applied realistic path constraints.

❍ You have described the clock skew.

Select scan style
(test_default_scan_style style)

Read design description
(read_file)

Define test protocol

Analyze nonscan design
(dft_drc)

(set_dft_signal)

Insert scan cells
(insert_dft)
Chapter 4: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion 4-35
Chapter 4: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion 4-35

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Note:
If your design enters constraint-optimized scan insertion with violations, long
runtimes can occur.

• Select a scan style.

• Identify barriers to scan replacement.

Scan Insertion
To alter a default scan design, you must specify changes to the scan configuration. You can
make specifications at any point before scan synthesis. This section describes the
specification commands you can use.

With the DFT Compiler scan insertion capability, you can

• Implement automatically balanced scan chains

• Specify complete scan chains

• Generate scan chains that enter and exit a design module multiple times

• Automatically fix certain scan rule violations

• Reuse existing modules that already contain scan chains

• Control the routing order of scan chains in a hierarchy

• Perform scan insertion from the top or the bottom of the design

• Implement automatically enabling or disabling logic for bidirectional ports and internal
three-state logic

• Share functional ports as test data ports. DFT Compiler inserts enabling and disabling
logic, as well as multiplexing logic, as necessary

You can design scan chains by using a specify-preview-synthesize process, which consists
of multiple specification and preview iterations to define an acceptable scan design. After the
scan design is acceptable, you can invoke the synthesis process to insert scan chains.
Figure 4-11 shows this specify-preview-synthesize process.
Chapter 4: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion 4-36

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 4-11 The Scan Insertion Process

Example 4-5 is a basic scan insertion script.

Example 4-5 Basic Scan Insertion Script

current_design Top
set_dft_configuration -fix_set enable -fix_reset enable
set_scan_configuration -chain_count ...
create_test_protocol -infer_clock -infer_asynch
dft_drc
preview_dft
insert_dft
dft_drc
report_scan_path -view existing_dft -chain all
report_constraints -all_violators

Reporting

Specification

Preview

Scan chain design

User dc_shell

Scan architecture
dc_shell script

"What-if" report

Modified scan

Synthesis

script

preview

chain design

created by
DFT Compiler
Chapter 4: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion 4-37
Chapter 4: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion 4-37

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
In this example, the following DFT configuration command enables AutoFix. For more
information, see “Using AutoFix” on page 7-22.

set_dft_configuration -fix_reset enable -fix_set enable

The scan specification command is set_scan_configuration -chain_count 1. It
specifies a single scan chain in the design.

The preview_dft command is the preview command. It builds the scan chain and produces
a range of reports on the proposed scan architecture.

The insert_dft command is the synthesis command. It implements the proposed scan
architecture.

The following sections describe these steps in the design process.

Specification Phase
During the specification phase, you use the scan and DFT specification commands to
describe how the insert_dft command should configure the scan chains and the design.
You can apply the commands interactively from the dc_shell or use them within design
scripts. The specification commands annotate the database but do not otherwise change
the design. They do not cause any logic to be created or any scan routing to be inserted.

The specification commands apply only to the current design and to lower-level subdesigns
within the current design.

If you want to do hierarchical scan insertion by using a bottom-up approach, use the
following general procedure:

1. Set the current design to a lower-level subdesign (current_design command).

2. Set the scan specifications for the subdesign (set_scan_path, set_scan_element, and
so on).

3. Insert the scan cells and scan chains into the subdesign (dft_drc, preview_dft, and
insert_dft).

4. Repeat steps 1, 2, and 3 for each subdesign, at each level of hierarchy, until you finish
scan insertion for the whole design.

By default, the insert_dft command recognizes and keeps scan chains already inserted
into subdesigns at lower levels. Thus, you can use different sets of scan specifications for
different parts or levels of the design by using the insert_dft command separately on each
part or level.

Note that each time you use the current_design command, any previous scan
specifications no longer apply. This means that you need to enter new scan specifications
for each newly selected design.
Chapter 4: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion 4-38

DFT Compiler Scan User Guide Version H-2013.03-SP4
Scan Specification

Using the scan specification commands, you can specify as little or as much scan detail as
you want. If you choose not to specify any scan detail, the insert_dft command
implements the default full-scan methodology. If you choose to completely specify the scan
design that you require, you explicitly assign every scan element to a specific position in a
specific scan chain. You can also explicitly define the pins to use as scan control and data
pins.

Alternatively, you can create a partial specification, where you define some elements but do
not issue a complete specification. If you issue a partial specification, the preview_dft
command creates a complete specification during the preview process.

The scan specification commands are

• set_scan_configuration

• set_scan_path

• set_dft_signal

• set_scan_element

• reset_scan_configuration

These commands are described in detail later in this section.

DFT Configuration

The DFT configuration commands are as follows:

• reset_dft_configuration

• set_autofix_configuration

• set_autofix_element

• set_dft_configuration

• set_dft_signal

Preview
The preview_dft command produces a scan chain design that satisfies scan specifications
on the current design and displays the scan chain design for you to preview. If you do not like
the proposed implementation, you can iteratively adjust the specification and rerun preview
until you are satisfied with the proposed design.
Chapter 4: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion 4-39
Chapter 4: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion 4-39

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
The preview_dft command performs the following tasks:

• It checks the specification for consistency. For example, you cannot assign the same
scan element to two different chains.

• It creates a complete specification if you have specified only a partial specification.

• It runs AutoFix.

• It produces a list of test points that are to be inserted into the design, based on currently
enabled utilities.

When you use the preview_dft command, you can use the -script option to create a
dc_shell script that completely specifies the proposed implementation. You can edit this
script and use the edited script as an alternative means of iterating to a scan design that
meets your requirements.

Limitation:
The preview_dft command does not annotate the design database with test
information. If you want to annotate the database with the completed specification, use
the -script option to create a specification dc_shell script and then run this script. The
specification commands in this script add attributes to the database.

Synthesis
You invoke the synthesis process by using the insert_dft command, which implements
the scan design determined by the preview process. If you issue this command without
explicitly invoking the preview process, the insert_dft command transparently runs
preview_dft.

Execute the dft_drc command at least one time before executing the insert_dft
command. Executing the dft_drc command provides information on circuit testability
before inserting scan into your design.
Chapter 4: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion 4-40

5
Pre-Scan Test Design Rule Checking 5

This chapter describes the process for preparing for and running test design rule checking
(DRC), and checking violations before scan insertion.

This chapter includes the following sections:

• Test DRC Basics

• Classifying Sequential Cells

• Checking for Modeling Violations

• Setting Test Timing Variables

• Creating Test Protocols

• Masking Capture DRC Violations

5-1

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Test DRC Basics

This section discusses the test DRC flow, the types of messages generated as a result of
running the process, and the effects of violations on scan replacement.

Test DRC Flow
You use the dft_drc command to activate test design rule checking. However, before
running this process, you must first create a test protocol that includes timing information
(see “Creating the Test Protocol” on page 5-5 for information on creating test protocols).

After running the dft_drc command, violation messages are reported in three categories:

• Information messages – no action is required.

• Warning messages – you should analyze the violations; however, you can still run certain
DFT commands.

• Error messages – these indicate serious errors that you need to correct before you can
use the DFT commands.

Figure 5-1 illustrates a general test design rule checking flow.
Chapter 5: Pre-Scan Test Design Rule Checking
Test DRC Basics 5-2

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 5-1 Test DRC Flow

Read and link the design

Set test attributes
on the design

Create a test protocol Read in a test protocol

Run design rule checking

Violations? Analyze

Change design and/or
test protocol

Proceed to scan synthesis

Yes

No

Existing protocol?

No

Yes
Chapter 5: Pre-Scan Test Design Rule Checking
Test DRC Basics 5-3
Chapter 5: Pre-Scan Test Design Rule Checking
Test DRC Basics 5-3

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
The following steps outline the test DRC process:

1. Read and link the design into DFT Compiler.

For details, see the “Preparing Your Design” on page 5-4.

2. Determine if you have an existing test protocol for the design.

If so, read the test protocol into DFT Compiler.

If not, do the following:

❍ Set the appropriate test attributes on the design.

❍ Create the test protocol.

3. Run design rule checking.

❍ If test DRC reports no violations, you can insert DFT structures into your design.

❍ If test DRC reports violations, you can graphically analyze the violations by using
Design Vision, as described in Chapter 3, “Running the Test DRC Debugger.”

To fix the violations, either change your design, change your test protocol, or do both.

Preparing Your Design
To prepare your design-for-test DRC, follow these steps:

1. Set the search_path variable to point to directory paths that contain your design and
library files.

2. Set the link_library variable to point to the logic library files referred to by your design.

3. Set the target_library variable to point to logic library files you want mapped to your
design.

4. Use the read_file command to read your design into DFT Compiler.

5. Run the link command to link your design with your logic library.

See the Design Compiler documentation for more information on how to read and link your
design.
Chapter 5: Pre-Scan Test Design Rule Checking
Test DRC Basics 5-4

DFT Compiler Scan User Guide Version H-2013.03-SP4
Creating the Test Protocol
If you have an existing test protocol, read the test protocol into DFT Compiler by using the
read_test_protocol command. If you do not have an existing test protocol, create it by
following these steps:

1. Identify the test-related ports in your design. Such signals include

❍ Clocks

❍ Asynchronous sets and resets

❍ Scan inputs

❍ Scan outputs

❍ Scan enables

2. Define DFT signals on these ports by using the set_dft_signal command.

3. Run the create_test_protocol command to create the test protocol for your design.

Assigning a Known Logic State
You can use the set_test_assume command to assign a known logic state to output pins of
black-box sequential cells. The command syntax is

set_test_assume value pin_list

The value argument specifies the assumed value, 1 or 0, on this output pin or pins.

The pin_list argument specifies the names of output pins of unknown black-box cells,
including nonscan sequential cells in full-scan designs. The hierarchical path to the pin
should be specified for pins in subblocks of the current design.

The dft_drc command takes into account the conditions you define with the
set_test_assume command.

Performing Test Design Rule Checking
After you create or read in a test protocol, perform test design rule checking by running the
dft_drc command.

If you run the insert_dft command without first running the dft_drc command, the tool
will implicitly run the dft_drc command before proceeding with DFT insertion.

In either case, the following message indicates that test DRC checking is performed:

Information: Starting test design rule checking. (TEST-222)
Chapter 5: Pre-Scan Test Design Rule Checking
Test DRC Basics 5-5
Chapter 5: Pre-Scan Test Design Rule Checking
Test DRC Basics 5-5

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
In the AutoFix flow, the first DRC analysis determines what test points are needed. The
insert_dft command inserts the test point logic into the design database, then implicitly
runs the dft_drc command again to determine the final DRC results. In this case, you will
see an additional TEST-222 message issued during DFT insertion.

Reporting All Violating Instances
By default, the dft_drc command generates a message only for the first violating instance
of a given violation type. To see all violations, use the dft_drc -verbose command.

Analyzing and Debugging Violations
You can graphically analyze the cause of a violation by using Design Vision, as described in
Chapter 3, “Running the Test DRC Debugger.”

After you have located the cause of the violation, you can either change the design, change
the test protocol, or do both. Then rerun the steps outlined above to see if the violations have
been fixed.

You can also use AutoFix to fix uncontrollable clocks and asynchronous sets and resets. For
more information on AutoFix, see “Using AutoFix” on page 7-22.

Summary of Violations
At the completion of design rule checking, the dft_drc command displays a violation
summary. Example 5-1 shows the format of the violation summary.

Example 5-1 Violation Summary

--
 DRC Report
 Total violations: 6
--
6 PRE-DFT VIOLATIONS
 3 Uncontrollable clock input of flip-flop violations (D1)
 3 DFF set/reset line not controlled violations (D3)

Warning: Violations occurred during test design rule
checking. (TEST-124)
--
 Sequential Cell Report
 3 out of 5 sequential cells have violations
--
SEQUENTIAL CELLS WITH VIOLATIONS
 * 3 cells have test design rule violations
SEQUENTIAL CELLS WITHOUT VIOLATIONS
 * 2 cells are valid scan cells
Chapter 5: Pre-Scan Test Design Rule Checking
Test DRC Basics 5-6

DFT Compiler Scan User Guide Version H-2013.03-SP4
The total number of violations for the circuit appears in the header. If there are no violations
in the circuit, the dft_drc command displays only the violation summary header. Within the
summary, violations are organized by category. A violation category appears in the
summary only if there are violations in that category. For each category, the dft_drc
command displays the number (n) of violations, along with a short description of each
violation and the corresponding error message number. Using the error message number,
you can find the violation in the dft_drc run.

Unknown cell violations have message numbers in the TEST-451 to TEST-456 range.
Unsupported cell violations have message numbers in the TEST-464 to TEST-469 range.
The following is an excerpt from a violation summary for unknown cells:

--
 DRC Report
 Total violations: 4
--

3 MODELING VIOLATIONS
 1 Cell has unknown model violation (TEST-451)

Enhanced Reporting Capability
You can enable enhanced DRC reporting by setting the
test_disable_enhanced_dft_drc_reporting variable to false. When enhanced
reporting is enabled, the reporting and formatting of rule violations are changed to provide a
better understanding of the respective rules.

Example 5-2 provides a typical enhanced DRC report:

Example 5-2 Enhanced DRC Report Example

In mode: all_dft...
 Pre-DFT DRC enabled
Information: Starting test design rule checking. (TEST-222)
 Loading test protocol
 ...basic checks...
 ...basic sequential cell checks...
 ...checking for scan equivalents...
 ...checking vector rules...
 ...checking pre-dft rules...
Simulation library files used for DRC

./core_slow_lvds_pads.v
./core_slow_special_cells.v
Cores and modes used for DRC in mode: all_dft

SUB_1: U1, U3, U4 mode: Internal_scan
SUB_2: U5, U6 mode: Internal_scan
Modeling and user constraints that will prevent scan insertion

Warning: Cell U34 will not be scanned due to set_scan_element command.
Chapter 5: Pre-Scan Test Design Rule Checking
Test DRC Basics 5-7
Chapter 5: Pre-Scan Test Design Rule Checking
Test DRC Basics 5-7

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
(TEST-202)
DRC violations which will prevent scan insertion

Warning: Cell U1 has constant 1 value. (TEST-505)
Warning: Reset input RN of DFF U53 was not controlled. (D3-1)
Information: There are 10 other cells with the same violation. (TEST-171)
DRC Violations which can affect ATPG coverage

Warning: Clock CCLK can capture new data on LS input of DFF U25. (D13-1)
 Source of violation: input CLK of DLAT U13/clk_gate_flop/latch.
Warning: CCLK clock path affected by new capture on LS input of DFF U17
(D15-1)
 Source of violation: input CLK of DLAT U18/clk_gate_flop/latch.

DRC Report
Total violations: 14

1 MODELING AND USER VIOLATIONS AFFECTING SCAN INSERTION
 1 cell with set_scan_element constraint (TEST-202)
11 DRC VIOLATIONS AFFECTING SCAN INSERTION
 1 Constant cell (TEST-505)
11 DFF reset line not controlled violations (D3)
2 DRC VIOLATIONS AFFECTING ATPG coverage
 1 Data path affected by clock captured by clock in level sensitive
 clock_port violations
(D13)
 1 Clock path affected by clock captured by clock in level sensitive
 clock_port violations
(D15)

Sequential Cell Report
 Cells Core core_cells

Sequential elements detected: 50 5 50
Clock gating cells: 0
Synchronizing cells: 0
Non scan elements: 1 0 0
Excluded scan elements: 0 0 0
Violated scan elements: 11 1 10
Scan elements: 39 4 40

Test Design Rule Checking Messages
When you invoke the dft_drc command, it generates messages to assist you in
determining problems with your scan design. These messages fall into three categories:

• Information

Information messages give you the status of the design rule checker or more detail about
a particular rule violation.
Chapter 5: Pre-Scan Test Design Rule Checking
Test DRC Basics 5-8

DFT Compiler Scan User Guide Version H-2013.03-SP4
• Warning

A warning message indicates a testability problem that lowers the fault coverage of the
design. Most of the violations reported by the dft_drc command are warning messages.
The warnings allow you to evaluate the effect of violations and determine acceptable
violations, based on your test requirements.

Many warnings reported by dft_drc reduce fault coverage. Try to correct all violations,
because a cell that violates a design rule, as well as the cells in its neighborhood, is not
testable. A cell’s neighborhood can be as large as its transitive fanin and its transitive
fanout.

• Error

An error message indicates a serious problem that prevents further processing of the
design in DFT Compiler until you resolve the problem.

Understanding Test Design Rule Checking Messages
You can access online help for most warning messages generated by dft_drc. Online help
provides information about the violation and information about how to proceed. Use the help
command to access online help:

dc_shell> man message_id

Replace the message_id argument with the string shown in the parentheses that follow the
warning text.

To keep a record of the information, warning, and error messages for your design, direct the
output from the dft_drc command to a file with a command such as

dc_shell> dft_drc > my_drc.out

In this example, my_drc.out is the name of the output file.

Effects of Violations on Scan Replacement
When violations occur, the dft_drc command issues the following message:

Warning: Violations occurred during test design rule checking. (TEST-124)

For designs that are synthesized with the compile -scan command, the default behavior is
that violations on scan-replaced cells cause the insert_dft command to unscan those
cells. Sequential cells with violations are not included in a scan chain because they would
probably prevent the scan chain from working as intended.

For designs that are not synthesized with the compile -scan command, violations on
sequential cells cause the insert_dft command not to perform scan replacement for those
cells.
Chapter 5: Pre-Scan Test Design Rule Checking
Test DRC Basics 5-9
Chapter 5: Pre-Scan Test Design Rule Checking
Test DRC Basics 5-9

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
For certain violation types, you can configure DFT insertion to include violating sequential
cells in scan chains. See “Masking Capture DRC Violations” on page 5-37.

Viewing the Sequential Cell Summary
When the dft_drc command completes DRC, it provides a summary of the test status of
the sequential cells in your design. Example 5-3 shows an example of the summary.

Example 5-3 Sequential Cell Summary

--
 Sequential Cell Report

 2 out of 133721 sequential cells have violations
--

SEQUENTIAL CELLS WITH VIOLATIONS
 * 2 cells have capture violations
SEQUENTIAL CELLS WITHOUT VIOLATIONS
 *133719 cells are valid scan cells

To get a complete listing of all the cells in each category, run the dft_drc -verbose
command.

For information about classifying sequential cells, see the next section.

Classifying Sequential Cells

After the violation summary, the dft_drc command displays a summary of sequential cell
information.

Example 5-4 shows the syntax of the sequential cell summary.

Example 5-4 Sequential Cell Summary

--
 Sequential Cell Report

 2 out of 133721 sequential cells have violations
--

SEQUENTIAL CELLS WITH VIOLATIONS
 * 2 cells have capture violations
SEQUENTIAL CELLS WITHOUT VIOLATIONS
 *133719 cells are valid scan cells

The number of sequential cells with violations appears in the header. This number is the
sum of the cells with scan shift violations, capture violations, and constant values, along with
Chapter 5: Pre-Scan Test Design Rule Checking
Classifying Sequential Cells 5-10

DFT Compiler Scan User Guide Version H-2013.03-SP4
the cells that are black boxes. If a design has no sequential cells, only a header with the
following message appears:

There are no sequential cells in this design

Within the summary, the sequential cells are divided into two groups: those with violations
and those without. Only the categories of sequential cells that are found in the design are
listed in the summary. In verbose mode, cell names are listed within each category. More
information about the sequential cell categories is provided in the following sections.

Sequential Cells With Violations
This section of the sequential cell summary points to problematic sequential cells. The cells
in this group have corresponding violations that can be found in the DRC output of the
dft_drc command.

Cells With Scan Shift Violations
This category includes cells with scan-in and scan connectivity violations. Within this
category, cells are listed by the type of scan shift violation.

• Not scan-controllable

The dft_drc command cannot transport data from a scan-in port into the cell.

• Not scan-observable

The dft_drc command cannot transport data from the cell to a scan-out port.

Note:
Cells in multibit components are homogeneous. If a cell in a multibit component has
violations, all of the cells in that multibit component have violations.

After dft_drc has run, you can invoke the report_scan_path -view existing_dft
-chain all command to observe the scan chains as extracted by the dft_drc command.

Black-Box Cells
Included in the black-box cells category are sequential cells that cannot be used for scan
shift. Unknown cells and unsupported cells are classified as black boxes. These cells are not
scan-replaced when you run the insert_dft command.
Chapter 5: Pre-Scan Test Design Rule Checking
Classifying Sequential Cells 5-11
Chapter 5: Pre-Scan Test Design Rule Checking
Classifying Sequential Cells 5-11

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Constant Value Cells
The constant value category includes sequential cells that are constant during scan testing.
These cells are assumed to hold constant values; they are not scan-replaced by
insert_dft. For every constant value sequential cell, there is a corresponding TEST-504 or
TEST-505 violation.

Sequential Cells Without Violations
The valid scan cells category displays the number of sequential cells that have no test
design rule violations. ATPG tools can use these cells for scan shift and for measuring circuit
response data. Valid scan cells can be scan-replaced by insert_dft.

Note:
Valid scan cells can have capture violations. Valid cells with capture violations only are
scan-replaced.

The number of synchronization latches is listed in the last category.

Checking for Modeling Violations

If you instantiate a cell that DFT Compiler doesn’t understand, you can get modeling
violations. The dft_drc command performs modeling checks locally, one cell at a time.

Modeling violations are discussed in the following subsections:

• Black-Box Cells

• Unsupported Cells

• Generic Cells

• Scan Cell Equivalents

• Latches

Black-Box Cells
A cell whose output is considered unknown is classified as a black-box cell. These cells
might lack a functional description in the logic library. Such cells are marked as black-box by
the report_lib command. Also, the dft_drc command identifies black-box sequential
cells.
Chapter 5: Pre-Scan Test Design Rule Checking
Checking for Modeling Violations 5-12

DFT Compiler Scan User Guide Version H-2013.03-SP4
The dft_drc command requires that you have a functional model in your library for each
leaf cell in your design. If you use cells that do not have functional models, the dft_drc
command displays the following warning:

Warning: Cell %s (%s) is unknown (black box) because functionality for
output pin %s is bad or incomplete. (TEST-451)

You do not need to correct black-box violations for memory macro cells; they are always
modeled as black-box cells by the dft_drc command. In TetraMAX, you can use memory
models so that sequential ATPG can obtain fault coverage around the memories.

See the Library Compiler reference manuals for more information on modeling the behavior
of cells.

Correcting Black-Box Cells
DFT Compiler models a cell as a black box in these cases:

• The link command cannot resolve the cell reference by using the technology libraries or
designs in the search_path (unresolved reference).

• The logic library model for the cell reference does not contain a functional description
(black-box library cell).

In the following cases, a black-box cell can have a severe impact on fault coverage:

• The black-box cells are pad cells.

The dft_drc command completely fails and prevents insert_dft from working. This
occurs during scan stitching at the top level.

• A black-box cell controls the enable signal of an internal three-state driver or a
bidirectional signal.

The insert_dft command inserts three-state and bidirectional control logic if the
existing control logic is a black box, even if doing so is unnecessary.

DFT Compiler generates this warning message when it models a cell as a black box:

Warning: Cell %s (%s) is unknown (black box) because functionality for
output pin %s is bad or incomplete. (TEST-451)

The method for correcting the violation depends on the source of the violation and the
complexity of the cell.

Note:
Use the link command to correct unresolved references.

Black-Box Library Cell

If no functional description of the cell exists in the logic library, you need to obtain either a
functional model or a structural model of the cell.
Chapter 5: Pre-Scan Test Design Rule Checking
Checking for Modeling Violations 5-13
Chapter 5: Pre-Scan Test Design Rule Checking
Checking for Modeling Violations 5-13

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
If the cell can be functionally modeled by the Library Compiler tool, obtain an updated logic
library that includes a functional model of the cell.

If you have a simulation model for the black box, declare it by using the following variable:

dc_shell> set_app_var test_simulation_library simulation_library_path

Note the following license-related requirements:

• If you have a Library Compiler license and the library source code, add the functional
description to the library cell model.

See the Library Compiler documentation for information about cell modeling.

• If you do not have a Library Compiler license or library source code, ask your
semiconductor vendor for a library that contains a functional model of the cell.

If the Liberty syntax does not support functional modeling of the cell, create a structural
model for the cell and link the design to this structural model instead of the library cell model.

Note:
You should only use the test_simulation_library variable to replace leaf cells that do
not have functional models. Do not use the variable to replace any arbitrary module in the
design. If you want to replace the entire design module that consists of leaf cells, you
should use the remove_design command to remove the module and then read the
Verilog netlist description of that module into memory.

Unsupported Cells
Cells can have a functional description and still not be supported by the dft_drc command.
Using state table models, library developers can describe cells that violate the current
assumptions for test rule checking. The dft_drc command detects those cells and flags
them as black boxes.

DFT Compiler supports single-bit cells or multibit cells that have identical functionality on
each pin; these cells have the following characteristics:

• The functional view, which Design Compiler synthesis understands and manipulates, is
either a flip-flop, a latch, or a master-slave cell with clocked_on and clocked_on_also
attributes.

• The test view, used for scan shifting, is either a flip-flop or a master-slave cell.

• The functional view and the test view each have a single clock per internal state.

The multibit library cell interfaces must be either fully parallel or fully global. For cells that do
not meet these criteria, DFT Compiler uses single-bit cells.
Chapter 5: Pre-Scan Test Design Rule Checking
Checking for Modeling Violations 5-14

DFT Compiler Scan User Guide Version H-2013.03-SP4
For example, if you want to infer a 4-bit banked flip-flop with an asynchronous clear signal,
the clear signal must be either different for each bit or shared among all 4 bits. If the first and
second bits share one asynchronous reset but the third and fourth bits share another reset,
DFT Compiler does not infer a multibit flip-flop. Instead, DFT Compiler uses 4 single-bit
flip-flops. For more information about multibit cells and multibit components, see the Design
Compiler Optimization Reference Manual.

DFT Compiler does not support registers or duplicate sequential logic within a cell. The
nonscan equivalent of a scan cell must have only one state. A scan cell can have multiple
states in shift mode.

If the dft_drc command detects such a cell, it issues the following warning:

Cell %s (%s) is not supported because it has too many
states (%d states). This cell is being black-boxed.(TEST-462)

When the dft_drc command recognizes part of a cell as a master-slave latch pair but finds
extra states, it issues one of the following warnings, depending on the situation:

Master-slave cell %s (%s) is not supported because the state
pin %s is neither a master nor a slave. This cell is being
black-boxed,(TEST-463)

Master-slave cell %s (%s) is not supported because there
are two or more master states. This cell is being
black-boxed,(TEST-464)

Master-slave cell %s (%s) is not supported because there
are two or more slave states. This cell is being
black-boxed,(TEST-465)

If the dft_drc command detects a state with no clocks or with multiple clocks, it issues one
of the following warnings:

Cell %s (%s) is not supported because the state pin %s has no
clocks. This cell is being black-boxed,
(TEST-466)

Cell %s (%s) is not supported because the state pin %s is
multi-port. This cell is being black-boxed.(TEST-467)

In addition, the dft_drc command detects and rejects sequential cells with three-state
outputs and issues the following warning:

Cell %s (%s) is not supported because it is a sequential
cell with three-state outputs. This cell is being
black-boxed,(TEST-468)

Black-box cells have an adverse effect on fault coverage. To avoid this effect, you must
replace unsupported cells with cells that DFT Compiler can support.
Chapter 5: Pre-Scan Test Design Rule Checking
Checking for Modeling Violations 5-15
Chapter 5: Pre-Scan Test Design Rule Checking
Checking for Modeling Violations 5-15

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Note:
Unsupported cells can originate only from explicit instantiation. They are not used by the
Design Compiler or DFT Compiler tools. For more information on modeling sequential
cells, see Library Compiler Methodology and Function Modeling User Guide and Library
Compiler Timing, Signal Integrity, and Power Modeling User Guide.

Generic Cells
Your design should be a mapped netlist. In the RTL stage, the dft_drc command will map
your design into an internal representation.

Some generic cells, such as unimplemented DesignWare parts and operators, have implicit
functional descriptions. The dft_drc command treats them as black-box cells and displays
the following warning message:

Warning: Cell %s (%s) is unknown (black box) because
functionality for output pin %s is bad or incomplete. (TEST-451)

If you instantiate generic cells after running compile -scan, you must recompile your
design.

Scan Cell Equivalents
When checking test design rules in a design without scan chains, the dft_drc command
verifies that each sequential element has not been explicitly marked by using the
set_scan_element false command. If a scan cell equivalent does not exist or it has the
dont_use attribute applied, the dft_drc command issues the following warning message:

Warning: No scan equivalent exists for cell %s (%s).
(TEST-120)

Note:
Use the set_scan_element false command to prevent scan replacement.

The cells in violation are marked as nonscan. In the full-scan methodology, these cells are
black boxes. If these cells are not valid nonscan, they are in violation and are black boxes.
You can suppress the TEST-120 warning with the set_scan_element command. For
example, to ensure that a nonscan latch cell is not made scannable, enter the command

dc_shell> set_scan_element false latch_name

If you use the set_scan_element command, the dft_drc command issues the following
information message:

Information: Cell %s (%s) will not be scanned due to a
set_scan_element command. (TEST-202)
Chapter 5: Pre-Scan Test Design Rule Checking
Checking for Modeling Violations 5-16

DFT Compiler Scan User Guide Version H-2013.03-SP4
If the dft_drc command cannot find scan cell equivalents in the target library, the probable
reason is that the target library does not contain test cells. In such cases, the dft_drc
command issues the following warning:

Warning: Target library for design contains no scan-cell
models. (TEST-224)

Scan Cell Equivalents and the dont_touch Attribute
If you set the dont_touch attribute on a nonscan cell before scan cell replacement, that cell
is not modified or scan-replaced when you optimize the design. In this case, the dft_drc
command produces the following warning:

Warning: Cell %s (%s) can’t be made scannable because it is
dont_touched. (TEST-121)

If you apply the dont_touch attribute to scan-replaced cell, the cell can still be added to a
scan chain.

Note:
Use the dont_touch attribute carefully, because it can increase the number of nonscan
cells, and nonscan cells lower fault coverage.

Use the set_scan_element false command if you do not want to make a sequential cell
scannable but you do want to be able to modify the cell during optimization.

Latches
DFT Compiler replaces latches with scannable latches whenever possible. If the dft_drc
command cannot find scan cell equivalents for the latches, it marks the latches as nonscan
and issues the TEST-120 warning as previously explained.

Nonscan Latches
DFT Compiler models nonscan latches in two ways:

• As black boxes

• As synchronization elements

If you do not scan replace your latches, you can ignore “no-scan equivalent” messages for
latches.

A nonscan latch is treated by default as a black box. However, if the latch satisfies the
requirements for a synchronization element, the dft_drc command treats the latch as a
synchronization element.
Chapter 5: Pre-Scan Test Design Rule Checking
Checking for Modeling Violations 5-17
Chapter 5: Pre-Scan Test Design Rule Checking
Checking for Modeling Violations 5-17

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Note:
The dft_drc command allows synchronous elements to be on the scan chain.

Setting Test Timing Variables

This section discusses the process for setting test timing variables for your design. The
timing variables are used by the test protocol for design rule checking and for DFT preview
and insertion.

This section has the following subsections:

• Protocols for Common Design Timing Requirements

• Setting Timing Variables

Protocols for Common Design Timing Requirements
Before creating a test protocol and checking test design rules, you need to identify the timing
information for your design. You do this by setting a number of timing variables and, if
necessary, by defining test clock requirements. Timing variables are discussed in detail in
“Setting Timing Variables” on page 5-19.

Defining test clock requirements is discussed in detail in Chapter 6, “Architecting Your Test
Design.”

If you intend to use postclock strobing, you need to change the default variable values. If
your design’s timing variable values are the same as the variables’ defaults, you do not need
to make any changes.

Strobe-Before-Clock Protocol
The timing requirements for a strobe-before-clock protocol are shown in the following
example. Check with your semiconductor vendor for specific timing information.

test_default_period : 100 ;
test_default_delay : 0 ;
test_default_bidir_delay : 0 ;
test_default_strobe : 40 ;
test_default_strobe_width : 0 ;
Chapter 5: Pre-Scan Test Design Rule Checking
Setting Test Timing Variables 5-18

DFT Compiler Scan User Guide Version H-2013.03-SP4
Strobe-After-Clock Protocol
To use a strobe-after-clock protocol, set the timing values described in the following
example. Although the strobe-after-clock protocol works with TetraMAX ATPG, the
strobe-before-clock protocol is more efficient. Use the following timing values:

test_default_period : 100 ;
test_default_delay : 5 ;
test_default_bidir_delay : 55 ;
test_default_strobe : 95 ;
test_default_strobe_width : 0 ;

If you intend to use a strobe-after-clock protocol with TetraMAX ATPG, use the timing values
shown in the following example.

test_default_period : 100 ;
test_default_delay : 0 ;
test_default_bidir_delay : 0 ;
test_default_strobe : 90 ;
test_default_strobe_width : 0 ;

Setting Timing Variables
Before you run the create_test_protocol command, you need to define timing variables.
The command uses the following test variables to determine the values in the test protocol
timing variables:

test_default_period
test_default_delay
test_default_bidir_delay
test_default_strobe
test_default_strobe_width

The requirements from your semiconductor vendor, together with the basic scan test
requirements, drive the specification of test timing parameters. If you intend to use postclock
strobing, you need to change the default variable values. You can do this every time you
create a new design, or you can add these variable values to your local .synopsys_dc.setup
file.

test_default_period Variable
The test_default_period variable defines the default, in ns, for the period in the test
protocol. The period value must be a positive real number.

By default, DFT Compiler uses a 100 ns test period. If your semiconductor vendor uses a
different test period, specify the required test period by using the test_default_period
variable.
Chapter 5: Pre-Scan Test Design Rule Checking
Setting Test Timing Variables 5-19
Chapter 5: Pre-Scan Test Design Rule Checking
Setting Test Timing Variables 5-19

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
The syntax for setting the variable is

set_app_var test_default_period period

For example,

dc_shell> set_app_var test_default_period 100

In the .synopsys_dc.setup file, the test_default_period variable is set to 100 ns.

test_default_delay Variable
The test_default_delay variable defines the default, in ns, for the input delay in the
inferred test protocol. The delay value must be a nonnegative real number less than the
strobe value. See the default timing in Figure 5-2 on page 5-24.

By default, DFT Compiler applies data to all nonclock input ports 0 ns after the start of the
cycle. If your semiconductor vendor requires different input timing, specify the required input
delay by using the test_default_delay variable.

The syntax for setting the variable is

set_app_var test_default_delay delay

For example,

dc_shell> set_app_var test_default_delay 5

In the .synopsys_dc.setup file, test_default_delay is 0 ns.

test_default_bidir_delay Variable
The test_default_bidir_delay variable defines the default, in ns, for the bidirectional
delay in the inferred test protocol. The bidir_delay must be a positive real number less than
the strobe value and can be less than, greater than, or equal to the delay value. See the
default timing in Figure 5-2 on page 5-24.

By default, DFT Compiler applies data to all bidirectional ports in input mode 0 ns after the
start of the parallel measure cycle. In any cycle where a bidirectional port changes from
input mode to output mode, DFT Compiler releases data from the bidirectional port 0 ns
after the start of the cycle. If your semiconductor vendor requires different bidirectional
timing, specify the required bidirectional delay by using the test_default_bidir_delay
variable.

The risks associated with incorrect specification of the bidirectional delay time include

• Test design rule violations

• Bus contention

• Simulation mismatches
Chapter 5: Pre-Scan Test Design Rule Checking
Setting Test Timing Variables 5-20

DFT Compiler Scan User Guide Version H-2013.03-SP4
Minimize these risks by carefully specifying the bidirectional delay time.

DFT Compiler uses the bidirectional delay time as

• The data application time for bidirectional ports in input mode during the parallel
measure cycle and during scan-in for bidirectional ports used as scan inputs or
scan-enable signals

• The data release time for bidirectional ports in input mode during cycles in which the
bidirectional port changes from input mode to output mode

DFT Compiler performs relative timing checks during test design rule checking. The
following requirements must be met:

• The bidirectional delay time must be less than the strobe time.

If you change the strobe time from the default, confirm that the bidirectional delay value
meets this requirement.

• If the bidirectional port drives sequential logic, the bidirectional delay time must be equal
to or greater than the active edge of the clock.

The syntax for setting the variable is

set_app_var test_default_bidir_delay bidir_delay

For example,

dc_shell> set_app_var test_default_bidir_delay 40

In the .synopsys_dc.setup file, test_default_bidir_delay is 0 ns.

test_default_strobe Variable
The test_default_strobe variable defines the default, in ns, for the strobe in the inferred
test protocol. The strobe value must be a positive real number less than the period value and
greater than the test_default_delay value (see the default timing in Figure 5-2 on
page 5-24).

By default, DFT Compiler compares data at all output ports 40 ns after the start of the cycle.
If your semiconductor vendor requires different strobe timing, specify the strobe time by
using the test_default_strobe variable.

The syntax for setting the variable is

set_app_var test_default_strobe strobe

For example:

dc_shell> set_app_var test_default_strobe 100

In the .synopsys_dc.setup file, test_default_strobe is 40 ns.
Chapter 5: Pre-Scan Test Design Rule Checking
Setting Test Timing Variables 5-21
Chapter 5: Pre-Scan Test Design Rule Checking
Setting Test Timing Variables 5-21

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
test_default_strobe_width Variable
The test_default_strobe_width variable defines the default, in ns, for the strobe width in
the inferred test protocol. The strobe width value must be a positive real number. The strobe
value plus the strobe width value must be less than or equal to the period value. See the
default timing in Figure 5-2 on page 5-24.

Clocking requirements specified by semiconductor vendors include

• Clock waveform timing

• Maximum number of unique clock waveforms

• Minimum delay between different clock waveforms, which allows for clock skew on the
tester

DFT Compiler provides the capability to specify clock waveform timing but does not place
any restrictions on the number of unique waveforms that can be defined or the minimum
time between clock waveforms. By determining what restrictions the semiconductor vendor
places on these timing parameters, you can define clock waveforms that meet the
restrictions.

When DFT Compiler infers clock ports during dft_drc, the clock type determines the
default timing for each clock edge. Table 5-1 provides the default clock timing for each clock
type.

DFT Compiler determines the polarity of the first edge (rise or fall) so that the first clock edge
triggers the majority of cells on a clock. The timing arcs in the logic library specify each cell’s
trigger polarity. The polarity of the second edge is opposite the polarity of the first edge, that
is, if the first edge is rising (falling), the second edge is falling (rising).

Table 5-1 Default Clock Timing for Each Clock Type

Clock type First edge Second edge

Edge-triggered or
D-latch enable

45 55

Master clock 30 40

Slave clock 60 70

Edge-triggered 45 60

Master clock1 50 60

Slave clock 40 70
Chapter 5: Pre-Scan Test Design Rule Checking
Setting Test Timing Variables 5-22

DFT Compiler Scan User Guide Version H-2013.03-SP4
Use the set_dft_signal command to specify clock waveforms if your semiconductor
vendor’s requirements differ from the default timing.

The set_dft_signal command has a time period associated with it. That period has to be
identical to the test_default_period value. If you change the value of one, you must
check the value of the other.

The syntax for setting the variable is

set_app_var test_default_strobe_width strobe_width

If you need a window strobe in your STIL procedure file (SPF) or STIL patterns, set the
default of test_default_strobe_width to 1 ns, as shown in the following command:

dc_shell> set_app_var test_default_strobe_width 1

In the .synopsys_dc.setup file, test_default_strobe_width is 0 ns.

Note:
When test_default_strobe_width is 0 ns, the strobe width is equal to one of two
values: the difference between the strobe time and the end of the period, or the
difference between the strobe time and the first input event after the strobe occurs,
whichever occurs first.

The Effect of Timing Variables on Vector Formatting
Figure 5-2 shows a timing diagram for a strobe-before-clock scheme.
Chapter 5: Pre-Scan Test Design Rule Checking
Setting Test Timing Variables 5-23
Chapter 5: Pre-Scan Test Design Rule Checking
Setting Test Timing Variables 5-23

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 5-2 Effect of Timing Variables on Vector Formatting

Creating Test Protocols

Test protocols are an intrinsic part of your design-for-test process and must be created
before you run the dft_drc command. This section has the following subsections related to
creating test protocols:

• Design Characteristics for Test Protocols

• STIL Test Protocol File Syntax

• Defining an Initialization Protocol

• Scan Shift and Parallel Measure Cycles

• Examining a Test Protocol File

active

stable

stable

inactive inactive

inputs stable

 Input data

Output data

 Clocks

Bidirectionals

Period

Delay = 0

Start of Strobe

Bidirectional delay = 0

Strobe width

stable
Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-24

DFT Compiler Scan User Guide Version H-2013.03-SP4
Design Characteristics for Test Protocols
A test protocol is based on certain characteristics of a design. The following subsections
discuss how a protocol is affected by these design characteristics:

• Scan Style

• New DFT Signals

• Existing Clock Ports

• Existing Asynchronous Control Ports

• Bidirectional Ports

Scan Style
Each scan style has a unique method of performing scan shift, which must be reflected in
the test protocol. For more information on how scan style influences the scan shift process,
see “Scan Shift and Parallel Measure Cycles” on page 5-32.

New DFT Signals
The DFT signal attributes are set automatically for each new test port created by the
insert_dft command. The DFT signal attributes are preserved if you save the design in
Synopsys .ddc format. If you have an existing scan design that is not saved in Synopsys .ddc
format, you must re-identify each test port with the appropriate set_dft_signal command.

Existing Clock Ports
You specify existing clock ports (and their timing attributes) by using the set_dft_signal
command.

Tracing back from the clock pins on all sequential elements to the ports driving these pins
interesting Clock ports can also be inferred by. The default timing for the clock signals is
determined by the set_scan_configuration -style command.

Existing Asynchronous Control Ports
You specify existing asynchronous control ports by using the following command:

dc_shell> set_dft_signal -view existing_dft \
 -type Reset -port RSTN -active_state 0
Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-25
Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-25

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Asynchronous control ports can also be inferred by tracing back from the asynchronous pins
on all sequential elements to the ports controlling these pins. Asynchronous control ports
must be identified because all asynchronous inputs must be disabled during scan shift to
allow predictable loading and unloading of the scan data.

Bidirectional Ports
In all cycles except parallel measure and capture, all nondegenerated bidirectional ports are
assumed to be in output (driving) mode and are appropriately masked. During parallel
measure and capture cycles, ATPG data controls the bidirectional ports as normal input or
output ports but the test_default_bidir_delay variable controls the timing.

STIL Test Protocol File Syntax
DFT Compiler reads test protocols written in the Standard Test Interface Language (STIL).
The STIL format is also used by TetraMAX ATPG.

Although the STIL procedure file syntax is the same as that used by TetraMAX ATPG, DFT
Compiler cannot read some of the STIL elements that are available in TetraMAX ATPG.

The following STIL elements are not available in DFT Compiler:

• Post load_unload vectors

• Multiple scan groups in the load_unload procedure

• Multiple waveforms in the timing section

For general information on STIL standards (IEEE Std. 1450.0-1999), see the STIL home
page at

http://grouper.ieee.org/groups/1450/index.html

Note that both the DFT Compiler and TetraMAX tools use the IEEE P1450.1 extensions to
STIL. For details, see Appendix E, “STIL IEEE P1450.1 Extensions,” in the TetraMAX Online
Help.

Defining the test_setup Macro
The test_setup macro is optional. It defines any initialization sequences that the design
might need for test mode or to ensure that the device is in a known state. A test_setup
macro example is shown in Example 5-5.

Example 5-5 Defining the test_setup Macro in the SPF

STIL;
 ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-26

DFT Compiler Scan User Guide Version H-2013.03-SP4
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
 }
Procedures {
 "load_unload" {
 V { CLOCK=0; RESETB=1; SCAN_ENABLE = 1; }
 Shift {
 V { _si=####; _so=####; CLOCK=P;}
 }
 }
}
MacroDefs {
 test_setup {
 V {TEST_MODE = 1; PLL_TEST_MODE = 1; PLL_RESET = 1; }
 V {PLL_RESET = 0; }
 V {PLL_RESET = 1; }
 }
}

If you need to initialize a port to X in the test_setup macro, the STIL assignment character
for this is N. An X indicates that outputs are measured and the result is masked.

Defining Basic Signal Timing
If you do not define the signal timing explicitly, DFT Compiler uses its own defaults.

Example 5-6 contains many additions to define signal timing. Line numbers have been
added for reference. Note:

• Lines 6–9. Defines some additional signal groups so that timing for all inputs or outputs
can be defined in just a few lines, instead of explicitly naming each port and its timing.

• Lines 12–28. Defines a waveform table with a period of 1,000 ns that defines the timing
to be used during nonshift cycles.

• Line 37. Adds the W statement to ensure that BROADSIDE_TIMING is used for V cycles
during the load_unload procedure.

• Line 48. Causes the test_setup macro to use BROADSIDE_TIMING.

Example 5-6 Defining Timing in the SPF

1. STIL;
2. UserKeywords PinConstraints;
3. PinConstraints { "TEST_MODE" 1; "PLL_TEST_MODE" 1; }
4. SignalGroups {
5. bidi_ports = '"D[0]" + "D[1]" + "D[2]" + "D[3]" + "D[4]"
 + "D[5]" + "D[6]" + "D[7]" + "D[8]" + "D[9]" + "D[10]" +
 "D[11]" + "D[12]" + "D[13]" + "D[14]" + "D[15]" ‘;
6. input_grp1 = 'SCAN_ENABLE + BIDI_DISABLE + TEST_MODE +
 PLL_TEST_MODE' ;
Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-27
Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-27

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
7. input_grp2 = 'SDI1 + SDI2 + DIN + "IRQ[4]"' ;
8. in_ports = 'input_grp1 + input_grp2';
9. out_ports = 'SDO2 + D1 + YABX + XYZ';
10. }
11. Timing {
12. WaveformTable "BROADSIDE_TIMING" {
13. Period '1000ns';
14. Waveforms {
15. CLOCK { P { '0ns' D; '500ns' U; '600ns' D; } }
 // clock
16. CLOCK { 01Z { '0ns' D/U/Z; } }
17. RESETB { P { '0ns' U; '400ns' D; '800ns' U; } }
 // async reset
18. RESETB { 01Z { '0ns' D/U/Z; } }
19. input_grp1 { 01Z { '0ns' D/U/Z; } }
20. input_grp2 { 01Z { '10ns' D/U/Z; } }
 // outputs are to be measured at t=350
21. out_ports { HLTX { '0ns' X; '350ns' H/L/T/X; } }
 // bidirectional ports as inputs are forced at t=20
22. bidi_ports { 01Z { '0ns' Z; '20ns' D/U/Z; } }
23. // bidirectional ports as outputs are measured at
 t=350
24. bidi_ports { X { '0ns' X; } }
25. bidi_ports { HLT { '0ns' X; '350ns' H/L/T; } }
26. }
27. } // end BROADSIDE_TIMING
28. }
29. ScanStructures {
30. ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
31. ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
32. ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
33. ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
34. } // end scan structures
35. Procedures {
36. "load_unload" {
37. W "BROADSIDE_TIMING" ;
38. V {CLOCK=0; RESETB=1; SCAN_ENABLE=1; BIDI_DISABLE=1;
 bidi_ports = \r16 Z;}
39. V {}
40. V { bidi_ports = \r4 1010 ; }
41. Shift {
42. V { _si=####; _so=####; CLOCK=P;}
43. }
44. } // end load_unload
45. } //end procedures
46. MacroDef {
47. "test_setup" {
48. W "BROADSIDE_TIMING" ;
49. V {TEST_MODE = 1; PLL_TEST_MODE = 1; PLL_RESET = 1;
50. BIDI_DISABLE = 1; bidi_ports = ZZZZZZZZZZZZZZZZ; }
51. V {PLL_RESET = 0; }
52. V {PLL_RESET = 1; }
Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-28

DFT Compiler Scan User Guide Version H-2013.03-SP4
53. } // end test_setup
54. } //end procedures

Defining the load_unload Procedure
The load_unload procedure contains information about placing the scan chains into a
shiftable state and shifting 1 bit through them. DFT Compiler creates this procedure if you
define the scan-enable information before you write out the STIL file. Example 5-7 shows
the syntax used to define scan chains.

Example 5-7 Defining Scan Chain Loading and Unloading in the SPF

STIL;
ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
 "load_unload" {
 V { CLOCK=0; RESETB=1; SCAN_ENABLE=1; }
 }
}

Defining the Shift Procedure
The shift procedure specifies how to shift the scan chains within the definition of the
load_unload procedure. The bold text shown in Example 5-8 defines the shift procedure.

Example 5-8 Defining the Scan Chain Shift Procedure in the SPF

STIL;
ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
 "load_unload" {
 V { CLOCK=0; RESETB=1; SCAN_ENABLE = 1; }
 Shift {
 V { _si=####; _so=####; CLOCK=P;}
 }
 }
}

Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-29
Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-29

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Defining an Initialization Protocol
If your design requires an initialization sequence to configure it for scan testing, you can
provide the initialization vectors through an initialization protocol. With an initialization
protocol, you provide specific vectors to initialize the design while letting the
create_test_protocol command complete the scan shifting steps of the protocol.

Use the following process to generate an initialization protocol:

1. Analyze the design to determine its test configuration requirements.

❍ Determine the initial state required and the initialization sequence necessary to
achieve this state.

❍ Determine the test configuration required to maintain this initial condition throughout
scan testing.

2. Generate a default test protocol file.

❍ Specify timing parameters if you require values other than the default.

❍ Specify test configuration requirements determined in the analysis step by using the
set_dft_signal command.

❍ Run create_test_protocol to generate the default protocol.

❍ Use the write_test_protocol command to write the ASCII protocol file.

3. Create the initialization protocol file.

Modify the initialization sequence in the test_setup section of the test protocol file.

4. Read in the initialization protocol.

First remove the existing protocol by using the remove_test_protocol command, and
then read the initialization protocol using the following command.

read_test_protocol -section test_setup

5. Rerun create_test_protocol to complete the test protocol.

Run test DRC.

See the design in Figure 5-3 for an illustration of the use of an initialization protocol.
Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-30

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 5-3 Design That Needs an Initialization Protocol

In this design, the clock signal, clk, is active low. For the clock signal to reach FF2, you need
to initialize it by pulsing clk one time so that the enable signal FF1_out is asserted. Because
the create_test_protocol command has no knowledge of this requirement, you need to
modify the generated protocol to include this special initialization sequence.

The initialization sequence generated by the create_test_protocol command looks like
the following:

"test_setup" {
 W "_default_WFT_";
 V { "CLK"=1; }
 V { "CLK"=1; "test_mode"=1; }
 }

If this initialization sequence has not been modified, test DRC gives the following violations:

4 PRE-DFT VIOLATIONS
 3 Uncontrollable clock input of flip-flop violations (D1)
 1 Clock not able to capture violation (D8)

The initialization sequence that is necessary to initialize the circuit is as follows:

"test_setup" {
 W "_default_WFT_";
 V { "CLK"=1; }
 V { "CLK"=1; "test_mode"=1; }
 V { "CLK"=P; "test_mode"=1; }
 V { "CLK"=1; "test_mode"=1; }

Test DRC requires that all clock signals are in their inactive state at the end of the
initialization sequence. When this initialization sequence is applied, test DRC indicates that
there are no test design rule violations.

test_mode

enable

clk

FF1

FF2
FF1_out
Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-31
Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-31

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
However, after the insert_dft command completes, this initialization sequence is lost. You
must reapply the same initialization sequence to ensure that post-scan insertion test DRC
reports no violations.

Table 5-2 shows the flows you should use with various types of test protocols.

Scan Shift and Parallel Measure Cycles
The standard strobe-before-clock protocol shifts all scan chains simultaneously. This
protocol allows scan shift output for the current pattern and scan shift input for the next
pattern to overlap. If scan groups are used, not all scan chains are required to shift
simultaneously. For more information on scan groups, see “Creating Scan Groups” on
page 7-100.

The process DFT Compiler uses to perform scan shift is determined by the scan style you
selected with the set_scan_configuration -style command or with the
test_default_scan_style variable.

For all scan styles, the parallel measure cycle is performed by application of data to nonclock
input ports, holding clocks inactive, and comparing data at output ports. The capture cycle
involves pulsing a clock. Nonclock input ports remain unchanged from the parallel measure
cycle; output ports and bidirectional ports are masked.

Table 5-2 Initialization Protocol Flows

If you have Use this flow

No test protocol set_dft_signal...
create_test_protocol
dft_drc

Only the test_setup section in
the protocol

set_dft_signal...
read_test_protocol -section test_setup
create_test_protocol
dft_drc

Full protocol read_test_protocol (no -section test_setup)
set_dft_signal (for clocks and asynchronous signals)
dft_drc
Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-32

DFT Compiler Scan User Guide Version H-2013.03-SP4
Multiplexed Flip-Flop Scan Style
For the multiplexed flip-flop scan style, scan shift is performed by execution of the following
steps n times, where n is the number of bits in the longest scan chain:

1. Assert the scan-enable signals.

2. Apply scan data at the scan input ports.

3. Compare scan data at the scan output ports.

4. Pulse the system clocks.

System clock ports are identified with the set_dft_signal command as ScanClock
signals.

During the parallel measure and capture cycles, test design rule checking treats the
scan-enable signal like any other parallel input; in some capture cycles, the captured data
can be from the scan path rather than the functional path. Because fault detection occurs
only during the parallel measure cycle and during comparison of captured data at the scan
output ports, treating the scan-enable signal as a parallel input allows inclusion of scan logic
and clock logic in the fault list and detection of faults on these nodes.

Clocked-Scan Scan Style
For the clocked-scan scan style, scan shift is performed by execution of the following steps
n times, where n is the number of bits in the longest scan chain:

1. Apply scan data at the scan input ports.

2. Compare scan data at the scan output ports.

3. Pulse the scan clock ports.

Scan clock ports are identified with the set_dft_signal command as
ScanMasterClock signals.

LSSD Scan Style
For the LSSD scan style, scan shift is performed by execution of the following steps n times,
where n is the number of bits in the longest scan chain:

1. Apply scan data at the scan input ports.

2. Compare scan data at the scan output ports.

3. Pulse the test master clock, and then pulse the slave clock.

Test master and slave clock ports are identified with the set_dft_signal command as
ScanMasterClock and ScanSlaveClock signals, respectively.
Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-33
Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-33

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Scan-Enabled LSSD Scan Style
For the scan-enabled LSSD scan style, scan shift is performed by execution of the following
steps n times, where n is the number of bits in the longest scan chain:

1. Assert the scan-enable signals.

2. Apply scan data at the scan input ports.

3. Compare scan data at the scan output ports.

4. Pulse the test master clock, and then pulse the slave clock.

Test master clock ports are identified with the set_dft_signal command as
ScanMasterClock signals. System clock ports, which are repurposed as slave test clock
ports in test mode, are also identified as ScanMasterClock signals but must have slave
test clock timing waveforms defined.

Examining a Test Protocol File
You can convert a test protocol file into an ASCII file that you can view and edit. To print this
test protocol file to a file, use the write_test_protocol command. The command syntax
is as follows:

write_test_protocol [-output test_protocol_file_name]
 [-test_mode mode_name]
 [-names verilog | verilog_single_bit]

Table 5-3 write_test_protocol Command Syntax

Option Description

-output
 test_protocol_file_name

Specifies the name of the ASCII output file. The
default file name is design_name.spf, where
design_name is the current design, and the .spf
extension identifies the file type as a STIL format test
protocol file.

-test_mode mode_name Specifies the CTL model test mode from which the
protocol is generated.
Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-34

DFT Compiler Scan User Guide Version H-2013.03-SP4
Note:
Do not use the write_test_protocol command before you run
create_test_protocol. If you do, you will get an error message to the effect that no
test protocol exists.

Example 5-9 shows the test protocol file for a multiplexed flip-flop design. This file was
generated by use of the write_test_protocol command after execution of test design rule
checking on the design.

Example 5-9 Test Protocol for Multiplexed Flip-Flop Design Example

STIL 1.0 {
 Design P2000.9;
}
Header {
 Title DFT Compiler 2003.06 STIL output;
 Date Thu Apr 10 14:30:34 2003 ;
 History {
 }
}
Signals {
 CDN In; CLK In; DATA In; IN1 In; TEST_SE In;
TEST_SI In;
 OUT1 Out; OUT2 Out;
}
SignalGroups {
 all_inputs = ‘ CDN + CLK + DATA + IN1 + TEST_SE +
 TEST_SI ’; // #signals=6
 all_outputs = ‘ OUT1 + OUT2 ’; // #signals=2
 all_ports = ‘ all_inputs + all_outputs ’; // #signals=8
 _pi = ‘ all_inputs ’; // #signals=6
 _po = ‘ all_outputs ’; // #signals=2
}
Timing {
 WaveformTable _default_WFT_ {

-names verilog |
 verilog_single_bit

Specifies the form of the names used in the STIL
procedure file. Names can be unchanged from
internal representation (the default). They can also
be modified as Verilog names or as Verilog names
compatible with the usage of the
verilogout_single_bit environment variable. In
all cases, the internal representation is not changed.
This option takes effect only in conjunction with
-test_mode options, when HSS is used. In all other
cases, the form of the names is determined by the
setting of the test_stil_netlist_format variable.

Table 5-3 write_test_protocol Command Syntax (Continued)

Option Description
Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-35
Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-35

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
 Period ‘100ns’;
 Waveforms {
 all_inputs { 0 { ‘5ns’ D; } }
 all_inputs { 1 { ‘5ns’ U; } }
 all_inputs { Z { ‘5ns’ Z; } }
 all_inputs { N { ‘5ns’ N; } }
 all_outputs { X { ‘0ns’ X; } }
 all_outputs { H { ‘0ns’ X; ‘95ns’ H; } }
 all_outputs { T { ‘0ns’ X; ‘95ns’ T; } }
 all_outputs { L { ‘0ns’ X; ‘95ns’ L; } }
 CLK { P { ‘0ns’ D; ‘45ns’ U; ‘55ns’ D; } }
 CDN { P { ‘0ns’ U; ‘45ns’ D; ‘55ns’ U; } }
 }
 }
}
PatternBurst __burst__ {
 PatList {
 __pattern__ {
 }
 }
}
PatternExec {
 PatternBurst __burst__ ;
}
Procedures {
 capture {
 W _default_WFT_ ;
 V { _pi =\r6 #; _po =\r2 #; }
 }
 capture_CLK {
 W _default_WFT_ ;
 forcePI : V { _pi =\r6 #; }
 measurePO : V { _po =\r2 #; }
 pulse : V { CLK =P; }
 }
 capture_CDN {
 W _default_WFT_ ;
 forcePI : V { _pi =\r6 #; }
 measurePO : V { _po =\r2 #; }
 pulse : V { CDN =P; }
 }
}
MacroDefs {
 test_setup {
 W _default_WFT_ ;
 V { CLK =0; }
 V { CDN =1; CLK =0; }
 }
}

Chapter 5: Pre-Scan Test Design Rule Checking
Creating Test Protocols 5-36

DFT Compiler Scan User Guide Version H-2013.03-SP4
Updating a Protocol in a Scan Chain Inference Flow
If you import an existing-scan netlist without any test attributes, test DRC can infer the scan
structures if you perform the following steps:

1. Specify test clocks and other test attributes in the design.

2. Create a test protocol.

3. Run the dft_drc command to infer scan structures.

If scan chain inference is successful, the protocol is updated to contain procedures to shift
the scan chain.

Masking Capture DRC Violations

By default, DFT Compiler excludes sequential cells with DRC violations from scan chains. In
some cases, such as spare cells that have constant data inputs, you can include violating
cells in scan chains.

DFT Compiler allows you to mask cells with certain capture DRC violation types, as
described in the following sections:

• Configuring Capture DRC Violation Masking

• Reporting Capture DRC Violation Masking

• Resetting Capture DRC Violation Masking

Configuring Capture DRC Violation Masking
You can mask the following capture DRC violation types during pre-DFT DRC:

• TEST-504 – Cell always captures constant zero value

• TEST-505 – Cell always captures constant one value

• D17 – Cell has a clock, set, or reset input pin that cannot capture data

When a violation type is masked, violating cells are included in scan chains. To mask a
violation type, use the set_dft_drc_rules command. The syntax is

set_dft_drc_rules
 [-allow drc_list]
 [-ignore drc_list]
 [-cell cell_list]
Chapter 5: Pre-Scan Test Design Rule Checking
Masking Capture DRC Violations 5-37
Chapter 5: Pre-Scan Test Design Rule Checking
Masking Capture DRC Violations 5-37

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
The -allow and -ignore options both allow you to specify one or more violation types to
mask. The difference is as follows:

• -allow – DFT allows violating cells to be included in scan chains, but the violations are
still reported

• -ignore – DFT completely ignores the violating cells; the violating cells are included in
scan chains and the violations are not reported

For example, the following command includes constant-capturing sequential cells in scan
chains (with warnings issued during pre-DFT DRC):

dc_shell> set_dft_drc_rules -allow {TEST-504 TEST-505}

By default, the specification applies globally to the entire design. To limit the specification to
certain cells, use the -cell option. For example, the following command includes specific
noncapturing sequential cells in scan chains (with no warnings):

dc_shell> set_dft_drc_rules -ignore {D17} \
 -cell [get_object_name [get_cells {CONFIG_reg[*]}]]

You can issue multiple set_dft_drc_rules commands. The tool applies all command
specifications cumulatively. Cell-specific specifications take precedence over global
specifications.

Reporting Capture DRC Violation Masking
You can use the report_dft_drc_rules command to report masking specifications
previously applied with the set_dft_drc_rules command. The syntax is

report_dft_drc_rules
 [-violation drc_list]
 [-cell cell_list]

By default, all previously applied command specifications are reported. For example,

dc_shell> report_dft_drc_rules

 Violation Default Specified Range/
 Name Action Action Cell list

 TEST-504 omit allow all cells
 TEST-505 omit allow BLK1
 omit allow BLK2
 omit ignore USPAREGATES

You can use the -violation option to restrict the report to certain violation types. For
example,

dc_shell> report_dft_drc_rules -violation {TEST-504}
Chapter 5: Pre-Scan Test Design Rule Checking
Masking Capture DRC Violations 5-38

DFT Compiler Scan User Guide Version H-2013.03-SP4
 Violation Default Specified Range/
 Name Action Action Cell list

 TEST-504 omit allow all cells

You can use the -cell option to restrict the report to certain cell-specific command
specifications. For example,

dc_shell> report_dft_drc_rules -cell {BLK1 BLK2}

 Violation Default Specified Range/
 Name Action Action Cell list

 TEST-505 omit allow BLK1
 omit allow BLK2

Resetting Capture DRC Violation Masking
You can use the reset_dft_drc_rules command to remove masking specifications
previously applied with the set_dft_drc_rules command. The syntax is

reset_dft_drc_rules
 [-violation drc_list]
 [-cell cell_list]

By default, all previously applied command specifications are removed. For example,

dc_shell> reset_dft_drc_rules

You can use the -violation option to remove only specifications for certain violation types.
For example,

dc_shell> reset_dft_drc_rules -violation {TEST-504 TEST-505}

You can use the -cell option to remove only certain cell-specific command specifications.
For example,

dc_shell> reset_dft_drc_rules -cell {BLK1 BLK2}
Chapter 5: Pre-Scan Test Design Rule Checking
Masking Capture DRC Violations 5-39
Chapter 5: Pre-Scan Test Design Rule Checking
Masking Capture DRC Violations 5-39

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Chapter 5: Pre-Scan Test Design Rule Checking
Masking Capture DRC Violations 5-40

6
Architecting Your Test Design 6

This chapter describes the basic processes involved in configuring and architecting your test
design for scan insertion.

This chapter includes the following sections:

• Configuring Your DFT Architecture

• Architecting Scan Chains

• Architecting Scan Signals

• Architecting Test Clocks

• Modifying Your Scan Architecture

• Post-Scan Test Design Rule Checking

The standard DFT architecture process consists of configuring your architecture, building
scan chains, connecting test signals, setting test clocks, and analyzing your configurations
before and after scan insertion. Figure 6-1 shows the basic flow of the scan chain generation
process.

6-1

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-1 Scan Chain Generation Process

Specify Preview Assemble

 Scan

User-generated
dc_shell script

DFT Compiler-

dc_shell script

Prescan

generated

design

design

Reports
Chapter 6: Architecting Your Test Design
6-2

DFT Compiler Scan User Guide Version H-2013.03-SP4
Configuring Your DFT Architecture

Before you run scan insertion, you need to configure your DFT architecture. This section
includes the following subsections related to the configuration process:

• Defining Your Scan Architecture

• Specifying Individual Scan Paths

• Previewing Your Scan Design

Defining Your Scan Architecture
To define your scan architecture, you need to set design constraints, define any test modes,
specify test ports, and identify and mark any cells that you do not want to have scanned.

Use the following script for the basic scan assembly flow:

current_design top

specify the scan architecture
set_scan_configuration -chain_count 4

create the test protocol
create_test_protocol

check pre-DFT DRC test design rules
dft_drc

preview the scan structures
preview_dft

assemble the scan structures
insert_dft

check post-DFT DRC test design rules
dft_drc

Scan configuration is the specification of global scan properties for the current design. Use
the set_scan_configuration command to specify global scan properties such as

• Scan style and methodology

• Length and number of scan chains

• Handling of multiple clocks

• Internal and external three-state nets

• Bidirectional ports
Chapter 6: Architecting Your Test Design
Configuring Your DFT Architecture 6-3
Chapter 6: Architecting Your Test Design
Configuring Your DFT Architecture 6-3

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Note:
This list of the set_scan_configuration command’s options is not exhaustive. For a
complete listing, as well as a description of each option’s purpose, see the man page.

DFT Compiler automatically generates a complete scan architecture from the global
properties that you have defined.

Setting Design Constraints
You should set constraints before running the insert_dft command because it minimizes
constraint violations. Use Design Compiler commands to set area and timing constraints on
your design. If you have already compiled your design, you do not need to reset your
constraints. For more information about setting area and timing constraints on your design,
see the Synopsys Timing Constraints and Optimization User Guide.

Defining Constant Input Ports During Scan
If your design requires a signal to be held constant to satisfy design rules or to enable circuit
paths, you need to use the set_dft_signal command. For more information, see Chapter
5, “Pre-Scan Test Design Rule Checking.”

Specifying Test Ports
The insert_dft command adds scan signals that use existing ports. These ports are
identified by using the set_dft_signal command. If the tool cannot find existing ports that
it can use as test ports, it adds new ports to the design. The insert_dft command names
the new ports according to the following variables:

• test_clock_port_naming_style

• test_scan_clock_a_port_naming_style

• test_scan_clock_b_port_naming_style

• test_scan_clock_port_naming_style

• test_scan_enable_inverted_port_naming_style

• test_scan_enable_port_naming_style

• test_clock_in_port_naming_style

• test_clock_out_port_naming_style
Chapter 6: Architecting Your Test Design
Configuring Your DFT Architecture 6-4

DFT Compiler Scan User Guide Version H-2013.03-SP4
Specifying Individual Scan Paths
DFT Compiler supports detailed specification of individual scan paths. Use the following
commands to specify the scan architecture:

• set_scan_element

Use this command to specify sequential elements that are to be excluded from scan
replacement. By default, all nonviolating sequential cells with equivalent scan cells are
scan-replaced. You can specify leaf cells, hierarchical cells, references, library cells, and
designs.

Use the set_scan_element command sparingly. For best results, use the command
only on leaf or hierarchical cells.

• set_scan_path

Use this command to specify properties specific to a scan chain, such as name,
membership, chain length, clock association, and ordering.

• set_dft_signal

Use this command to specify desired port connections and scan chain assignments for
test signals.

• set_autofix_element

Use this command to control particular bidirectional ports on the top level of the current
design.

In case you are unfamiliar with some of the scan path components used in the scan
specification commands, Figure 6-2 illustrates the scan path components.
Chapter 6: Architecting Your Test Design
Configuring Your DFT Architecture 6-5
Chapter 6: Architecting Your Test Design
Configuring Your DFT Architecture 6-5

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-2 Scan Path Components

Figure 6-2 shows a single scan path that starts at port test_si, which receives the
test_scan_in scan signal, and ends at port test_so, which drives the test_scan_out scan
signal. Cells instA/dff1, instA/dff2, instB/dff1, and instB/dff2 are examples of scan elements.
The shift register in instC is a defined scan segment. In the bottom-up flow, the scan chains
in instA and instB are considered subchains or inferred scan segments. The thick lines
represent scan links. The latch (instance latch1) is also a scan link.

The following sections discuss some of the situations you might encounter during scan
specification. See Chapter 4, “Performing Scan Replacement,” for scan style selection
considerations.

Previewing Your Scan Design
Use the preview_dft command to preview your scan design. The command generates a
scan chain design that satisfies scan specifications on the current design and displays the
scan chain design. This allows you to preview your scan chain designs without synthesizing
them and to change your specifications to explore the design space as necessary.

instA

top

test_so

test_si

clk1

Si So

latch1

clk2 ~Q

D Q

dff2

clk2

instC

~Q

D Q

dff1

clk1

clk1 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

instB

clk2

clk2 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

D

Si

Scan link

Scan segment

Scan element
Chapter 6: Architecting Your Test Design
Configuring Your DFT Architecture 6-6

DFT Compiler Scan User Guide Version H-2013.03-SP4
When you are using the dft_drc command, a valid protocol must exist before you run the
preview_dft command. This is created by the create_test_protocol command. If no
DFT DRC has been performed, the preview_dft command runs it automatically. The
preview_dft and insert_dft commands use the same algorithms to design scan chains.

Example 6-1 shows a report example generated by the preview_dft command.

Example 6-1 Report Generated by the preview_dft Command

**
Preview_dft report
For : 'Insert_dft' command
Design : sub
Version: G-2012.06
Date : Wed Jun 20 04:49:18 2012
**

Number of chains: 2
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: no_mix

Scan chain '1' (test_si1 --> Z[15]) contains 8 cells

Scan chain '2' (test_si2 --> Z[7]) contains 8 cells

You can use the preview_dft command before DFT insertion to report a summary of the
scan chains you are going to get. You can also use the report_scan_path -view
existing_dft -chain all command after DFT insertion to report a summary of the scan
chains that have been inserted. However, the preview_dft command displays additional
types of information beyond scan path information, such as test point, test signal, and scan
compression information.

Architecting Scan Chains

The set_scan_configuration command enables you to specify the scan chain design.
This command controls almost all aspects of how the insert_dft command makes designs
scannable. Exceptions are specific to particular scan chains and are specified in the
set_scan_path command options.

This section has the following subsections related to architecting scan chains:

• Controlling the Scan Chain Length

• Determining the Scan Chain Count

• Defining Individual Scan Chain Characteristics

• Balancing Scan Chains
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-7
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-7

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
• Controlling the Routing Order

• Preventing Half-Cycle Paths Between Hierarchical Scan Chains

• Routing Scan Chains and Global Signals

• Rerouting Scan Chains

• Stitching Scan Chains Without Optimization

• Using Existing Subdesign Scan Chains

• Uniquifying Your Design

• Reporting Scan Path Information on the Current Design

Controlling the Scan Chain Length
You can globally specify the length of scan chains. Controlling the length of the scan chain
can help to balance the scan configuration in a design that has bottom-up or
system-on-a-chip (SoC) scan insertion.

Specifying the Global Scan Chain Length Limit
Setting the scan chain length limit helps with bottom-up scan insertion by balancing scan
chains more efficiently at the top level. Setting a limit on the length of scan chains allows for
design constraints related to pin availability or test vector depth.

Use the set_scan_configuration -max_length command to specify the length of a scan
chain:

dc_shell> set_scan_configuration -max_length 7

For example, if you set the scan chain length limit to 7 registers for a single-clock,
single-edge design with 29 flip-flops, the insert_dft command creates five scan chains
with lengths of 6, 6, 6, 6, and 5 registers. This scan chain allocation meets the scan chain
length limit while also balancing the scan chain lengths as closely as possible.

Note:
Specifying both the -max_length option and the -chain_count option (described in the
next section) might result in conflicting scan chain allocations. In such a case, the
-max_length option takes precedence.

Specifying the Global Scan Chain Exact Length
You can specify an exact length for all scan chains by using the -exact_length option of
the set_scan_configuration command.
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-8

DFT Compiler Scan User Guide Version H-2013.03-SP4
For example, suppose your design has 420 flip-flops, and you want an exact length of 80
flip-flops per scan chain. In this case, specifying set_scan_configuration
-exact_length 80 creates five chains with 80 flip-flops and one chain with 20 flip-flops.

Warning:
The exact length feature is meant to be used only with standard scan, including standard
scan configured for multiple test modes. It is not currently supported with DFTMAX
compressed scan modes. Do not use this feature with DFTMAX scan compression.

Note the following properties of this feature:

• This option disables scan chain balancing.

• The -exact_length option takes precedence over both the -max_length and
-chain_count options.

• The report_scan_configuration command reports the value of the exact length
configuration.

• The user-specified chain configuration is preserved.

• The quality of results cannot be guaranteed when this option is used on designs
containing complex segments.

Determining the Scan Chain Count
You can specify the number of scan chains. DFT Compiler attempts to create the specified
number of scan chains while minimizing the longest scan chain length. Use these questions
to decide how many scan chains to request:

• How many scan chains does your semiconductor vendor allow?

Many semiconductor vendors restrict the maximum number of scan chains due to
software or tester limitations. Before performing scan specification, check with your
semiconductor vendor for the maximum number of scan chains supported.

• How many clock domains exist in your design?

To prevent timing problems on the scan path in multiplexed flip-flop designs, allocate a
scan chain for each clock domain (DFT Compiler default behavior). DFT Compiler
considers each edge of a clock a unique clock domain. Multiple clock domains do not
affect the number of scan chains in scan styles other than multiplexed flip-flop.

• How much time will it take to test your design?

Because the test time is proportional to the length of the longest scan chain, increasing
the number of scan chains reduces the test time for a design.
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-9
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-9

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Use the set_scan_configuration -chain_count command to specify the number of scan
chains.

dc_shell> set_scan_configuration -chain_count 7

By default, DFT Compiler generates

• One scan chain per clock domain if you select the multiplexed flip-flop scan style

• One scan chain if you select any other scan style

Note:
The -max_length and -chain_count options are mutually exclusive. If you use both
options, the -max_length option takes precedence over the -chain_count option.

Defining Individual Scan Chain Characteristics
Typically, scan chains are configured using global chain count or chain length settings. Use
the set_scan_path command to specify one or more additional requirements for individual
scan chains in the current design.

The set_scan_path command enables you to

• Specify a name for a scan chain

• Allocate scan cells, scan segments, scan links, and subdesign scan chains to scan
chains and specify the ordering of the scan chain

• Specify a dedicated scan-out port

• Limit a scan chain’s elements to only those components you specify or enable DFT
Compiler to balance scan chains by adding more elements

• Specify individual exact scan chain lengths

• Assign scan chains to clock domains

Scan chain elements cannot belong to more than one chain. The command options are not
incremental. Where set_scan_path commands conflict, the preview command
(preview_dft) and scan insertion command (insert_dft) apply the most recent
command.

For example, the following command sets the length of an individual scan chain:

dc_shell> set_scan_path C1 -exact_length 40
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-10

DFT Compiler Scan User Guide Version H-2013.03-SP4
Balancing Scan Chains
The insert_dft command always attempts to balance the number of cells in each scan
chain. However, some scan chain requirements can limit or disable balancing, such as

• Disabling clock mixing or clock edge mixing

• Defining scan chains with the set_scan_path command

• Using test models

• Using a hierarchical DFT insertion flow

• Specifying a global scan chain exact length

When overriding the default behavior, always use the preview_dft command to verify that
the result meets your requirements.

Multiple Clock Domains
The clock edge of a scan cell represents both the clock identity and the active clock edge of
the cell. For multiplexed flip-flop designs, DFT Compiler allocates cells to scan chains based
on clock edges by default. You can override this default behavior by using the
set_scan_configuration -clock_mixing command.

For example, assume that you have a design with three clock domains and your desired
scan architecture contains two balanced scan chains.

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] \
 -port {clk1 clk2}

dc_shell> set_scan_configuration -chain_count 2

In the default case shown in Figure 6-3, DFT Compiler overrides your request for two chains
and generates three scan chains, one for each clock edge (clk1, positive-edge clk2,
negative-edge clk2). Because the clock domains contain unequal numbers of cells, DFT
Compiler generates unbalanced scan chains.
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-11
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-11

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-3 Unbalanced Scan Chains Due to Multiple Clock Domains

You can reduce the number of scan chains and achieve slightly better balancing by mixing
clock edges within a single chain.

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] \
 -port {clk1 clk2}

dc_shell> set_scan_configuration -chain_count 2

dc_shell> set_scan_configuration -clock_mixing mix_edges

Mixing clock edges in a single scan chain produces a small timing risk. DFT Compiler
automatically orders the cells within the scan chain so the cells clocked later in the cycle
appear earlier in the scan chain, resulting in a functional scan chain. Figure 6-4 shows the
scan architecture when you allow edge mixing.

INST_A
TOP

test_so2

test_si1

clk1

clk1 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

INST_

clk1

clk1 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

INST_C

clk2

clk2 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

test_si3 test_si2

test_so1 test_so3
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-12

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-4 Better Balancing With Mixed Clock Edges

You can balance the scan chains by mixing clocks:

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] \
 -port {clk1 clk2}

dc_shell> set_scan_configuration -chain_count 2

dc_shell> set_scan_configuration -clock_mixing mix_clocks

Mixing clock edges in a single scan chain can produce a large timing risk. To reduce this risk,
DFT Compiler adds lock-up latches to the scan path wherever clock skew issues might
occur. Figure 6-5 shows the resulting scan architecture.

instA
top

test_so2

test_si1

clk1

clk1 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

instB

clk1

clk1 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

instC

clk2

clk2 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

test_si2

test_so1
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-13
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-13

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-5 Balanced Scan Chains With Mixed Clocks

See “Architecting Test Clocks” on page 6-48 for details about scan lock-up latches and other
clock-mixing considerations.

Multibit Components and Scan Chains
You can specify whether multibit components are implicitly treated as synthesizable
segments by using the set_scan_configuration
-preserve_multibit_segment command. This command applies globally to the current
design and overrides any specification on subdesigns. By default, multibit components are
implicitly treated as synthesizable segments. Note, for example, the command

dc_shell> set_scan_configuration \
 -preserve_multibit_segment false

This command ensures that each bit of all sequential multibit components is treated
individually when the insert_dft command builds scan chains. Scan replacement is still
performed homogeneously for each multibit component.

instB
top

test_so2

test_si1

clk1

clk1 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

instC

clk2

clk2 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

instA

clk1

clk1 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

test_si2

test_so1

clk1

Si So

latch1
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-14

DFT Compiler Scan User Guide Version H-2013.03-SP4
Controlling the Routing Order
Use the set_scan_path command to control the routing order explicitly. You can specify the
routing order of nonscan as well as scanned sequential cells. Each set_scan_path
command generates a scan chain; DFT Compiler uses the first command argument as the
scan chain name. If you enter multiple set_scan_path commands with the same scan chain
name, DFT Compiler uses only the last command entered.

You can provide partial or complete scan ordering specifications. Use the -complete true
option to indicate that you have completely specified a scan chain. DFT Compiler does not
add cells to a completely specified scan chain. If you provide a partial scan-ordering
specification, DFT Compiler might add cells to the scan chain. DFT Compiler places the
cells specified in a partial ordering at the end of the scan chain.

DFT Compiler validates the specified scan ordering. The checks performed by DFT
Compiler include

• Cell assignment

DFT Compiler verifies that you have not assigned a cell to more than one scan chain. A
violation triggers the following error message during execution of the set_scan_path
command:

Error: Scan chains ’%s’ and ’%s’ have common elements. (TESTDB-256)
Common elements are:
 %s

DFT Compiler discards the second scan path specification, keeping the first scan path
specification which contains the common element.

• Clock ordering

DFT Compiler verifies that the active clock edge of the next scan cell occurs concurrently
or before the active clock edge of the current scan cell or that the active edge can be
synchronized with a scan lock-up latch.

If your multiplexed flip-flop design violates this requirement, DFT Compiler reorders the
invalid mixed-clock scan chains and triggers the following warning message during
execution of the preview_dft command:

Warning: User specification of chain ’%s’ has been reordered.
(TEST-342)

• Clock mixing

DFT Compiler verifies that all cells on a scan path have the same clock unless you have
specifically requested clock mixing. A violation triggers the following warning message
during execution of the preview_dft command:

Warning: Chain ’%s’ has elements clocked by different clocks.
(TEST-353)
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-15
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-15

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
DFT Compiler creates the requested scan chain. Unless you have disabled scan lock-up
latch insertion, DFT Compiler inserts a scan lock-up latch between clock domains.

• Black-box cells

DFT Compiler verifies that the specified cells are valid scan cells. If a sequential cell has
a test design rule violation or has a scan_element false attribute, DFT Compiler
considers it a black-box cell. A violation triggers the following warning message during
execution of the preview_dft command:

Warning: Cannot add ’%s’ to chain ’%s’. The element is not being
scanned. (TEST-376)

DFT Compiler creates the requested scan chain without the violating cells.

Preventing Half-Cycle Paths Between Hierarchical Scan Chains
In some cases, hierarchical blocks can contain scan chains with a mix of positive
edge-triggered and negative edge-triggered flip-flops. When these block-level scan chains
are combined at a higher level in the design hierarchy to form longer scan chains, half-cycle
paths across clock edges might be created between the scan chains. Meeting timing for
these half-cycle scan chain paths can be challenging at higher frequencies, especially for
chips with long top-level routes between blocks.

To avoid these half-cycle paths when block-level scan chains are combined, use the
-add_test_retiming_flops option of the set_scan_configuration command. For
example,

dc_shell> set_scan_configuration -add_test_retiming_flops begin_and_end

When this option is specified for block-level scan chain insertion, flip-flops triggering on the
leading edge of the test clock are added as needed to any scan chains that begin or end with
trailing-edge-triggered flip-flops. For return-to-zero clocks, rising-edge flip-flops are used to
retime to the leading edge. For return-to-one clocks, falling-edge flip-flops are used to retime
to the leading edge. The tool automatically chooses the edge-triggered retiming cell from the
target library.

Valid keywords for the -add_test_retiming_flops option are begin_and_end,
begin_only, end_only, and none. The default is none, which disables retiming register
insertion.
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-16

DFT Compiler Scan User Guide Version H-2013.03-SP4
Table 6-1 shows the retiming behaviors provided by the -add_test_retiming_flops
option.

To report the locations where these retiming flip-flops are to be added, use the preview_dft
command.

If you generate a SCANDEF file for a design with retiming flip-flops, the retiming flip-flops are
not included between the START and STOP points in the SCANDEF file. Only the original
design scan cells are included between the START and STOP points.

Routing Scan Chains and Global Signals
Most scan cells have both a scan output pin (test_scan_out) and an inverted scan output pin
(test_scan_out_inverted) defined in the logic library. If the functional path through a
sequential cell has timing constraints, DFT Compiler automatically selects the scan output
pin with the most timing slack for use as the scan output. To disable this behavior, set the
test_disable_find_best_scan_out variable to true.

Scan chain allocation and ordering might differ between a top-down implementation and a
bottom-up implementation because

• DFT Compiler does not modify subdesign scan chains unless explicitly specified in your
scan configuration.

• DFT Compiler overrides alphanumeric ordering to provide a shared scan output
connection on the current design but not on subdesigns.

Table 6-1 Retiming Behaviors Provided by the -add_test_retiming_flops Option

If the scan chain begin_only end_only begin_and_end

Begins with a
leading-edge flip-flop

Begins with a
trailing-edge flip-flop

Adds retiming flip-flop to
beginning of scan chain

Adds retiming flip-flop to
beginning of scan chain

Ends with a
leading-edge flip-flop

Ends with a
trailing-edge flip-flop

Adds retiming flip-flop to
end of scan chain

Adds retiming flip-flop to
end of scan chain
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-17
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-17

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Rerouting Scan Chains
The scan specification process previously discussed enables both initial routing and
rerouting of your design. However, the specify-preview loop runs faster than the
specify-synthesize loop. Try to avoid rerouting by iterating through the specify-preview loop
until the scan architecture meets your requirements.

To optimize the design during scan assembly, DFT Compiler

• Performs scan-specific optimizations to reduce the timing impact of scan routing.

In many cases, the scan path uses the functional output as the scan output. The scan
path routing increases the output load on the functional output. If you used test-ready
compile for scan replacement, this additional loading is compensated for during
optimization. If you used constraint-optimized scan insertion, DFT Compiler uses
focused optimization techniques during scan assembly to minimize the impact of the
additional load on the overall design performance.

• Replaces unrouted scan cells with their nonscan equivalents.

If you used test-ready compile for scan replacement, your design might contain unrouted
scan cells. These unrouted scan cells occur because the cell has a test design rule
violation.

DFT Compiler replaces these unrouted scan cells with their nonscan equivalents during
execution of the insert_dft command.

Your design might contain sequential cells that are defined in the logic library as scan
cells but can also implement functional logic in your design. These cells have functional
connections to both the data and scan inputs, and DFT Compiler does not modify these
cells during scan assembly.

• Fixes hold time violations on the scan path if the clock net has the fix_hold attribute.

Stitching Scan Chains Without Optimization
In some circumstances, you might want to stitch your design’s scan chains together but
avoid the optimization step. This process is referred to as “rapid scan synthesis.” Such
circumstances might include

• Stitching completed subdesigns together

• Performing synthesis and scan insertion in the logic domain and optimizations in the
physical domain

• Performing analysis on the design
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-18

DFT Compiler Scan User Guide Version H-2013.03-SP4
Specifying a Stitch-Only Design
When DFT Compiler performs scan stitching without optimization, it still performs
comprehensive logic DFT design rule checks, but it eliminates the runtime-intensive
synthesis mapping, timing violation fixing, and design rule fixing steps.

Consequently, the design is only stitched and no further optimizations are performed on the
design.

To enable scan stitching without optimization, use the following command:

dc_shell> set_scan_replacement

Mapping the Replacement of Nonscan Cells to Scan Cells
You might want to stitch a design that has not been scan-replaced. The
set_dft_insertion_configuration -synthesis_optimization none command can
perform scan replacement on designs of this sort.

If a simple one-to-one mapping of a nonscan to a scan cell is not available in the library, DFT
Compiler performs a cell decomposition followed by a sequential mapping algorithm. You
can avoid this step by using the following command:

dc_shell> set_scan_replacement \
 -nonscan nonscan_cell_list \
 -multiplexed_flip_flop scan_cell

The options in this command should always be specified as a pair. If they are not, an error
results. Many cells can be listed in the -nonscan option, but only one cell can be listed in the
-multiplexed_flip_flop option. You can use the -lssd option in place of the
-multiplexed_flip_flop option.

If you use this command and a scan cell definition exists in the ASIC library, the mapping you
specified with the set_scan_replacement command overrides the library definition. This
command is global in nature; it affects the entire design.

For example, the scan cell DFFS1 is a direct mapping of the nonscan cell DFFD1, but with
scan pins. To specify the mapping of the DFFD1 nonscan cell to the DFFS1 scan cell, use
the following command:

dc_shell> set_scan_replacement -nonscan DFFD1 \
 -multiplexed_flip_flop DFFS1

Few-Pins-to-Many-Pins Scan Cell Replacement Situation

If you select a scan cell that has more pins than the nonscan cell it replaces, the extra pins
are tied to the inactive state and a warning is issued. You can fix this problem by respecifying
a more appropriate cell with the set_scan_replacement command.
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-19
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-19

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-6 Few-to-Many Scenario (Accepted)

In Figure 6-6, the replacement cell has more inputs and outputs than required by the
nonscan cell. The unused pins of the scan cell are left unconnected.

Many-Pins-to-Few-Pins Scan Cell Replacement Scenario

Alternatively, if you select a scan cell that has fewer pins than the nonscan cell it replaces,
the extra pins are left unconnected. To avoid problems with incorrect logic, an error message
is issued and the replacement does not occur. You can fix this problem by respecifying a
more appropriate cell with the set_scan_replacement command.

In Figure 6-7, for example, the clear and reset pins do not exist on the scan cell. They are
left unconnected, causing incorrect logic.

Figure 6-7 Many-to-Few Scenario (Rejected)

D Q
D

Q
data1

scan_in
scan_en

clk

SI
SE

RST
SO

CLR
out1

scan_outS
D

F
F

1Rout1data1

clk D
F

F
1

set_scan_replacement -nonscan DFF1\
 -multiplexed_flip_flop SDFF1R

RST

CLR

clear

reset

clear

reset

?

?

D Q out1data1

clk D
F

F
1R

D
Q

data1
scan_in

scan_en
clk

SI
SE

SO

out1

scan_outS
D

F
F

1

set_scan_replacement -nonscan DFF1R\
 -multiplexed_flip_flop SDFF1
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-20

DFT Compiler Scan User Guide Version H-2013.03-SP4
Criteria for Conversion Between Nonscan and Scan Cells
This section describes the conditions under which

• A sequential cell is excluded from the DRC violations

• A sequential cell is excluded from the scan chains

• A nonscan cell becomes a scan cell

• A scan cell is unscanned

DRC Violation Report (dft_drc)

A cell XYZ should be reported as a valid nonscan cell by DRC if the following command is
used:

dc_shell> set_scan_element false XYZ

Scan Architect (insert_dft)

A cell XYZ will not be part of the scan chains if any of the following conditions are met:

• The following command is used:

dc_shell> set_scan_element false XYZ

• The cell XYZ is DRC violated

• The following command is used:

dc_shell> set_scan_configuration -exclude_elements XYZ

Note:
You use set_scan_configuration -exclude_elements to prevent flip-flops from
being stitched into the scan chains. The difference between using
set_scan_configuration -exclude_elements and set_scan_element false is
that the former command does not unscan the specified flip-flops during insert_dft
whereas the latter command does unscan the flip-flops.

Scan Replacement (insert_dft)

A nonscan flip-flop cell, FF, will become a scan cell in either of the two following cases:

• Both of the following conditions are met:

❍ The nonscan flip-flop cell is not DRC violated

❍ The following command is used:

 dc_shell> set_scan_element true FF
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-21
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-21

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
• Both of the following conditions are met:

❍ The following command is used:

 dc_shell> set_scan_element true FF

❍ The following command is used:

 dc_shell> set_scan_configuration -exclude_elements FF

A scan cell, SFF, will be converted to a nonscan cell in either of the two following cases:

• The following command is used:

dc_shell> set_scan_element false SFF

• Both of the following conditions are met:

❍ The scan cell, SFF, is DRC violated

❍ The following command is used:

 dc_shell> set_dft_insertion_configuration \
 -unscan true

Using Existing Subdesign Scan Chains
A subdesign scan chain uses subdesign ports for all test signals. DFT Compiler can infer
subdesign scan chains during test design rule checking.

To reuse existing subdesign scan chains, follow these steps:

• Set the current design to the subdesign containing the existing scan chain.

• Use the set_dft_signal command to identify the existing scan ports.

• Create a test protocol by using the create_test_protocol command.

• Set the current design to the design where you are assembling the scan structures.

• Use the set_scan_path command to control the scan chain connections, if desired.

For example, subdesign sr in Figure 6-8 contains a shift register. The shift register performs
a serial shift function, so DFT Compiler can use this existing structure in a scan chain. The
scan input signal connects to subdesign port sr_D. The scan output signal connects to
subdesign port sr_Q. The shift register always performs the serial shift function, so the shift
register does not need a scan-enable signal.
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-22

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-8 Subdesign Scan Chain Example Before Scan Insertion

Use the following command sequence to infer the subdesign scan chain in module sr:

dc_shell> current_design sr
dc_shell> set_dft_signal -view spec -port sr_D -type ScanDataIn
dc_shell> set_dft_signal -view spec -port sr_Q -type ScanDataOut
dc_shell> create_test_protocol
dc_shell> dft_drc

Use the following command sequence to include this scan chain in a top-level scan chain:

dc_shell> current_design top
dc_shell> create_test_protocol
dc_shell> dft_drc
dc_shell> insert_dft
dc_shell> dft_drc

Figure 6-9 shows the top-level scan chain, which includes the subdesign scan chain. DFT
Compiler added a multiplexer, controlled by the scan-enable signal, to select between the
functional data input and the scan input. The hierarchical cell name determines the location
of the subdesign scan chain in the top-level scan chain.
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-23
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-23

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-9 Subdesign Scan Chain Example After Scan Insertion

Uniquifying Your Design
When you run the insert_dft command, DFT Compiler automatically assigns a unique
name to any subdesigns that changed during the scan insertion process. The default
naming convention saves subdesign A as A_test_1. If two instances of subdesign A are
different, they are saved as A_test_1 and A_test_2. The following scenarios illustrate
examples in which unique names are assigned to instances of a subdesign:

• You specify a different scan ordering in each instance of the same reference design.

For example, if you route and rebalance a design so that two instances of the subdesign
have different scan chain ordering, the insert_dft command uniquifies the design.

• The insert_dft command identifies different solutions during constraint optimization
and design rule fixing.

Constraint optimization and design rule fixing are features of the insert_dft command.
To eliminate unnecessary uniquification, turn off these features by entering the following
commands:

dc_shell> set_dft_insertion_configuration \
 -synthesis_optimization none

• There are scan violations in one instance but not in another instance, and insert_dft
repairs one but not the other.

You can choose the suffix that gets appended to the design name to create the unique
name. The naming convention for the suffix appended to the design name is controlled by
the following command:

set insert_test_design_naming_style name

IP1
IP2

test_si

test_se
clk

test_so

OP1
Chapter 6: Architecting Your Test Design
Architecting Scan Chains 6-24

DFT Compiler Scan User Guide Version H-2013.03-SP4
In the previous example, the default name is design_name_test_counter.

Note:
To prevent uniquification of your design, enter the command:

dc_shell> set_dft_insertion_configuration \
 -preserve_design_name true

Reporting Scan Path Information on the Current Design
Use the report_scan_path command to display scan path information for the current
design.

Note:
To show changes caused by running the insert_dft command, you must run the
dft_drc command before the report_scan_path command. Running an incremental
compile or any other command that changes the database causes the dft_drc results
to be discarded. In such a case, you need to run dft_drc again before you use
report_scan_path.

Example 6-2 shows the type of information displayed by the report_scan_path
-chain all command.

Example 6-2 Scan Path Information Displayed by the report_scan_path Command
==
AS BUILT BY insert_dft
==

Scan_path Len ScanDataIn ScanDataOut ScanEnable MasterClock SlaveClock
----------- ---- ----------- ----------- ----------- ----------- -----------
I 1 22 test_si1 test_so1 test_se CLK -
I 2 21 test_si2 test_so2 test_se CLK -
I 3 21 test_si3 test_so3 test_se CLK -

For more information on the options of the report_scan_path command, see the man
pages.

Architecting Scan Signals

For test design rule checking to recognize test ports in your design, your scan-inserted
design must have appropriate signal_type attributes on the test ports. If you are using your
own placeholder test ports, you must set these attributes with the set_dft_signal
command. If the insert_dft command creates any needed ports, these attributes are
automatically set.
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-25
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-25

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
The following topics discuss the process for architecting scan signals:

• Specifying Scan Signals for the Current Design

• Selecting Test Ports

• Controlling Scan-Enable Connections to DFT Logic

• Suppressing Replacement of Sequential Cells

• Changing the Scan State of a Design

• Removing Scan Configurations

• Keeping Specifications Consistent

• Synthesizing Three-State Disabling Logic

• Configuring Three-State Buses

• Handling Bidirectional Ports

• Assigning Test Port Attributes

Specifying Scan Signals for the Current Design
Use the set_dft_signal command to specify one or more scan signals for the current
design.

Table 6-2 provides a list of signal_type attribute values.

Table 6-2 signal_type Attribute Values for Test Signals

Test I/O
port signal

signal_type
value

Valid on
input

Valid on
output

Valid on
three-state
output

Valid on
bidirectional
input/output

Scan-in ScanDataIn Yes No No Yes

Scan-out ScanDataOut No Yes Yes Yes

Scan-enable ScanEnable Yes No No Yes

Bidirectional
enables

InOutControl Yes No No *

Asynchronous
control ports

Reset Yes No No Yes

*Not recommended: complex methodologies required.
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-26

DFT Compiler Scan User Guide Version H-2013.03-SP4
The following is an example of the set_dft_signal command specifying a scan-in port. If
you enter

dc_shell> set_dft_signal -view spec -port scan_in -type ScanDataIn

DFT Compiler responds with the following:

Accepted dft signal specification for modes: all_dft

In the preceding example, the -view spec option indicates that the specified ports are to be
used during DFT scan insertion and that DFT Compiler is to perform the connections. In this
example, scan_in is the name of the scan-in port that the insert_dft command uses. (The
other value of the -view argument is -existing_dft, which directs the tool to use the
specified ports as is because they are already connected.)

When the insert_dft command creates additional ports for scan test signals, it assigns a
name to each new port. You can control the naming convention by using the port naming
style variables shown in Table 6-3.

Follow these guidelines when using the set_dft_signal command:

• Use the set_dft_signal command for scan insertion and for design rule checking. The
set_dft_signal command indicates I/O ports that are to be used as scan ports. After

Table 6-3 Port Naming Style Variables

Name Default

test_scan_in_port_naming_style test_si%s%s

test_scan_out_port_naming_style test_so%s%s

test_scan_enable_port_naming_style test_se%s

test_scan_enable_inverted_port_naming_style test_sei%s

test_clock_port_naming_style test_c%s

test_scan_clock_port_naming_style test_sc%s

test_scan_clock_a_port_naming_style test_sca%s

test_scan_clock_b_port_naming_style test_scb%s

test_mode test_mode%s

test_point_clock none
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-27
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-27

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
the insert_dft command connects these ports, it places the necessary signal_type
attributes on the ports for post-insertion design rule checking.

• Use the set_dft_signal -view existing_dft command if you read in an ASCII
netlist and you need to perform design rule checking. Before you use the
set_dft_signal command, the ASCII netlist does not contain the signal_type
attributes annotated by scan insertion. Without these attributes, dft_drc does not know
which ports are scan ports and therefore reports that the design is untestable.

• Use the set_dft_signal -view existing_dft command if the ports in your design
are already connected and no connection is to be made by DFT Compiler.

• Use the set_dft_signal -view spec command if the connections do not exist in your
design and you expect DFT Compiler to make the connections for you.

Using the -view spec and -view existing_dft Arguments

Unlike other tools used in the implementation flow, DFT Compiler changes the functionality
of your design such that the design can operate in either functional (“mission”) mode or test
mode.

To construct this dual modality, DFT Compiler needs to know what already exists in the
design. You use the -view existing_dft option with the set_dft_signal command to
provide such information. The tool then uses this information to perform pre-insertion design
rule checking (DRC) to determine the elements that can be incorporated into scan chains.

Typical examples that use the -view existing_dft option include

• Clock signals:

set_dft_signal -view existing_dft -type ScanClock -port \
 clk -timing {45 55}

• Asynchronous set and reset signals:

set_dft_signal -view existing_dft -type Reset -port rst \
 -active_state 0

By default, DFT Compiler creates new ports in the design if they are needed. You can
specify which existing ports the tool uses to build the DFT structures by using the -view
spec option with the set_dft_signal command.

Typically, the -view spec option is used to specify ports that are to function as scan-in and
scan-out ports (either dedicated scan-in and scan-out ports or shared functional ports used
also as scan-in and scan-out ports), such as

set_dft_signal -view spec -type ScanDataIn -port scan_in_1
set_dft_signal -view spec -type ScanDataOut -port scan_out_1
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-28

DFT Compiler Scan User Guide Version H-2013.03-SP4
and

set_dft_signal -view spec -type ScanDataIn -port data_in_bus_2
set_dft_signal -view spec -type ScanDataIn -port data_out_bus_2

As a general rule,

• If the information is needed for pre-insertion DRC, then it should be specified by using
the -view existing_dft option.

• If the information is needed to build DFT structures, then is should be specified by using
the -view spec option.

Allocating Scan Ports

Ports that are defined to be scan-in and scan-out data ports are used in the order specified
by the commands. For example, suppose that you identify three scan-in data ports and three
scan-out data ports as follows:

set_dft_signal -type ScanDataIn -port [list SIN1 SIN2 SIN3]
set_dft_signal -type ScanDataOut -port [list SOUT1 SOUT2 SOUT3]

DFT Compiler allocates the listed ports to scan-in and scan-out functions as follows:

• If you specify two standard scan chains, the tool uses only the first two of the listed
scan-in ports, SIN1 and SIN2, and only the first two listed scan-out ports, SOUT1 and
SOUT2. SIN3 and SOUT3 are not used for scan chain connection purposes.

• If you specify three standard scan chains, the tool uses all of the listed scan-in and
scan-out ports: SIN1, SIN2, SIN3, SOUT1, SOUT2, and SOUT3.

• If you specify four standard scan chains, the tool first uses the three designated scan-in
and three designated scan-out ports. For the fourth chain, it creates an additional
dedicated scan-in port and an additional scan-out port. The scan-out port can be an
existing output port connected to the output of a flip-flop, which can be reused as a
scan-out port, or it can be a new dedicated output port.

Using -type Constant versus Using -type TestMode

The difference between Constant and TestMode signal definitions is as follows:

• Constant signal definitions specify the value of the signal in test mode, but they do not
specify anything about the signal's value in functional mode. Figure 6-10 shows the
behavior of a Constant signal in the functional and test modes.
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-29
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-29

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-10 Constant Signal Specification

• TestMode signal definitions specify the value of the signal in both test mode and
functional mode. Figure 6-11 shows the behavior of a Constant signal in the functional
and test modes.

Figure 6-11 Design With a Controlled Clock Signal

This difference affects the generation of verification setup files, which are specified with the
set_svf command. Verification setup files contain information about the functional mode
values for any defined DFT signal. This allows Formality equivalence checking to disable the
test logic added by DFT Compiler when the synopsys_auto_setup variable is set to true.

This difference affects verification setup file generation for the preceding examples as
follows:

• The Constant signal definition does not result in any verification setup file directives
because it contains no information about the functional mode value of CLK_EN.

• The TestMode signal definition specifies that the functional mode value for the RST_DIS
signal is 1. This results in the following verification setup file directive:

guide_scan_input \
 -design { top } \
 -disable_value 0 \
 -ports { RST_DIS }

���

������
����

���

������
����

�	
��
�
�������� ����������

� �������	
���
���

����

�������

����

�������

	
��
����������� ���
������

� ������������
���� ������������
���
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-30

DFT Compiler Scan User Guide Version H-2013.03-SP4
Selecting Test Ports
By default, DFT Compiler creates dedicated test ports as needed, but it also minimizes the
number of dedicated test ports by sharing scan outputs with functional ports when the
design contains scannable cells that directly drive functional ports.

You can also share ports between test and normal operation, which minimizes the number
of dedicated test ports required for internal scan. If your semiconductor vendor does not
support this configuration, you can request dedicated scan output ports. Always use
dedicated ports for scan-enable and test clock signals.

The following sections describe how to select and define existing ports in your design as test
ports:

• Defining Existing Unconnected Ports as Scan Ports

• Sharing a Scan Input With a Functional Port

• Sharing a Scan Output With a Functional Port

• Controlling Subdesign Scan Output Ports

Defining Existing Unconnected Ports as Scan Ports
You can define existing unconnected ports in your RTL description for use as test ports.
These are known as placeholder scan ports or dummy scan ports. This approach allows you
to use the same testbench for the RTL and gate-level implementations of your design.

Use the set_dft_signal command to instruct DFT Compiler to use these ports:

dc_shell> set_dft_signal -type ScanDataIn -view spec \
 -port SI1

dc_shell> set_dft_signal -type ScanEnable -view spec \
 -port SE \
 -active_state 1

dc_shell> set_dft_signal -type ScanDataOut -view spec \
 -port SO

Sharing a Scan Input With a Functional Port
By default, DFT Compiler always creates a dedicated scan input port. To share a scan input
port with a specified existing functional port, use the set_dft_signal command.

dc_shell> set_dft_signal -type ScanDataIn -view spec \
 -port DATA_in[0]

If you select a bidirectional port as the scan input port, DFT Compiler automatically inserts
the necessary bidirectional control logic to enable the input path during scan shift.
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-31
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-31

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Sharing a Scan Output With a Functional Port
By default, if a scannable cell directly drives an output port in the current design, DFT
Compiler automatically uses it as the last cell in the scan chain. DFT Compiler disrupts the
ordering to place this cell at the end of the scan chain. If multiple scannable sequential cells
directly drive output ports, DFT Compiler uses the cell that would have been stitched closest
to the end of the scan chain. If the scan cell is the last cell in a scan segment, the entire scan
segment is placed at the end of the scan chain. Use the preview_dft command to see if a
cell or segment has been moved to the end of the scan chain to prevent a dedicated scan
output port.

To select the functional port to be used as a scan output port, use the set_dft_signal
command.

dc_shell> set_dft_signal -type ScanDataOut -view spec \
 -port DATA_out[0]

If a scannable sequential cell drives the specified output port, DFT Compiler places that cell
last in the scan chain. Otherwise, DFT Compiler automatically adds the control or
multiplexing logic required to share the scan output port with the functional output port. If you
select a bidirectional or three-state port as the scan output port, DFT Compiler automatically
inserts the necessary control logic to enable the output path during scan shift.

By default, if the specified port is tied to logic 0 or logic 1, DFT Compiler ignores the constant
value during scan insertion and drives the port directly as a scan output, as shown in
Figure 6-12. This behavior ensures that no additional logic is added at the port if it was
undriven in the RTL and tied to logic 0 during synthesis.

Figure 6-12 Scan Output Port With Constant MUXing Disabled

If the existing constant value driving the port is required for proper operation in functional
mode, set the test_mux_constant_so variable to true. In this case, DFT Compiler
multiplexes the scan-out signal with the constant value, using the scan-enable signal to
control the multiplexer, as shown in Figure 6-13.

�������� ��������

�
��
��

��
��
��

�

Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-32

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-13 Scan Output Port With Constant MUXing Enabled

If your semiconductor vendor requires dedicated top-level scan output ports or you prefer
them, use the set_scan_configuration command to always use dedicated scan outputs:

dc_shell> set_scan_configuration \
 -create_dedicated_scan_out_ports true

Controlling Subdesign Scan Output Ports
By default, when DFT Compiler routes scan chains through subdesigns, it uses existing
subdesign output ports driven by scan cells wherever possible. This minimizes the number
of new output ports added to subdesigns, and it can reduce the amount of design
uniquification required for multiply-instantiated designs. However, it can also add the loading
of external scan routes outside the subdesign to functional nets inside the subdesign.

To always create dedicated scan-out ports on subdesigns, set the following variable:

dc_shell> set_app_var test_dedicated_subdesign_scan_outs true

Note that this variable setting alone does not guarantee isolation of the functional path from
external scan path loading. You must also apply the set_fix_multiple_port_nets
command to subdesigns where the functional subdesign outputs should be isolated from
external scan path loading. For more information on this command, see the man page.

Controlling Scan-Enable Connections to DFT Logic
By default, DFT Compiler uses a global scan-enable signal for DFT logic connections. In
some cases, you might want to create multiple scan-enable signals and control how they
connect to the DFT logic.

The following sections describe how to control scan-enable connections to DFT logic:

• Associating Scan-Enable Ports With Specific Scan Chains

• Defining Dedicated Scan-Enable Signals for Scan Cells

• Connecting the Scan-Enable Signal in Hierarchical Flows

• Preserving Existing Scan-Enable Pin Connections

�������� ��������

�
��
��

��
��
��

�

Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-33
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-33

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Associating Scan-Enable Ports With Specific Scan Chains
To associate a specific port with specific scan chains, use the set_dft_signal and
set_scan_path commands, as follows:

dc_shell> set_dft_signal -type ScanEnable -view spec \
 -port port_name -active_state 1

dc_shell> set_scan_path {chain_names} -view spec \
 -scan_enable port_name

If the condition set with these commands cannot be met, a warning is issued during scan
preview and scan insertion.

Defining Dedicated Scan-Enable Signals for Scan Cells
By default, DFT Compiler chooses an available ScanEnable signal to connect to the
scan-enable pins of scan cells. However, you can also define a dedicated ScanEnable signal
to use for these scan-enable pin connections.

Specifying a Global Scan-Enable Signal

You can define a global ScanEnable signal to use for the scan-enable pins of scan cells by
using the -usage scan option when defining the signal with the set_dft_signal
command:

set_dft_signal
 -type ScanEnable
 -view spec
 -usage scan
 -port port_list

To define a signal with the scan usage, the -view option must be set to spec.

When you define a ScanEnable signal with the scan usage, the insert_dft command is
limited to using only that signal to connect to the scan-enable pins of scan cells. If there are
insufficient ScanEnable signals for other purposes, DFT Compiler creates additional
ScanEnable signals as needed.

You can use the report_dft_signal and remove_dft_signal commands for reporting
and removing the specification, respectively.
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-34

DFT Compiler Scan User Guide Version H-2013.03-SP4
Specifying Object-Specific Scan-Enable Signals

You can also define dedicated ScanEnable signals for specific parts of the design by using
the -connect_to option and associated options of the set_dft_signal command:

set_dft_signal
 -type ScanEnable
 -view spec
 -usage scan
 -port port_list
 [-connect_to object_list]
 [-connect_to_domain_rise clock_list]
 [-connect_to_domain_fall clock_list]
 [-exclude object_list]

The -connect_to option specifies a list of design objects that are to use the specified
ScanEnable signal. The supported object types are

• Scan cells

• Hierarchical cells

• Designs

• Test clock ports

This allows you to make clock-domain-based signal connections. It includes scan cells
clocked by the specified test clocks. The functional clock behavior is not considered.

• Scan-enable pins of CTL-modeled cores

The -connect_to_domain_rise and -connect_to_domain_fall options accept a test
clock port list and work the same as the -connect_to option, except that they apply only to
rising-edge and falling-edge scan cells, respectively.

You can also use the -exclude option to specify a list of scan cells, hierarchical cells, or
design names to exclude from the object-specific control signal.

The following example defines two ScanEnable signals, named SE_CLK1 and SE_CLK2, to
connect to the scan-enable pins of test clock domains CLK1 and CLK2, respectively:

dc_shell> set_dft_signal -type ScanClock -view existing_dft \
 -port {CLK1 CLK2} -timing {45 55}
dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \
 -port SE_CLK1 -connect_to {CLK1}
dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \
 -port SE_CLK2 -connect_to {CLK2}

Note the following limitation:

• You cannot specify object-specific scan-enable specifications for pipelined scan-enable
signals.
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-35
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-35

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Connecting the Scan-Enable Signal in Hierarchical Flows
When you insert DFT at a top level that contains cores, which are DFT-inserted blocks
represented by CTL models, the cores already contain complete scan-enable networks.
Instead of connecting the top-level ScanEnable signal to target pins inside the core, DFT
Compiler must connect to ScanEnable signal pins at the core boundary.

When ScanEnable signals at the core and/or top level are defined with the -usage option of
the set_dft_signal command, DFT Compiler attempts to determine which top-level signal
should drive each core-level signal, using the priorities shown in Table 1-2 on page 1-33.

You can override the default connection behaviors for cores by using object-specific signal
definitions at the top level, applied using the set_dft_signal -connect_to command and
associated options:

set_dft_signal
 -type ScanEnable
 -view spec
 -usage scan | clock_gating
 -port port_list
 [-connect_to object_list]
 [-connect_to_domain_rise clock_list]
 [-connect_to_domain_fall clock_list]
 [-exclude object_list]

Object-specific specifications are described in “Specifying Object-Specific Scan-Enable
Signals” on page 6-35. However, not all object types accepted by the object_list argument
apply to cores. The object types that apply to cores are

• Test clock ports

This allows you to make clock-domain-based signal connections to cores. It includes
core-level scan-enable pins associated with the specified test clocks. The functional
clock behavior is not considered.

• Scan-enable pins of CTL-modeled cores

This allows you to make direct pin-to-pin connections from top-level signal sources to
core-level pins.

Specifying Domain-Based Connections to Core Scan-Enable Pins

When you specify a top-level domain-based signal connection, DFT Compiler uses
information inside a core’s CTL model to determine the core scan-enable pins associated
with each core clock. To ensure that this information is present in the model, the following
requirements must be observed during core creation:

• Core-level ScanEnable signals must be defined using the -usage option of the
set_dft_signal command. This ensures that the core’s internal scan-enable signal is
not used outside its intended usage.
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-36

DFT Compiler Scan User Guide Version H-2013.03-SP4
• Core-level ScanEnable signals defined with a usage of clock_gating must also be
defined as domain-specific signals using the -connect_to clock_list option of the
set_dft_signal command. This ensures that clock-specific clock-gating annotations
are included in the CTL model.

 Example 6-3 shows part of a core-level ASCII CTL model that contains clock domain
information for a scan-enable signal defined with a usage of scan.

Example 6-3 Scan Chain Clock Information in an ASCII CTL Model

CTL all_dft {
 ...
 Internal {
 "SE_SCAN" {
 CaptureClock "CLK" {
 LeadingEdge;
 }
 DataType User "ScanEnableForScan" {
 ActiveState ForceUp;
 }
 }
 }
}

Example 6-4 shows part of a core-level ASCII CTL model that contains clock domain
information for a scan-enable signal defined with a usage of clock_gating. The
domain-based signal specification causes the CaptureClock constructs to be included.

Example 6-4 Clock-Gating Clock Information in an ASCII CTL Model

CTL all_dft {
 ...
 Internal {
 "SE_CG" {
 CaptureClock "CLK" {
 LeadingEdge;
 }
 DataType User "ScanEnableForClockGating" {
 ActiveState ForceUp;
 }
 }
 }
}

The CTL model information for a signal can contain multiple DataType constructs (for signals
defined with multiple usages) and multiple CaptureClock constructs (for signals associated
with multiple clocks).

Consider a core with two scan-enable pins, where pin SE1 is associated with CLK1 and pin
SE2 is associated with CLK2. The following top-level commands connect corresponding
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-37
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-37

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
top-level scan-enable signals TOP_SE1 and TOP_SE2 to these core-level pins indirectly
using domain-based specifications:

dc_shell> set_dft_signal -type ScanClock -view existing_dft \
 -port {CLK1 CLK2} -timing {45 55}
dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \
 -port TOP_SE1 -connect_to {CLK1}
dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \
 -port TOP_SE2 -connect_to {CLK2}

Specifying Connections Directly to Core Scan-Enable Pins

You can specify pin-based signal connection specifications that connect any top-level
ScanEnable signal to any core-level ScanEnable pin. These pin-based connection
specifications override the default connection behavior, and there is no requirement for the
top-level and core-level signal usages to match.

Consider a core with two scan-enable pins, where pin SE1 is associated with CLK1 and pin
SE2 is associated with CLK2. The following top-level commands connect top-level
scan-enable signals to corresponding core-level pins using direct core pin specifications:

dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \
 -port TOP_SE1 -connect_to {CORE/SE_SCAN1}
dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \
 -port TOP_SE2 -connect_to {CORE/SE_SCAN2}

Preserving Existing Scan-Enable Pin Connections
During DFT insertion, DFT Compiler identifies the scan-enable pins of scan cells and scan
cores that should be connected to the global scan-enable signal. These are known as
scan-enable target pins.

By default, if a scan-enable target pin already has a connection, DFT Compiler disconnects
it to make the connection to a scan-enable signal. During DFT insertion, the insert_dft
command issues a TEST-394 warning to note the disconnection:

Warning: Disconnecting pin 'memwrap/UMEM/SE' to route scan enable.
(TEST-394)

To preserve existing connections to scan-enable target pins during DFT insertion, set the
following variable:

dc_shell> set test_keep_connected_scan_en true

In this case, the insert_dft command issues a TEST-410 warning to confirm that the
existing connection is kept:

Warning: Not disconnecting pin 'memwrap/UMEM/SE' to route scan enable.
(TEST-410)
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-38

DFT Compiler Scan User Guide Version H-2013.03-SP4
For more information, see the man page. For an example application, see SolvNet article
034774, “How To Connect DFT Signals to Hierarchical Pins of Verilog Wrappers.”

Suppressing Replacement of Sequential Cells
Use the set_scan_element command to determine whether specific sequential cells are to
be replaced by scan cells that become part of the scan path during the insert_dft
command.

For full-scan designs, the insert_dft command replaces all nonviolated sequential cells
with equivalent scan cells by default. Therefore, you do not need to set the scan_element
attribute unless you want to suppress replacement of sequential cells with scan cells. To
prevent such replacement for certain cells, set the scan_element attribute to false for
those cells.

Note:
If you want to specify which scan cells are to be used for scan replacement, use the
set_scan_register_type command.

You should not use the set_scan_element true command if you use the compile -scan
command to replace elements.

In Logic Scan Synthesis
In logic scan synthesis, the set_scan_element false command unscans the cell on a
design in which scan replacement has already occurred.

Changing the Scan State of a Design
In certain circumstances, you might find it necessary to manually set the scan state of a
design. Use the set_scan_state command to do so. The set_scan_state command has
three options: unknown, test_ready, and scan_existing.

If there are nonscan elements in the design, use the set_scan_element false command
to properly identify them.

You can check the test state of the design by using the report_scan_state command.

One situation in which you would set the scan state is if you needed to write a netlist of a
test-ready design and read it into a third-party tool. After making modifications, you can
bring the design back into DFT Compiler as shown in Example 6-5.
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-39
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-39

https://solvnet.synopsys.com/retrieve/034774.html
https://solvnet.synopsys.com/retrieve/034774.html

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Example 6-5 Changing the Scan State of a Design

dc_shell> read_file -format verilog my_design.v

dc_shell> report_scan_state

**
Report : test
 -state
Design : MY_DESIGN
Version: 2002.05
Date : Wed Jul 25 18:12:39 2001
**

Scan state : unknown scan state

1
dc_shell> set_scan_state test_ready
Accepted scan state.
1
dc_shell> report_scan_state

**
Report : test
 -state
Design : MY_DESIGN
Version: 2002.05
Date : Wed Jul 25 18:14:47 2001
**

Scan state : scan cells replaced with loops

Important:
You do not need to set the scan state if you are following the recommended design flow.

Removing Scan Configurations
The reset_scan_configuration command removes scan specifications from the current
design. Note that this command deletes only those specifications you defined with the
set_scan_configuration command.

Specifications defined using other commands are removed by issuing the corresponding
remove command. For example, you use the remove_scan_path command to remove the
path specifications you defined with the set_scan_path command.

Note that the reset_scan_configuration command does not change your design. It
merely deletes specifications you have made.
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-40

DFT Compiler Scan User Guide Version H-2013.03-SP4
You can use the reset_scan_configuration command to remove explicit specifications of
synthesizable segments. When you remove an explicit specification, the multibit component
inherits the current implicit specification.

Note:
The reset_scan_configuration command does not affect the settings made with the
set_scan_register_type command. These settings must be removed with the
remove_scan_register_type command.

Keeping Specifications Consistent
The set of user specifications contributing to the definition of the scan design must be
consistent. User-supplied specification commands forming part of a consistent specification
have the following characteristics:

• Each specification command is self-consistent. It cannot contain mutually exclusive
requirements. For example, a command specifying the routing order of a scan chain
cannot specify the same element in more than one place in the chain.

• All specification commands are mutually consistent. Two specification commands must
not impose mutually exclusive conditions on the scan design. For example, two
specification commands that place the same element in two different scan chains are
mutually incompatible.

• All specification commands yield a functional scan design. You cannot impose a
specification that leads to a nonfunctional scan design. For example, a specification that
mandates fewer scan chains than the number of incompatible clock domains is
not permitted.

The number of clock domains in your design, together with your clock-mixing specification,
determines the minimum number of scan chains in your design. If you specify an exact
number of scan chains smaller than this minimum, the insert_dft command issues a
warning message and implements the minimum number of scan chains.

Synthesizing Three-State Disabling Logic
DFT Compiler can, by default, handle three-state nets. It does so with the following
functionality:

• By default, it distinguishes between internal and external three-state nets.

• By default, it prevents bus contention by causing only one three-state driver to be active
at one time.

• By default, it modifies internal three-state nets in bottom-up design methodology to make
exactly one three-state driver active.
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-41
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-41

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
To prevent bus contention or bus float, internal three-state nets in your design must have a
single active driver during scan shift. DFT Compiler automatically performs this task.

DFT Compiler determines if the internal three-state nets in your design meet this
requirement.

By default, DFT Compiler adds disabling logic to internal three-state nets that do not meet
this requirement. The scan-enable signal controls the disabling logic and forces a single
driver to be active on the net throughout scan shift.

In some cases, DFT Compiler adds redundant disabling logic because the disabling logic
checks for internal three-state nets are limited.

Figure 6-14 shows the simple internal three-state net used as an example throughout this
section.

Figure 6-14 Internal Three-State Net Example

Figure 6-15 shows the disabling logic added by DFT Compiler during the insert_dft
process.

e3

d3

e2

d2

e1

d1

u3

u2

u1

o1
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-42

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-15 Three-State Output With Disabling Logic

If the design already contains logic that prevents or can be configured to prevent the
occurrence of bus contention and bus float during scan shift, you can use the
set_dft_configuration command to prevent DFT Compiler from inserting the disabling
logic:

dc_shell> set_dft_configuration -fix_bus disable

During scan shift, DFT Compiler does not check for bus contention or bus float conditions. If
you do not add the three-state disabling logic, verify that no invalid conditions occur during
scan shift.

If you want to perform bottom-up scan insertion, you must choose a strategy for handling the
insertion of three-state enabling and disabling logic. If you use the
set_dft_configuration -fix_bus disable command, your design will be free of bus
float or bus contention during scan shift. However, during bottom-up scan insertion, the
insert_dft command might be forced to modify modules that it has already processed.

This strategy is easy to implement in scripts but can result in repeated modifications to
subblocks. Note that DFT Compiler does recognize three-state enabling and disabling logic
that it has previously inserted in a submodule and so does not insert unnecessary or
redundant enabling and disabling logic.

For example, consider a top-level design with two instances of a module of type sub_type_1.
Both of these instances drive a three-state bus that, in turn, drives inputs on another module.
If you perform scan insertion with default settings on the design sub_type_1, then in the top
design, the three-state ports that drive this common bus will be turned off in scan shift, thus
creating a float condition. In other words, when you run the insert_dft command at the top
level with default options selected, the insert_dft command modifies one of the two

Drivers inactive
during scan shift

Driver active
during scan shift

e3

d3

e2

d2

e1

d1

u3

u2

u1

o1

test_se
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-43
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-43

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
instances of sub_type_1. As a result, each net within the bus has a single enabled driver
during scan shift.

You can consider two other, nondefault, strategies when you want to use bottom-up scan
insertion.

You can synthesize three-state disabling logic at the top level only. Synthesis of disabling
logic at the top level guarantees a consistent implementation across all subdesigns. Use the
set_dft_configuration -fix_bus disable command to disable synthesis of
three-state disabling logic in subdesigns.

/* subdesign command sequence */
dc_shell> current_design subdesign
dc_shell> set_dft_configuration -fix_bus disable
...
dc_shell> insert_dft

/* top-level command sequence */
dc_shell> current_design top
dc_shell> set_dft_configuration -fix_bus enable
...
dc_shell> insert_dft

A third option is to use the preview_dft -show tristates command before you run the
set_dft_configuration command on each submodule to determine what enabling and
disabling logic should be inserted on the external three-state nets for each module. This
strategy is the most complex to use, and your scripts need to be specific to each design.
However, if you implement this method correctly, you can assemble submodules into a
complete testable design without further modification of a submodule by the
set_dft_configuration command.

Configuring Three-State Buses
The set_dft_configuration command can configure three-state buses according to
settings applied by the set_autofix_configuration command.

If the -fix_bus option of the set_scan_configuration command is set to disable, no
changes to the three-state driver logic are made, regardless of any other three-state
settings.

Configuring External Three-State Buses
On external three-state nets, the -type external_bus option of the
set_autofix_configuration command controls three-state disabling behavior. If you
want to make no changes to the external three-state nets, use the -method no_disabling
option. If you want to allow exactly one three-state driver to be enabled on each external
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-44

DFT Compiler Scan User Guide Version H-2013.03-SP4
three-state net, you can use the -method enable_one option. If you want to ensure that all
external three-state nets are disabled, use the -method disable_all option, which is the
default behavior for the external_tristates type.

You might have multiple modules that are stitched together at the top level, and you might
want to be sure that one of those modules contains the active three-state drivers while the
other modules are all off. You can do that by using a bottom-up scan insertion methodology
and by setting the set_autofix_configuration command appropriately for each module
before you run the insert_dft command on that module.

Configuring Internal Three-State Buses
The same rules apply for internal three-state nets as for external three-state nets. If you
allow all your subdesigns to be set to the default behavior, insert_dft can choose a
three-state driver on the net to make active and can disable all others.

Overriding Global Three-State Bus Configuration Settings
You can override these internal and external three-state net settings by using the
set_autofix_element command, which can be applied to individual nets in your design.

This command applies only to the nets and not to individual three-state drivers.

You might have a situation in which multiple instances of the same design must have
separate three-state configuration settings. You can achieve this by uniquifying the particular
instances and then using the set_autofix_element command to define the type of
enabling or disabling logic you want to see applied on that instance.

Disabling Three-State Buses and Bidirectional Ports
There are several different methods you can use to disable logic to ensure that three-state
buses and bidirectional ports are properly configured during scan shift:

• To set the default behavior for top-level three-state specifications, use the following
command:

set_dft_configuration \
 -fix_bus enable | disable

• To set the default behavior for top-level bidrectional port specifications, use the following
command:

set_dft_configuration \
 -fix_bidirectional enable | disable
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-45
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-45

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
• To set global three-state specifications, use the following command:

set_autofix_configuration \
 -type internal_bus | external_bus \
 -method disable_all | enable_one | no_disabling

• To set global bidirectional port specifications, use the following command:

set_autofix_configuration \
 -type birectional \
 -method input | output | no_disabling

• To set local three-state specifications on a specific list of objects, use the following
command:

set_autofix_element \
 -type internal_bus | external_bus \
 -method input | output | no_disabling \
 object_list

• To set local birectional port specifications on a specific list of objects, use the following
command:

set_autofix_element \
 -type bidirectional \
 -method input | output | no_disabling \
 object_list

Handling Bidirectional Ports
Every semiconductor vendor has specific requirements regarding the treatment of
bidirectional ports during scan shift. Some vendors require that bidirectional ports be held in
input mode during scan shift, some require that bidirectional ports be held in output mode
during scan shift, and some have no preference. DFT Compiler provides the ability to set the
bidirectional mode both globally and individually.

Before you insert control logic for bidirectional ports, understand your vendor’s requirements
for these cells during scan shift.

If the -fix_bidirectional disable option of the set_dft_configuration command is
set, no disabling logic is added to any bidirectional ports, regardless of any other
bidirectional port settings.

Setting Individual Bidirectional Port Behavior
To specify bidirectional behavior on individual ports, use the set_autofix_element
command.

Use the reset_autofix_element command to remove all set_autofix_element
specifications for the current design.
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-46

DFT Compiler Scan User Guide Version H-2013.03-SP4
Use the preview_dft command to see the bidirectional port conditioning that will be
implemented for each bidirectional port in a design.

Fixed Direction Bidirectional Ports
Bidirectional ports that have enables connected to constant values and that are therefore
always configured in either input mode or output mode are referred to as degenerated
bidirectional ports. DFT Compiler does not add control logic for degenerated bidirectional
ports.

DFT Compiler recognizes constant values on the enable pins of bidirectional ports for the
following cases:

• Enable forced to a constant value by a tie-off cell in the circuit

• Enable forced to a constant value by a set_dft_signal command

Assigning Test Port Attributes
If you always save and read mapped designs in the .ddc format, you usually do not need to
explicitly set signal_type attributes. If you do not save your design in .ddc format, you must
use the set_dft_signal command.

Note:
Use the set_dft_signal command for scan-inserted, existing-scan, and test-ready
designs.

When insert_dft sets attributes on test ports, for all scan styles, it creates the following
values:

• It places either a test_scan_enable or a test_scan_enable_inverted attribute on
scan-enable ports. The test_scan_enable attribute causes a logic 1 to be applied to the
port for scan shift. The test_scan_enable_inverted attribute causes a logic 0 to be
applied to the port for scan shift.

• Scan input ports are identified with the test_scan_in attribute.

• Scan output ports are identified with the test_scan_out or test_scan_out_inverted
attribute.

Note that some scan styles require test clock ports on the scan cell.
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-47
Chapter 6: Architecting Your Test Design
Architecting Scan Signals 6-47

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Architecting Test Clocks

When DFT Compiler creates a test protocol, it uses defaults for the clock timing, based on
the clock type, unless you explicitly specify clock timing.

This section shows you how to set test clocks and handle multiple clock designs. It include
the following subsections:

• Defining Test Clocks

• Requirements for Valid Scan Chain Ordering

• Adding Lock-Up Latches Between Clock Domains

• Adding Lock-Up Latches Within Clock Domains

• Assigning Scan Chains to Specific Clocks

• Handling Multiple Clocks in LSSD Scan Styles

Defining Test Clocks
To explicitly define test clocks in your design, use the set_dft_signal command. For
example,

dc_shell> set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing {45 55}

Specify the clock signal type with the -type option. For the multiplexed flip-flop style, use the
ScanClock type. For other scan styles, see the man page.

Define the test clock waveform with the -timing option. The waveform definition is a pair of
values that specifies the rising-edge arrival time followed by the falling-edge arrival time.
Figure 6-16 shows a return-to-zero clock waveform definition.

Figure 6-16 Return-to-Zero Test Clock Waveform Definition

Figure 6-17 shows a return-to-one clock waveform definition.

45ns 55ns 100ns0ns

set_dft_signal ... -timing {45 55}
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-48

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-17 Return-to-One Test Clock Waveform Definition

If you use the -infer_clock option of the create_test_protocol command to infer test
clocks in your design, the tool uses the default clock waveforms shown in Table 6-4.

For all test clocks, the clock period is the value defined by the test_default_period
variable.

After defining or inferring your test clocks, you can verify their timing characteristics by using
the report_dft_signal command.

The rise and fall clock waveform values are the same as the values specified in the
statements that make up the STIL waveform section. The rise argument becomes the value
of the rise argument in the waveform statement in the test protocol clock group. The fall
argument becomes the value of the fall argument in the waveform statement in the test
protocol clock group.

Specifying a Hookup Pin for DFT-Inserted Clock Connections
In some cases, DFT Compiler might need to make a connection to an existing scan clock
network during DFT insertion. Some examples are

• Pipeline clock connections for automatically inserted pipelined scan data registers

• ATE clock connections for DFT-inserted OCC controllers

• Codec clock connections for serialized compressed scan

By default, DFT Compiler makes the clock connection at the source port specified in the
-view existing_dft signal definition. However, if you want DFT Compiler to make the

Table 6-4 Default Test Clock Waveform Timing

Scan clock type First edge (ns) Second edge (ns)

Edge-triggered (non-LSSD styles) 45.0 55.0

Master clock (LSSD styles) 30.0 40.0

Slave clock (LSSD styles) 60.0 70.0

45ns 55ns 100ns0ns

set_dft_signal ... -timing {55 45}
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-49
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-49

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
clock connection at an internal pin, such as a pad cell or clock buffer output, you can specify
it with the -hookup_pin option in a subsequent -view spec signal definition. For example,

dc_shell> set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing {45 55}
dc_shell> set_dft_signal -view spec -type ScanClock \
 -port CLK -hookup_pin UCLKBUF/Z

You do not specify the clock waveform timing for the -view spec signal definition.

Requirements for Valid Scan Chain Ordering
This section describes the requirements for valid scan chain ordering in the multiplexed
flip-flop scan style.

DFT Compiler generates valid mixed-clock scan chains based on the ideal test clock timing.
Scan chain cells are ordered by the ideal test clock edge times, as defined with the -timing
option of the set_dft_signal command. Cells clocked by later clock edges are placed
before cells clocked by earlier clock edges. This guarantees that all cells in the scan chain
get the expected data during scan shift.

Figure 6-18 shows the ideal test clock waveforms for two test clocks. The clock edges are
numbered by their edge timing order, with the latest clock edge indicated by (1).

Figure 6-18 Ideal Test Clock Waveforms for Two Test Clocks

Figure 6-19 shows how DFT Compiler constructs a scan chain containing a scan cell
clocked by each clock edge. The scan cells are ordered with the cells clocked by the latest
clock edges coming first.

Figure 6-19 Scan Chain Cells for Two Test Clocks

To maintain the validity of your scan chains, do not change the test clock timing after
assembling the scan structures.

Although DFT Compiler chooses an order that ensures correct shift function under ideal
clock timing, it cannot guarantee that capture problems will not occur. Capture problems are

��
�

�	
�

�

�

��
�

�
����������������

�� �� �! �"
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-50

DFT Compiler Scan User Guide Version H-2013.03-SP4
caused by your logic functionality; modify your design to correct capture problems. For more
information, see Chapter 5, “Pre-Scan Test Design Rule Checking.”

By default, when you request clock mixing within a multiplexed flip-flop scan chain, DFT
Compiler inserts lock-up latches to prevent timing problems. For more information, see
“Adding Lock-Up Latches Between Clock Domains” on page 6-51.

Adding Lock-Up Latches Between Clock Domains
This section describes how the tool adds lock-up latches between clock domains in the
multiplexed flip-flop scan style.

A scan lock-up latch is a retiming sequential cell on a scan path that can address skew
problems between adjacent scan cells when clock mixing or clock-edge mixing is enabled.
DFT Compiler inserts them to prevent skew problems that might occur.

Consider the scan structure in Figure 6-20, where a scan cell clocked by CLK1 feeds a scan
cell clocked by CLK2, and both clocks are defined with the same ideal waveform definition.

Figure 6-20 Two Scan Cells Clocked By Two Different Clocks

If both scan cells receive a clock edge at the same time, no timing violations occur. However,
if the CLK2 waveform at FF2 is delayed, perhaps due to higher clock tree latency, a hold
violation might result where FF2 incorrectly captures the current cycle’s data instead of the
previous cycle’s data. Figure 6-21 shows this hold violation for leading-edge scan cells.

Figure 6-21 Timing for Two Leading-Edge Scan Cells Clocked By Two Different Clocks

A lock-up latch prevents hold violations for scan cells that might capture data using a skewed
clock edge. It is a latch cell that is inserted between two scan cells and clocked by the
inversion of the previous scan cell’s clock. Figure 6-22 shows the same two scan cells with
a lock-up latch added.

�
��
��

�

		�

�
��
��

�

		����� ���

����

�����

���
�����
����

�
�
� �
�

Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-51
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-51

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-22 Two Scan Cells With a Lock-Up Latch

The lock-up latch cell works by holding the previous cycle’s scan data while the current
cycle’s scan data is captured, effectively delaying the output data transition to the next edge
of the source clock. Figure 6-23 shows the lock-up timing behavior for the example.
Although this example uses return-to-zero clock waveforms, lock-up latch operation is
similar for return-to-one clock waveforms.

Figure 6-23 Timing for Two Leading-Edge Scan Cells With a Lock-Up Latch

Lock-up latch operation for trailing-edge scan cells is similar to that of leading-edge scan
cells, except that the data is held into the next clock cycle as shown in Figure 6-24.

Figure 6-24 Timing for Two Trailing-Edge Scan Cells With a Lock-Up Latch

By default, DFT Compiler adds scan lock-up latches as needed to multiplexed flip-flop scan
chains. Scan chain cells are ordered by the ideal test clock edge times, as defined with the
-timing option of the set_dft_signal command. Cells clocked by later clock edges are

�
��
��

�

		�

�
��
��

�

		����� ���

���� !"��
��#

� �

�

����

�����

�$���%��

���
�����
����

�
�

�#����

�
�
�
�#����

�
�
� �
�

�
�
�
��
��#���
&�"
��&��

�
�

��
��#���
&�"
��&��

����

�����

�$���%��

���
�����
����

�
�

�#����

�
�
�
�#����

�
�
� �
�

�
�
�
���
&�'�

�
�

���
&�'�
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-52

DFT Compiler Scan User Guide Version H-2013.03-SP4
placed before cells clocked by earlier clock edges. Adjacent scan chain cells clocked by
different clock edges are handled as follows:

• When the scan cells are clocked by clock edges with different ideal clock edge timing,
DFT Compiler does not insert a lock-up latch. The second scan cell captures data using
an earlier clock edge, and DFT Compiler assumes this difference in the ideal clock edge
timing is sufficient to avoid a hold time violation.

• When the scan cells are clocked by clock edges with identical ideal clock edge timing,
DFT Compiler inserts a lock-up latch to avoid a potential hold violation due to clock skew.

Note:
DFT Compiler assumes that any clock skews are smaller than the edge differences in the
ideal test clock edge times. In Figure 6-23, if CLK2 is skewed later than CLK1 by more
than the active-high pulse width of CLK1, a hold violation can still occur.

Figure 6-25 shows a set of ideal test clock waveforms for a set of overlapping test clocks.
The clock edges are numbered by their edge timing order, with the latest clock edge
indicated by (1). Clock edges with identical ideal clock edge timing are highlighted.

Figure 6-25 Ideal Test Clock Waveforms for Overlapping Test Clocks

Figure 6-26 shows how DFT Compiler constructs a scan chain containing a scan cell
clocked by each clock edge. The scan cells are ordered with the cells clocked by the latest
clock edges coming first. Lock-up latches are inserted between scan cells clocked by the
clock edges with identical ideal clock edge timing.

Figure 6-26 Scan Chain Lock-Up Latches for Overlapping Test Clocks

However, in most designs, all test clocks share identical return-to-zero test clock waveforms,
as shown in Figure 6-27.

�

�

��
�

�	
�

��
�

�(
�

�)
�

�
����������������*
��������������
��

�� �# �$ % %�" �� �!
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-53
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-53

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-27 Ideal Test Clock Waveforms for Simple Test Clocks

In this case, the ordering behavior is simplified. The scan cells are ordered with all
falling-edge scan cells first and all rising-edge scan cells last, as shown in Figure 6-28.
Lock-up latches are inserted between differently-clocked scan cells within the rising-edge
and falling-edge sections of the scan chain.

Figure 6-28 Scan Chain Lock-Up Latches for Simple Test Clocks

DFT Compiler inserts a lock-up latch at the same level of hierarchy as the scan output pin of
the preceding scan element:

• If the preceding element is a CTL model or is located in a block containing CTL model
information, the lock-up latch is inserted at the level of hierarchy where the CTL model
exists.

• If the preceding element is a leaf scan cell (that does not exist in a CTL-modeled block),
the lock-up latch is inserted at the level of hierarchy where the scan cell exists.

The set_scan_configuration command provides options to control lock-up latch
insertion. By default, DFT Compiler performs automatic lock-up latch insertion for
multiplexed flip-flop scan chains. To disable this feature, use the -add_lockup option of the
set_scan_configuration command:

dc_shell> set_scan_configuration -add_lockup false

To add lock-up latches at the end of each scan chain to assist with potential block-to-block
timing issues during core integration, use the -insert_terminal_lockup option of the
set_scan_configuration command:

dc_shell> set_scan_configuration -insert_terminal_lockup true

The default lock-up element type is a level-sensitive lock-up latch. To use a lock-up flip-flop
instead, use the -lockup_type option of the set_scan_configuration command:

dc_shell> set_scan_configuration -lockup_type flip_flop

When a lock-up flip-flop is used, the data is held as shown in Figure 6-29.

�

�

��
�

�
����������������*
��������������
��

��
�

�	
�

�� �! �" % %��
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-54

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-29 Timing for Two Scan Cells With a Lock-Up Flip-Flop

Regardless of your selected scan style or configuration, you can explicitly add scan lock-up
elements to your scan chain by using the set_scan_path command.

For successful lock-up operation, the falling edge of the current scan cell must occur after or
concurrent with the rising edge of the next scan cell. This requirement is always inherently
met when DFT Compiler inserts lock-up elements between scan chain cells. However, when
you are manually inserting lock-up elements with the set_scan_path command, you must
ensure that this requirement is met.

Use the preview_dft -show cells command to see where the insert_dft command will
insert scan lock-up elements in your scan chain:

dc_shell> preview_dft
...
Scan chain '1' (test_si --> Z[3]) contains 4 cells:

 Z_reg[0] (CLK1, 45.0, rising)
 Z_reg[1] (l)
 Z_reg[2] (CLK2, 45.0, rising)
 Z_reg[3]

You can also use the scan_lockup cell attribute to locate lock-up elements:

dc_shell> set lockup_cells \
 [get_cells -hierarchical * -filter {scan_lockup==true}]

Adding Lock-Up Latches Within Clock Domains
This section describes how the tool adds lock-up latches within clock domains in the
multiplexed flip-flop scan style.

For the purpose of building scan chains, the insert_dft command, by default, treats all
internal clock signals driven by the same top-level clock port as the same clock signal.

����

�����

�$���%�����

���
�����
����

�
�
� �
�

�
�
� �
�

Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-55
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-55

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Consider the netlist shown in Figure 6-30, which shows a clock network structure before
clock tree synthesis. By default, the insert_dft command treats all four flip-flops as
belonging to the same top-level clock, CLK.

Figure 6-30 Circuit With Same Top-Level Clock Driving Internal Clock Signals

Note that the MUX cell introduces a delay in the clock network. If clock tree synthesis
balances the test mode clock latency equally to all flip-flops, the MUX cell should not cause
any timing problems. However, since clock tree synthesis might not consider the test mode
clock tree latencies used for scan shift, a potential scan path hold violation could occur at
FF3/SI.

In this case, you can avoid creating the potential hold time violation by treating the flip-flops
clocked by the MUXed clock as if they belonged to a different clock domain. To do this, use
the following command:

dc_shell> set_scan_configuration -internal_clocks multi

This command instructs the insert_dft command to treat internal clock network regions
driven by multiple-input gates, such as MUX cells, as separate clocks for the purposes of
scan chain architecture. This feature only affects scan chain architecture; the clock network
is still a single test clock domain for all other DFT operations.

Note:
Integrated clock-gating cells, which are combinational or sequential cells that have the
clock_gating_integrated_cell attribute defined, are not considered during internal
clock analysis; they are transparent for the determination of internal clocks.

The resulting scan chains depend on the current clock-mixing setting, which is controlled by
the -clock_mixing option of the set_scan_configuration command. If clock mixing is
disabled by specifying the no_mix or mix_edges clock-mixing mode, the insert_dft
command creates separate scan chains for each internal clock, as shown in Figure 6-31.

�
��
��

�

		� �
��
��

�

		!&%'

�
��
��

�

		"

�
��
��

�

		�

(%%

��
�����

��
���

��
���

set_scan_configuration \
 -internal_clocks none ;# default setting
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-56

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-31 Circuit With Internal Clocks With Clock Mixing Disabled

If clock mixing is enabled by specifying the mix_clocks or mix_clocks_not_edges
clock-mixing mode, the insert_dft command can use lock-up latches to keep the scan
cells from different internal clocks on the same scan chain, as shown in Figure 6-32.

Figure 6-32 Circuit With Internal Clocks With Clock Mixing Enabled

If clock mixing is disabled, you can still enable internal clock domain mixing with the
-mix_internal_clock_driver option of the set_scan_configuration command, which
enables clock mixing only for internal clocks:

dc_shell> set_scan_configuration \
 -internal_clocks multi \
 -clock_mixing no_mix | mix_edges \
 -mix_internal_clock_driver true

You can specify internal clock settings on individual clock domains by using the
-internal_clocks option of the set_dft_signal command. The following command tells

�
��
��

�

		� �
��
��

�

		!&%'

�
��
��

�

		"

�
��
��

�

		�

(%%

��
�����

��
����

��
����

��
����

��
����

set_scan_configuration \
 -internal_clocks multi -clock_mixing no_mix | mix_edges

�
��
��

�

		� �
��
��

�

		!&%'

�
��
��

�

		"

�
��
��

�

		�

(%%

��
�����

��
���

��
���
%

set_scan_configuration \
 -internal_clocks multi -clock_mixing mix_clocks | mix_clocks_not_edges
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-57
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-57

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
the insert_dft command to treat only internal clocks driven by multiple-input cells as
separate clocks in the CLK domain:

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] \
 -internal_clocks multi -port CLK

If you set different -internal_clocks values using the set_scan_configuration and
set_dft_signal commands, the more specific setting applied with the set_dft_signal
command takes precedence. For example, assume that you set the following opposing
-internal_clocks values by using these two commands:

dc_shell> set_scan_configuration -internal_clocks none

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] \
 -internal_clocks multi -port CLK

Because the value set by the set_dft_signal command takes precedence, signals driven
by CLK via MUX cells or other multiple-input gates are treated as separate clocks. All other
clocks in the design are treated according to the default configuration.

Note:
The -internal_clocks option affects only scan chain building for the multiplexed
flip-flop scan style.

When you use user-defined test points or test points inserted by AutoFix, testability logic
might be inserted in the clock network. The preview_dft command does not see internal
clocks created by test points, but the insert_dft command does. For more information on
test points, see Chapter 7, “Advanced DFT Architecture Methodologies.

Assigning Scan Chains to Specific Clocks
You might want to allocate specific clocks to given scan chains. By doing this, you gain
additional control over scan chain specifications. To associate a scan chain to a clock
domain, use the set_scan_path command.

dc_shell> set_scan_path chain_name \
 -view spec -scan_master_clock clock_name

If you also use the -exact_length option to define the number of scan cells to be included
in that scan chain, DFT Compiler includes additional scan cells clocked by other clocks if the
clock-mixing requirements allow.

If you use the -edge option with the -scan_master_clock option when defining a scan path
using the set_scan_path command, the tool includes only the elements controlled by the
specified edge of the scan_master_clock in the scan chain. The valid arguments to the
-edge option are rising and falling.
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-58

DFT Compiler Scan User Guide Version H-2013.03-SP4
For example,

dc_shell> set_scan_path c1 \
 -scan_master_clock clk1 -edge rising -view spec

In this example, the scan chain c1 will contain elements that are triggered by the rising edge
of clock clk1.

Note the following limitations to the -edge option:

• When there are no elements present for the defined scan chains, the scan path name is
reused.

• This option is not supported with multivoltage designs.

• This option is not supported with the other set_scan_path options, such as the -head,
-tail, -ordered, and -length options.

If the specifications in the set_scan_path command cannot be met, they are not applied.

Handling Multiple Clocks in LSSD Scan Styles
This section provides information on handling multiple clocks in level-sensitive scan designs
(LSSD) scan styles.

Using Multiple Master Clocks
In LSSD scan designs, you need not allocate scan chains by clock for timing purposes;
however, you might want to do so. Assume that you have a latch-based design with two
system enables, en1 and en2, and you want a scan chain allocated for each enable. The
command sequence given in Example 6-6 accomplishes this.

Example 6-6 Command Sequence for Multiple Master Clocks in LSSD

dc_shell> set_scan_configuration -style lssd

create test A clock ports and assign to scan chains
dc_shell> create_port -direction in {A_CLK1 A_CLK2}
dc_shell> set_dft_signal -view spec -port A_CLK1 \
 -type ScanMasterClock
dc_shell> set_scan_path 1 -view spec \
 -scan_master_clock A_CLK1
dc_shell> set_dft_signal -view spec -port A_CLK2 \
 -type ScanMasterClock
dc_shell> set_scan_path 2 -view spec \
 -scan_master_clock A_CLK2

explicitly allocate cells to scan chains by system enable
dc_shell> create_clock en1 -name cclk1 -period 100
dc_shell> set cclk1_cells [get_object_name [all_registers -clock cclk1]]
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-59
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-59

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
dc_shell> set_scan_path 1 -include_elements $cclk1_cells
dc_shell> create_clock en2 -name cclk2 -period 100
dc_shell> set cclk2_cells [get_object_name [all_registers -clock cclk2]]
dc_shell> set_scan_path 2 -include_elements $cclk2_cells

preview scan configuration and implement
dc_shell> create_test_protocol
dc_shell> dft_drc
dc_shell> preview_dft -show all
dc_shell> insert_dft

Dedicated Test Clocks for Each Clock Domain
The insert_dft command creates clocks that are used only for test purposes when it
routes scan chains by using the following scan styles:

• LSSD (which includes clocked LSSD)

• Scan-enabled LSSD

The test clocks are dedicated for each system clock domain. This makes clock trees and
clock signal routing easier. The insert_dft command uses the following guidelines to
determine how test clocks are added:

• For sequential cells with multiple test clocks, the insert_dft command adds a test clock
for each unique set of master and slave system clocks. For example, in Figure 6-33, cell
U1 is clocked by C1 (master) and B1 (slave), cell U2 is clocked by C2 and B1, cell U3 is
clocked by C1 and B2, and cell U4 is clocked by C2 and B2, resulting in four unique clock
sets. As a result, the insert_dft command adds four test clocks, one for each unique
clock set.

Figure 6-33 Adding Test Clocks for Sequential Cells With Multiple Test Clocks

• For cells that are clocked by the same system clock, the insert_dft command adds the
same test clock to these cells, even though they are clocked by different clock senses
(rising edge, falling edge, active low, and active high). When a clock is distributed to pins

c

c

U1

U3

C1 c

c

U2

U4

C2

b
a

port_3

B2

b
a

port_1

B1 b
a

port_2

b
a

port_4
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-60

DFT Compiler Scan User Guide Version H-2013.03-SP4
with mixed clock senses, the insert_dft command inserts inverters to ensure design
functionality.

Controlling LSSD Slave Clock Routing
For designs using either LSSD scan style or clocked LSSD scan style, all single-latch and
flip-flop elements have an unconnected slave clock pin after scan replacement.

If possible, the insert_dft command uses the slave clocks distributed to double-latch
elements and does either of the following:

• Creates, at most, one new port per design when you want to use only the slave clocks
distributed to the double-latch elements

• Creates one or more ports when you want test clocks created according to different
system clocks

The insert_dft command uses the following guidelines when connecting slave clock pins
of single-latch and flip-flop elements after scan replacement:

• Connect the unconnected slave clock pin of LSSD scan style single-latch or flip-flop
elements to the slave clock pin of the double-latch that is clocked by the same system
clock. See Figure 6-34.

Note:
For clarity, the A clock is omitted in Figure 6-34 through Figure 6-37 after scan
replacement.

Figure 6-34 Single-Latch and Double-Latch Cells With the Same System Clock

U1

U2

c

cC1

Before scan replacement After scan replacement

U3c

bB1

SL

DL

FF

U1

U2

c

cC1

U3c

bB1

DL

DL

FF
b

b

Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-61
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-61

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
• Connect to a new slave clock, creating a new one if necessary, if a system clock drives
multiple cells with different slave clocks. See Figure 6-35.

Figure 6-35 Single-Latch and Double-Latch Cells Clocked by the Same System Clock

• Connect to a new slave clock port, creating one if necessary, if double-latch cells are
driven by different clocks. See Figure 6-36.

Figure 6-36 Single-Latch and Double-Latch Cells Clocked by Separate System Clocks

• Connect to a new slave clock, creating a new port if necessary, if there are no
double-latch cells. See Figure 6-37.

U1

U2

c

cC1

Before scan replacement After scan replacement

U3c

bB1

SL

DL

DL

U1

U2

c

cC1

U3c

bB1

DL

DL

DL

b

bB2 bB2

New port

U1

U2

c

cC1

Before scan replacement After scan replacement

bB1

SL

DL

U1

U2

c

cC1

bB1

DL

DL

b
New port

C2 C2
Chapter 6: Architecting Your Test Design
Architecting Test Clocks 6-62

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-37 Connecting Slave Clock Pin: No Double-Latch Cells

Modifying Your Scan Architecture

Unless conflicts occur, the set_scan_configuration commands are additive. You can
enter multiple set_scan_configuration commands to define your scan configuration. If a
conflict occurs, the latest set_scan_configuration command overrides the previous
configuration.

To modify your scan configuration, you can rely on the override capability or remove the
complete scan configuration and start over. Use the reset_scan_configuration
command to remove the complete scan configuration. Do not use the reset_design
command to remove the scan configuration. Configuring the scan chain does not place
attributes on the design, so the reset_design command has no effect on the scan
configuration and removes all other attributes from your design, including constraints
necessary for optimization.

To make minor adjustments to the scan architecture, modify the scan specification script
generated by the preview_dft -script command.

dc_shell> preview_dft -script > scan_arch.tcl
manually modify scan_arch.tcl to reflect desired architecture */
dc_shell> source scan_arch.tcl
dc_shell> preview_dft
dc_shell> insert_dft

Post-Scan Test Design Rule Checking

After you perform scan insertion, you need to perform design rule checking again to ensure
that no violations have been introduced into your design by the scan insertion process.

U1

U2

c

cC1

Before scan replacement After scan replacement

SL

SL

U1

U2

c

cC1

b

DL

DL

b
New port

C2 C2
Chapter 6: Architecting Your Test Design
Modifying Your Scan Architecture 6-63
Chapter 6: Architecting Your Test Design
Modifying Your Scan Architecture 6-63

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
This section has the following subsections related to post-scan test DRC:

• Preparing for Test Design Rule Checking After Scan Insertion

• Checking for Topological Violations

• Checking for Scan Connectivity Violations

• Causes of Common Violations

• Ability to Load Data Into Scan Cells

• Ability to Capture Data Into Scan Cells

Preparing for Test Design Rule Checking After Scan Insertion
Before performing test design rule checking, you need to ensure that your timing parameters
are set properly. For more information on timing parameters, see Chapter 5, “Pre-Scan Test
Design Rule Checking.”

Check the following settings:

• Ensure that the following timing parameters are correctly set in your .synopsys_dc.setup
file:

❍ test_default_delay

❍ test_default_strobe

❍ test_default_bidir_delay

❍ test_default_period

Note:
Consult your ASIC vendor for timing value requirements.

• If you bring your design in as a netlist and not in .ddc format, you need to reset all your
set_scan_configuration and set_dft_signal attributes.

• Ensure that signal_type attributes exist on test ports.

If you used the insert_dft command to build scan chains and you saved the design in
.ddc format, DFT Compiler automatically establishes the signal type attributes.

If you did not use the insert_dft command (for example, you read in an ASCII netlist)
or if you have saved the insert_dft design as a netlist instead of as a .ddc file, you must
reestablish the signal type attributes by using the set_dft_signal command.

You can list test ports by using the report_dft_signal command.
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-64

DFT Compiler Scan User Guide Version H-2013.03-SP4
• Use the report_scan_state command to verify that the scan_existing constraint is
set. If the constraint is set, the report reads

Existing Scan : True

If the constraint is not set, you cannot do a scan test design rule checking run and the
report reads

Existing Scan : False

Checking for Topological Violations
Topological checks are global connectivity checks that the dft_drc command performs in a
structural manner.

If the dft_drc command cannot determine the logic function associated with a wired net, it
issues the following warning message:

Warning: Type of wired net %s is unknown. (TEST-114)

The presence of a non-three-state driver on a three-state net (see Figure 6-38) results in
contention on that net.

Figure 6-38 A Non-Three-State Driver

If the dft_drc command detects such a condition, it flags the violation with:

Warning: Three-state net %s is not properly driven. (TEST-115).

If the dft_drc command detects the presence of a pull-up driver or a pull-down driver on a
non-three-state net, it flags the problem with

Error: Pullup/pulldown net %s has illegal driver(s).
(TEST-331)

Any violation on a net forces the net to the value X for the entire protocol simulation.

OUTAIN3

E2

IN2

E1

IN1
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-65
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-65

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Checking for Scan Connectivity Violations
After the dft_drc command completes test protocol simulation, it analyzes the simulation
results to determine the following:

• The architecture of the scan chains

• Whether the capture state and the state of the cell that is scanned are the same

The report_scan_path command reports the scan chain architecture determined by the
dft_drc command.

Running an incremental compile or other command that affects the database can cause the
information gathered by dft_drc to be invalidated. If you run a report_scan_path and get
an error message saying that no scan path is defined, try running dft_drc again,
immediately followed by a report_scan_path command.

Scan Chain Extraction
A scan chain is a group of sequential elements through which a uniquely identifiable bit of
scan data travels. The dft_drc command extracts scan chains from a design by tracing
scan data bits through the multiple time frames of the protocol simulation. Scan chains are
protocol dependent: For a given design, specifying a different test protocol can result in
different scan chains. As a corollary, scan-chain-related problems can be caused by an
incorrect protocol, by incorrect set_dft_signal specifications, or even by incorrectly
specified timing data.

Causes of Common Violations
During test design rule checking on scan designs, DFT Compiler simulates the test protocol
to verify that the scan operation functions correctly. Protocol simulation verifies that scan
cells predictably perform the following tasks:

• Receive data during scan input

• Capture data during parallel capture

• Shift data during scan output

The following sections describe the scan operation checks for each of these tasks and
provide guidance in correcting the problems.
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-66

DFT Compiler Scan User Guide Version H-2013.03-SP4
Ability to Load Data Into Scan Cells
To ensure that the scan shift process can successfully load data into the scan cells, DFT
Compiler verifies that

• Data arrives at the scan input pin of each scan cell

• The test clock pulse arrives at the test clock pin of each scan cell

• Scan data is not corrupted during scan shift

If a scan cell does not meet these conditions, DFT Compiler cannot control the scan cell.
Typical causes for uncontrollable scan cells include

• Incorrect or incomplete test configuration

• Invalid clock logic

• Incorrect timing relationships between clocks for two-phase clocking

• Nonscan sequential cells clocked by the test clock

• Invalid scan path

DFT Compiler generates this error message when it detects that it cannot shift through a
scan chain:

Begin Scan chain violations...

Error: Chain c1 blocked at DFF gate FF_A after tracing 2 cells. (S1-1)

Scan chain violations completed...

The following sections provide examples of the typical causes of uncontrollable scan cells.

Incomplete Test Configuration
Figure 6-39 shows a simple scan design with a scan chain.
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-67
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-67

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-39 Simple Scan Design

When reading a design from an ASCII netlist that contains existing scan chains, you must
specify the test ports. If you do not identify the scan input port, DFT Compiler does not flag
any violations during DRC, but it will not be able to extract scan chains.

If the scan input port information is not specified, the dft_drc command generates a
pre-DFT DRC report even though the netlist contains scan chains:

dc_shell> dft_drc
In mode: all_dft...
 Pre-DFT DRC enabled

Information: Starting test design rule checking. (TEST-222)
...

Also, the report_scan_path -chain all command does not report any scan chains:

dc_shell> report_scan_path -chain all
...
==
TEST MODE: Internal_scan
VIEW : Existing DFT
==

==
AS SPECIFIED BY USER
==

==
AS BUILT BY insert_dft
==

No scan path defined in this mode.

OUT2

CLK

IN2

OUT1

IN1

test_si
test_se

CDN
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-68

DFT Compiler Scan User Guide Version H-2013.03-SP4
To resolve this, identify the scan input ports, scan output ports, test clocks, and
asynchronous sets and resets, then rerun dft_drc. For example,

set_scan_state scan_existing

set_dft_signal -view existing -type ScanEnable -port test_se
set_dft_signal -view existing -type ScanDataIn -port test_si
set_dft_signal -view existing -type ScanDataOut -port OUT2

set_scan_path C1 -view existing \
 -scan_data_in test_si -scan_data_out OUT2

After the test ports are defined, the dft_drc command generates a post-DFT DRC report,
and the scan chains are properly inferred.

Invalid Clock Logic
Figure 6-40 shows a design with a combinationally gated clock.

Figure 6-40 Combinationally Gated Clock

If you do not hold port IN3 at logic 1 during scan shift, pulses applied at clock port CLK might
not reach the clock pin of cell FF_B; therefore, the clock input of cell FF_B violates the test
clock requirements. DFT Compiler generates error messages such as these:

--
Begin Scan chain violations...

Error: Chain c1 blocked at DFF gate U1 after tracing 0 cells. (S1-1)

Scan chain violations completed...
--

Invoke the Design Vision Graphical Schematic Debugger, as shown in Figure 6-41.

OUT2CLK
IN3

OUT1

IN1

test_si
test_se

IN1
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-69
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-69

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-41 The Design Vision Graphical Schematic Debugger

The debugger shows that the clock input of the cell FF_B contains an X. This indicates that
the clock was is completely controllable.

In Figure 6-42, if SEL = 1, the path from CLK1 is active, although the path from CLK2 is not.
In general, you use the set_dft_signal command to specify constant logic values on
ports, as explained later in this chapter.
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-70

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-42 A Clock Selector Network

In this example, if you specify set_dft_signal-view existing_dft -type Constant
-active_state 1 on the SEL port, you will see this violation:

Begin Pre-DFT violations...

Warning: Clock CLK2 cannot capture data with other clocks
off. (D8-1)

Pre-DFT violations completed...

A D8 violation indicates that a clock cannot capture data while others are off. Each clock
must be capable of capturing data. This does not prevent scan insertion, but you might want
to investigate the cause of the violation.

You can correct invalid clock-gating violations by inserting logic.

If a clock pin is driven by constant logic, the dft_drc command issues a warning:

Warning: Clock input CP of DFF FF_A couldn’t capture data.
(D17-1)

The waveforms of the inferred clocks are taken either from a previous invocation of the
set_dft_signal command or from the scan style-dependent default timing values.

Incorrect Clock Timing Relationship
A structurally valid scan chain becomes invalid due to the clock timing definitions in the
following cases:

• The cell ordering of the scan chain in a scan design with multiple clock domains has later
cells triggered by later clocks (data flow-through).

• The active levels of the master clock and the slave clock overlap in designs with
two-phase clocking.

OUT

AN2

AN2

OR2

FD1IVA
IN

SEL

CLK2

CLK1
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-71
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-71

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-43 shows a scan design with multiple clocks. Structurally this design meets the
scan design rules. However, the ability to shift data through the scan chain depends on the
relationship between the multiple clocks.

Figure 6-43 Existing Scan Design With Multiple Clocks

Unless CLK1 and CLK2 have identical timing, this design always results in an invalid scan
path due to the clock timing relationship. CLK2 triggers cell FF_B, and CLK1 triggers both
the cell driving it (FF_A) and the cell driven by it (FF_C).

If the clock timings are identical, design rule checker will report warning messages such as

Warning: Multiple clocks (CLK1 CLK2) were used to shift scan chain c1.
(S22-1)

If the clock timings are different, design rule checker will report warning messages such as

Warning: Dependent slave FF_B may not hold same value as master FF_A.
(S29-1)

Figure 6-44 shows an LSSD design. Structurally, this design meets the scan design rules.
However, the ability to shift data through the scan chain depends on the relationship
between the master clock (TMCLK) and the slave clock (SLCLK).

OUT3

IN2
CLK2

OUT2

IN1

test_si
test_se

OUT1
CLK1

IN3

FF_A

FF_B

FF_C
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-72

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-44 Simple LSSD Design

DFT Compiler uses zero-delay timing, so you cannot depend on delays in the clock nets to
prevent overlapping master and slave clocks. Because DFT Compiler considers both the
master and slave clocks active at 55 ns after the start of the vector, this command sequence
defines an invalid timing relationship for the design in Figure 6-44:

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] \
 -port TMCLK

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 55 65] \
 -port SLCLK

Nonscan Sequential Cells
Figure 6-45 shows a scan design with a nonscan sequential cell.

D1

Q1

DMCLK

TMCLK

SCAND

SLCLK

D0

Q2
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-73
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-73

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-45 Scan Design With Nonscan Sequential Cell

DFT Compiler supports this configuration but generates uncontrollable-scan-cell messages
to indicate exclusion of the nonscan cell from the scan chain.

If the nonscan cell has a scan_element false attribute, DFT Compiler generates warning
messages such as this:

Warning: Nonscan DFF U1 disturbed during time 45 of shift

procedure. (S19-1)

Ability to Capture Data Into Scan Cells
To ensure that the parallel capture cycle results in data that is successfully captured into the
scan cells, DFT Compiler verifies that

• The capture data is valid

Valid capture data depends only on the scanned-in state and primary input values.
Modification of capture data by other capture data or the capture clock invalidates the
capture data.

• The system clock pulse arrives at the system clock pin of each scan cell

OUT2CLK
IN2

OUT1

IN1

test_si
test_se

CDN
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-74

DFT Compiler Scan User Guide Version H-2013.03-SP4
If a scan cell does not meet these conditions, DFT Compiler cannot capture data into the
scan cell. Typical causes of failed data capture include the following:

• A clock signal drives the data input to a scan cell.

• A functional path in the design has sequential endpoints clocked by different clock
domains (untestable functional path).

• A bidirectional port drives the data input to a scan cell, and the data is released before
the capture clock.

• A master-slave cell with an inferred behavior for the B clock pulse causes the cell capture
state to be different from the cell scan-out state.

• A sequential element drives an asynchronous input to a scan cell.

• The test protocol does not include a capture clock.

DFT Compiler generates diagnostic messages indicating the source of the violation.

The following sections provide examples of the typical causes of failed data capture.

Clock Driving Data
In the design shown in Figure 6-46, the clock signal CLK drives the data input to cell FF_B.
Pulsing the clock signal during capture can cause the data input to cell FF_B to change.

Figure 6-46 Design With Clock Driving Data

OUT2CLK
IN2

OUT1

IN1

test_si
test_se

CDN
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-75
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-75

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
DFT Compiler generates this warning message:

Warning: Clock CLK connects to LE clock/data inputs CP/D of DFF FF_B.
(C12-1)

Although the dft_drc output and the scan path report indicate that the affected cell is
scannable, the cell is actually scan controllable only.

This violation usually has a minor impact on fault coverage, so make it one of the last
violations you correct, if at all. Correcting this violation requires the addition of test-mode
logic, which also has a minor fault coverage impact. Fixing the violation means trading one
set of untested faults for another, possibly smaller, set of untested faults.

Use the Design Vision Graphical Schematic Debugger to locate and analyze the
clock-driving data problem.

Untestable Functional Path
Figure 6-47 shows a design with an untestable functional path. A functional path exists
between cells q1_reg and q2_reg. Using the default clock waveform of rising edge at 45 ns
and falling edge at 55 ns, q2_reg receives the data captured in cell q1_reg.

Figure 6-47 Untestable Functional Path

Because the capture data in cell q2_reg depends on data other than the scanned-in state
and the primary input values, DFT Compiler generates warning messages such as these:

Warning: Clock clk can capture new data on TE input CP of DFF q2_reg.
(D14-1)
 Source of violation: input CP of DFF q1_reg.

Use the Design Vision Graphical Schematic Debugger to locate and analyze the untestable
functional path problem. Contact Synopsys support personnel for access to a script that
loads the debugger.

In most cases, you must change the design to correct the problem.

q2

q2_reg

d

clk

q1

q1_reg
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-76

DFT Compiler Scan User Guide Version H-2013.03-SP4
Uncontrollable Asynchronous Pins
The asynchronous pins shown in Figure 6-48 are uncontrollable, because they are driven by
sequential logic. If you hold the TM signal at logic 1 only during scan shift, the asynchronous
resets on cells FF_A and FF_B can change as a result of the capture clock.

Figure 6-48 Uncontrollable Asynchronous Pins

DFT Compiler will report the following:

Warning: Clock CDN cannot capture data with other clocks off. (D8-1)

Uncontrollable pins usually occur when the asynchronous signal is generated from the state
of other sequential devices, as shown in Figure 6-49. You can correct this violation by
inserting test-mode logic.

FF_A

U1

IN1 OUT1

TH

FF_B

OUT2

CDN

CLK

IN2
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-77
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-77

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 6-49 Circuit With Uncontrollable Asynchronous Clear

CLK

OR2

DFF1

U1

A

B
Z

FF_A
P

D Q

P

D Q

DFF1
FF_B

POR

D OP

RESET
QN

QN
Chapter 6: Architecting Your Test Design
Post-Scan Test Design Rule Checking 6-78

7
Advanced DFT Architecture Methodologies 7

This chapter describes advanced features that can be used while inserting scan circuitry
into your design. These features can be used to improve design testability using manual and
automatic techniques, improve the frequency of the scan testing logic, reduce power
consumption during test, and provide improved integration of tool-inserted and user-defined
test logic.

The chapter describes advanced DFT architecture-related methodologies and processes in
the following sections:

• Performing Scan Extraction

• Inserting Test Points

• Using AutoFix

• Pipelined Scan-Enable Architecture

• Multiple Test Modes

• Multivoltage Support

• Controlling Power Modes During Test

• Power-Aware Functional Output Gating

• Controlling Clock-Gating Cell Test Pin Connections

• Internal Pins Flow

7-1

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
• Creating Scan Groups

• Identification of Shift Registers
Chapter 7: Advanced DFT Architecture Methodologies
7-2

DFT Compiler Scan User Guide Version H-2013.03-SP4
Performing Scan Extraction

The scan chain extraction process extracts scan chains from a design by tracing scan data
bits through the multiple time frames of the protocol simulation. For a given design,
specifying a different test protocol can result in different scan chains. As a corollary, scan
chain-related problems can be caused by an incorrect protocol, by incorrect
set_dft_signal command specifications, or even by incorrectly specified timing data.

When performing scan extraction, you always use the descriptive view (-view
existing_dft), because you are defining test structures that already exist in your design.

To perform scan extraction

1. Define the scan input and scan output for each scan chain. To define these relationships,
first use the set_scan_configuration command to specify the scan style and then use
the -view existing_dft option with the set_scan_path and set_dft_signal
commands, as shown in the following examples:

dc_shell> set_scan_configuration \
 -style multiplexed_flip_flop

dc_shell> set_dft_signal -view existing_dft \
 -type ScanDataIn -port TEST_SI

dc_shell> set_dft_signal -view existing_dft \
 -type ScanDataOut -port TEST_SO

dc_shell> set_dft_signal -view existing_dft \
 -type ScanEnable -port TEST_SE

dc_shell> set_scan_path chain1 \
 -view existing_dft \
 -scan_data_in TEST_SI \
 -scan_data_out TEST_SO

2. Define the test clocks, reset, and test-mode signals by using the set_dft_signal
command.

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -port CLK \
 -timing [list 45 55]

dc_shell> set_dft_signal -view existing_dft \
 -type Reset -port RESETN \
 -active_state 0

3. Create the test protocol by using the create_test_protocol command.

dc_shell> create_test_protocol
Chapter 7: Advanced DFT Architecture Methodologies
Performing Scan Extraction 7-3
Chapter 7: Advanced DFT Architecture Methodologies
Performing Scan Extraction 7-3

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
4. Extract the scan chains by using the dft_drc and report_scan_path commands.

dc_shell> dft_drc

dc_shell> report_scan_path -view existing_dft \
 -chain all

dc_shell> report_scan_path -view existing_dft \

 -cell all

Inserting Test Points

Test points are points in the design where DFT Compiler inserts logic to improve the
testability of the design. The tool can automatically determine where to insert test points to
improve test coverage and reduce pattern count. You can also manually define where test
points are to be inserted.

The test point capabilities are described in the following sections:

• Test Point Types

• Sharing Test Point Scan Cells

• Automatically Inserting Test Points

• Inserting User-Defined Test Points

Test Point Types
The force and control test point types allow signals within logic cones to be actively
controlled during test mode to improve the controllability of the logic. These test point types
require the insertion of a multiplexer to conditionally override the original signal value,
resulting in a slight delay and area penalty.

The observe test point type passively captures the value of selected hard-to-observe signals
to improve the observability of the logic. No additional levels of logic are inserted along the
path of the observed signal, but the extra observation logic does slightly increase the
capacitive loading of the observed signal.

Test points are described in the following subsections:

• Force Test Points

• Control Test Points

• Observe Test Points
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-4

DFT Compiler Scan User Guide Version H-2013.03-SP4
• Test Point Signals

• Sharing Test Point Scan Cells

Note:
The test point schematics in these sections show the functional operation of the test
points. During synthesis, constant logic is simplified, and the test point logic is optimized
into the surrounding logic.

Force Test Points
Force test points are used when a value must be forced throughout the entire test session.
The following force test point types are available:

• force_0

• force_1

• force_01

• force_z0

• force_z1

• force_z01

The force_0 and force_1 test point types allow a signal to be replaced with a constant 0 or
constant 1 value throughout the entire test session. These test point types are useful when
a particular signal must be forced to a known value for testability purposes. A multiplexer is
used to replace the original signal with a fixed constant 0 or 1 value when the TestMode
signal is asserted. See Figure 7-1.

Figure 7-1 Example of a force_0 or force_1 Test Point

The force_01 test point type allows a signal to be replaced with a scan-selected value
throughout the entire test session. The scan-selected value comes from a source signal
scan register, allowing the forced value to change for each test vector. A multiplexer is used
to replace the original signal with the output of this scan register when the TestMode signal
is asserted. See Figure 7-2.

&���������
&��

���)��

���
*���

+

�

Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-5
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-5

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-2 Example of a force_01 Test Point

The force_z0, force_z1, and force_z01 test point types allow either a constant value or
a scan-selected source signal value to be driven onto a tristate bus that is guaranteed to
have no other active drivers during test mode. See Figure 7-3.

Figure 7-3 Examples of force_z0, force_z1, and force_z01 Test Points

Note that the AutoFix feature of DFT Compiler uses force_0 and force_1 test points for
asynchronous signal fixing and force_01 test points for clock fixing and for fixing
clock-as-data and X propagation.

Control Test Points
Control test points are used when a hard-to-control signal should be controllable (selectively
forced) for some test vectors but left unaltered for others. Control test points are typically
inserted to increase the fault coverage of the design. The following control test point types
are available:

• control_0

• control_1

• control_01

• control_z0

&��

���
*���

������

��
�+���
�����,
����-��.��

&���������

�����

�
��
��

�

��&

�

+

�

���
*���

���)��

&���������

���
*���

&���������

������

��
�+���
�����,
����-��.�� �����

� �
��
��

�

��&
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-6

DFT Compiler Scan User Guide Version H-2013.03-SP4
• control_z1

• control_z01

A control_0 or control_1 test point is built with a multiplexer, an AND gate, and a
test-point enable scan register. When TestMode is not asserted, the signal always retains its
original value. When TestMode is asserted, the signal is forced with a fixed constant 0 or 1
value only when the output of the test point enable scan register selects the constant value.
This allows the test program to select either the original signal behavior, or the
constant-forced behavior on a vector-by-vector basis. This has the advantage of being able
to control the signal for some test vectors without losing the observability of the upstream
logic for the remaining vectors. See Figure 7-4.

Figure 7-4 Example of a control_0 or control_1 Test Point

A control_01 test point is similar to the control_0 and control_1 test point types, except
that a scan-selected source signal value from a scan register is selectively driven onto the
net on a vector-by-vector basis. As a result, the control_01 test point requires two scan
cells per control point, one for the source signal value and one for the enable register that
specifies that the source signal should be driven. See Figure 7-5.

&�����&�������
&��

���)��

���
*���

������

��
�+���
�����,
����-��.�� �����

� �
��
��

�

�(-

+

�

Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-7
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-7

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-5 Example of a control_01 Test Point

The control_Z0, control_Z1, and control_z01 test point types allow either a constant
value or a scan-selected source signal value to be selectively driven onto a bus that might
be three-stated for some vectors but not for others. See Figure 7-6 and Figure 7-7.

Figure 7-6 Example of a control_z0 or control_z1 Test Point

&�����&�������
&��

���
*���

������

��
�+���
�����,
����-��.��

�����

�

+

�
��
��

�

��&

�
��
��

�

�(-

+

�

���)��

���
*���

������

��
�+���
�����,
����-��.��

�����

� �
��
��

�

�(-

&�����&�������
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-8

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-7 Example of a control_z01 Test Point

Observe Test Points
The observe test point type is typically inserted at hard-to-observe signals in a design to
reduce test data volume or to increase the coverage.

An observe test point is a scan register with its data input connected to the sink signal to be
observed. See Figure 7-8.

Figure 7-8 Example of an observe Test Point

&�����&�������

���
*���

������

��
�+���
�����,
����-��.��

�����

� �
��
��

�

�(-

�
��
��

�

��&

�

������

��
�+���
�����,
����-��.��

�����

�
��
��

�

�/�

&����,���-��
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-9
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-9

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Test Point Signals
Test points use source, sink, test point enable, and control signals as shown in Table 7-1.

The control signal is the TestMode signal that activates the test point logic.

Sharing Test Point Scan Cells
To reduce the area requirements of test point logic, DFT Compiler allows you to share the
test-point enable, source signal, and sink signal scan registers with multiple test points.

You can share the same test-point enable or source signal register with multiple control or
force test points. No additional logic gates are required; the scan register outputs are tied to
multiple test point logic gates. Figure 7-9 shows the logic for multiple control_01 test points
that share the same scan registers.

Table 7-1 Test Point Signal Types

Test point
type

Source signal Enable signal Sink signal Control signal

force_0,
force_1

X

force_01 X X

force_z0,
force_z1

X

force_z01 X X

control_0,
control_1

X X

control_01 X X X

control_z0,
control_z1

X X

control_z01 X X X

observe X X1

1. Test-mode signal used only if low-power XOR observability tree is enabled
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-10

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-9 Shared Scan Registers for Multiple control_01 Test Points

Test-point enable and source signal scan registers are not shared between different test
point types.

You can share the same observe sink signal scan register with more than one observe test
point. DFT Compiler builds an observability XOR tree which collapses multiple observed
signals down to a single sink signal connected to the data input of the shared sink signal
scan register. See Figure 7-10.

Figure 7-10 XOR Observability Tree For Multiple observe Test Points

When a device is in functional mode, every time the logic value on an observe node
changes, either from 1 to 0 or from 0 to 1, the entire fanout path through the XOR
observability tree toggles. This toggling results in unnecessary power losses.

.���/���

0�
&1&

�����"��&�������
0�
&*&
,��

0�
&$!�

+

+

�
��
��

�

��&

�
��
��

�

�(-

��&�����"��&�����
���
�����

0�
&1&

�����"��&�������
0�
&*&
,��

0�
&$!��
��
��

�

�/�

$,���-��
"��&��
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-11
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-11

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
To avoid such losses in power, you can create a low-power observability tree for a shared
observe scan register. The observe point signals are gated with a 2-input AND gate, with a
test-mode signal used as the gating signal. See Figure 7-11.

Figure 7-11 Low-Power XOR Observability Tree For Multiple observe Test Points

If a test-mode signal is defined, DFT Compiler uses it for the low-power gating signal.
Otherwise, DFT Compiler creates a new test-mode signal that is used only for low-power
observability gating.

Automatically Inserting Test Points
The tool can automatically insert test points to improve the testability of the design. You can
optionally specify requirements for test point insertion, such as the maximum number of test
points or the maximum additional area overhead. During DFT insertion, the tool inserts the
optimal set of test points that meets the requirements.

The following sections describe how to configure automatic test point insertion:

• Enabling Automatic Test Point Insertion

• Configuring Pattern Reduction and Testability Test Point Insertion

• Previewing the Test Point Logic

• Inserting the Test Point Logic

• Script Example

Enabling Automatic Test Point Insertion
To enable automatic test point insertion, you must first issue the following command before
pre-DFT DRC:

dc_shell> set_dft_configuration -test_points enable

0�
&1&

�����"��&�������
0�
&*&
,��

0�
&$!��
��
��

�

�/�

$,���-��
"��&��

.���/���
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-12

DFT Compiler Scan User Guide Version H-2013.03-SP4
Note:
A DFTMAX license is required to use the automatic test point insertion feature.

After you have enabled automatic test point insertion, you can enable and configure one or
more automatic test point targets with the set_test_point_configuration command, as
described in the following sections. To enable multiple test point targets, issue a separate
configuration command for each target.

Configuring Pattern Reduction and Testability Test Point Insertion
You can use the pattern reduction and testability automatic test point insertion targets to
improve the testability of hard-to-test logic in your design. They work as follows:

• pattern_reduction – Enables only observe points

This mode reduces the pattern count needed to achieve a given amount of test coverage.
Observe points increase the loading along the observed path, but do not directly
increase the logic depth. This mode has less impact on timing.

• testability – Enables both control and observe points

This mode improves the testability of the design by increasing the controllability of
hard-to-test logic. Keep in mind that control points insert logic along the path being
controlled. Although gate-level optimization can combine the control points with the
surrounding logic, there might be some impact on timing.

During pre-DFT DRC, performed by the dft_drc command, the tool analyzes the design to
determine the optimal set of test points. During DFT insertion, performed by the insert_dft
command, the tool inserts the test points into the design. Any needed dedicated clock or test
mode signals are created.

To enable and configure the testability or pattern reduction targets of automatic test point
insertion, use the set_test_point_configuration command as follows:

set_test_point_configuration
 -target pattern_reduction | testability
 [-control_signal control_name]
 [-clock_signal clock_name]
 [-clock_type dominant | dedicated]
 [-max_control_points n]
 [-max_observe_points n]
 [-test_points_per_scan_cell n]
 [-power_saving enable | disable]
 [-max_additional_logic_area n]

The -target option specifies which automatic test point insertion target to enable, and it is
a required option. The pattern_reduction or testability targets are mutually exclusive.
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-13
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-13

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
You can use the following additional options, along with the -target option, to configure
pattern reduction or testability test point insertion:

• By default, control points use any available TestMode port previously defined with the
set_dft_signal command. To specify the TestMode signal that should activate the test
points, use the following option:

dc_shell> set_test_point_configuration ... -control_signal pin_port

The specified control signal must be defined as a TestMode signal type with the
set_dft_signal command.

• By default, the insert_dft command uses the dominant clock, which is the clock that
clocks the most sequential elements in the design, to clock the inserted test point scan
registers. In an on-chip clocking (OCC) flow, it chooses an OCC clock instead.

To specify that a dedicated test point clock signal should be used, use the following
option:

dc_shell> set_test_point_configuration ... -clock_type dedicated

This option causes a new dedicated test point clock signal, tpclk, to be created.

To specify the test clock signal that should clock the test point scan registers, use the
-clock_signal option:

dc_shell> set_test_point_configuration ... \
 -clock_type dedicated \
 -clock_signal clock_name

DFT Compiler supports the following clock name specifications:

❍ You can specify the name of a scan clock signal, defined as a ScanClock signal type
with the set_dft_signal command.

❍ In a DFT-inserted OCC controller flow, you can specify the name of a PLL output pin.
In this case, DFT Compiler maps the test point clock to the output pin of the
corresponding OCC controller during DFT insertion.

❍ In a user-defined OCC controller flow, you can directly specify the name of an output
pin of an existing OCC controller.

For more information on OCC controller flows, see Chapter 9, “On-Chip Clocking
Support.”

• By default, automatic test point insertion is limited to a maximum of 1000 control points.
To specify a different limit, use the following option:

dc_shell> set_test_point_configuration ... -max_control_points n

This option is only valid in testability mode; it is ignored in pattern reduction mode.
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-14

DFT Compiler Scan User Guide Version H-2013.03-SP4
• By default, automatic test point insertion is limited to a maximum of 1000 observe points.
To specify a different limit, use the following option:

dc_shell> set_test_point_configuration ... -max_observe_points n

• By default, each source, sink, or enable scan register can be shared by up to eight test
points. To specify the maximum number of test points that can share a single source,
sink, or enable scan register, use the following option:

dc_shell> set_test_point_configuration ... \
 -test_points_per_scan_cell n

For more information on sharing scan cells, see “Sharing Test Point Scan Cells” on
page 7-10.

• To insert power-saving AND gates at the top of the XOR observability trees to avoid
excess switching power consumption during scan shift, use the following option:

dc_shell> set_test_point_configuration ... -power_saving enable

For more information on power-saving logic, see “Sharing Test Point Scan Cells” on
page 7-10.

• To apply an area limit to the inserted test point logic, use the following option:

dc_shell> set_test_point_configuration ... \
 -max_additional_logic_area P

The value p is the percentage of the total design area that can be consumed by the test
point logic and must be a value between 1 and 50. Low-power observability logic is
included in the test point area value. If specified, the area limit applies in addition to the
test point limit.

Previewing the Test Point Logic
To preview the observe test logic that the tool will implement according to your
specifications, use the following command:

dc_shell> preview_dft -test_points all

This command reports the following information:

• Control test-point locations

• Observe test-point locations

• Instance names of inserted test-point flip-flops

• Clocks used by inserted test-point flip-flops

• Low-power observability tree status
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-15
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-15

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
You can use other options of the preview_dft command with the -test_points option.

Inserting the Test Point Logic
After you define the test point insertion configuration, the insert_dft command inserts the
test point logic. Test point scan registers are placed in the lowest level of hierarchy shared
by all test points for that register.

The following additional signals are created, depending on the test configuration:

• A new test point clock signal, if a test point clock is not defined

• A new test-mode signal for force, control, and observe test points, if a test-mode signal
is not defined

Script Example
The following script inserts testability test points, using a test-mode control signal named
TM_TESTPOINTS.

define DFT signals
set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing [list 45 55]
set_dft_signal -view spec -type TestMode -port TM_TESTPOINTS

enable automatic test point insertion
set_dft_configuration -test_points enable

enable and configure testability test points
set_test_point_configuration \
 -target testability \
 -control_signal TM_TESTPOINTS

preview test points
preview_dft -test_points all

insert DFT logic

insert_dft

Inserting User-Defined Test Points
User-defined test points provide you with the flexibility to insert control and observe test
points at user-specified locations in the design. User-defined test points can be used for a
variety of purposes, including the ability to fix uncontrollable clocks and asynchronous
signals, increase the coverage of the design, and reduce the pattern count.
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-16

DFT Compiler Scan User Guide Version H-2013.03-SP4
The following sections describe how to implement user-defined test points:

• Defining User-Defined Test Points

• Previewing the Test Point Logic

• Inserting the Test Point Logic

• User-Defined Test Points Example

Defining User-Defined Test Points
You can use the set_test_point_element command to specify the location and type of
user-defined test points to insert in the design during DFT insertion, as well as other aspects
of test point construction. User-defined test points can be defined at leaf pins, hierarchy pins,
and ports. These test points are then inserted during the insert_dft command.

To define a user-defined test point, specify the test point type and list of signal pins or ports
to be forced, controlled, or observed:

dc_shell> set_test_point_element -type test_point_type signal_list

For a list of test point types and their descriptions, see “Test Point Types” on page 7-4.

By default, any needed source, sink, and enable signals are supplied by scan registers
inserted by the insert_dft command. Each scan register is shared by up to eight source,
sink, or enable test point signals. For shared source and enable signal registers, the same
scan-selected signal value is used by all shared test points. For shared sink signal registers,
an XOR observability tree is used to combine the observed signals for capture by the sink
register.

You can use the following options to control user-defined test point insertion:

• By default, force and control points use any available TestMode port previously defined
with the set_dft_signal command. To specify the TestMode or ScanEnable signal that
should activate the test points, use the following option:

dc_shell> set_test_point_element -control_signal pin_port ...

The specified control signal must be defined as a TestMode or ScanEnable signal type
with the set_dft_signal command.

• By default, the insert_dft command creates a new clock signal, tpclk, to clock any
inserted test point scan registers, even when test clocks have been defined. To specify
the test clock signal that should clock the scan registers, use the -clock_signal option:

dc_shell> set_test_point_element -clock_signal clock_name ...
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-17
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-17

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
DFT Compiler supports the following clock name specifications:

❍ You can specify the name of a scan clock signal, defined as a ScanClock signal type
with the set_dft_signal command.

❍ In a DFT-inserted OCC controller flow, you can specify the name of a PLL output pin.
In this case, DFT Compiler maps the test point clock to the output pin of the
corresponding OCC controller during DFT insertion.

❍ In a user-defined OCC controller flow, you can directly specify the name of an output
pin of an existing OCC controller.

For more information on OCC controller flows, see Chapter 9, “On-Chip Clocking
Support.

• To specify the maximum number of test points that can share a single source, sink, or
enable register, use the following options:

dc_shell> set_test_point_element \
 -test_points_per_source_or_sink n ...

dc_shell> set_test_point_element \
 -test_points_per_test_point_enable n ...

Source, sink, or enable registers are created as needed, according to the specified
sharing limit and the number of test point signal pins provided.

• To specify that the source, sink, or enable signals should come from primary input and
output ports instead of scan registers, use the following options:

dc_shell> set_test_point_element -scan_source_or_sink false ...

dc_shell> set_test_point_element -scan_test_point_enable false ...

The same source, sink, and enable signal sharing is performed, except that primary input
and output ports are created instead of scan registers.

• To specify that a specific user-supplied source, sink, or enable signal be used for a given
test point definition, use the following options:

dc_shell> set_test_point_element \
 -source_or_sink source_or_sink_name ...

dc_shell> set_test_point_element \
 -test_point_enable test_point_enable_name ...

When a user-supplied source, sink, or enable signal is specified, it is used for all test
points in that set_test_point_element command, and the previously described
sharing limit and scan register options do not apply.
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-18

DFT Compiler Scan User Guide Version H-2013.03-SP4
• To insert power-saving AND gates at the top of an XOR observability tree to avoid excess
switching power consumption during scan shift, use the following option:

dc_shell> set_test_point_element -power_saving enable ...

Each set_test_point_element command describes a unique test point element
definition. Sharing is not performed between test point element definitions. If test points
within a limited geographic region should share the same source, sink, or enable signals,
they should all be provided in a single set_test_point_element command. If test points
across a wide geographic region should not share signals to avoid routing congestion, they
should be broken up into localized groups and specified with separate
set_test_point_element commands.

After specifying test point definitions with the set_test_point_element command, you can
report them with the report_test_point_element command, or remove them before DFT
insertion with the remove_test_point_element command. For more information on these
commands, see the man pages.

Previewing the Test Point Logic
To preview the test-point implementation you have defined, use the following command:

dc_shell> preview_dft -test_points all

This command reports the following information:

• User-defined test-point locations

• Instance names of inserted test-point flip-flops

• Clocks used by inserted test-point flip-flops

• Low-power observability tree status

You can use other options of the preview_dft command with the -test_points option.

Inserting the Test Point Logic
After you define the user-defined test points, the insert_dft command inserts the test
point logic. Test point scan registers are placed in the lowest level of hierarchy shared by all
test points for that register.

The following additional signals are created, depending on the test configuration:

• A new test point clock signal if a test point clock has not been defined

• A new test-mode signal for low-power observability trees if a test-mode signal has not
been defined
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-19
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-19

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
User-Defined Test Points Example
Consider the simple design shown in Figure 7-12 and the corresponding example using the
user-defined test points flow shown in Example 7-1 on page 7-21.

Figure 7-12 Design Example for User-Defined Test Points

In this design example, some control signals are combined using a cloud of combinational
logic, then fed to the DI input of an analog block. The DO output of the analog passes
through an output drive buffer so that it can drive a possible long route outside the block.
Because this analog block is untestable, the logic fanin to the DI input cannot be observed,
and the logic fanout from the DO output cannot be controlled.

To improve the testability of the logic around this analog block, the following user-defined
test points can be specified:

• Insert an observe test point at the DI input of the analog block to provide observability of
the data logic cone:

set_test_point_element -type observe U_ANALOG/DI

• Insert a force_0 test point at the RSTN pin of the analog block to hold the block in a
quiet, low-power reset state during the test program:

set_test_point_element -type force_0 U_ANALOG/RSTN

• Insert a force_01 test point at the DO output of the analog block to provide controllability
of the downstream logic:

set_test_point_element -type force_01 U_ANALOG/DO

A force test point is used at the DO output pin instead of a control test point. The output of
the analog block is always unknown, and there is no reason to selectively allow this unknown
value to propagate downstream. This force test point is placed at the analog block DO output
instead of the DOUT output port so that faults at the drive buffer can be detected. If the test
point was placed at the DOUT output port instead, faults between the analog block and the
output port could not be detected.

The existing clock CLK is used to clock the test point scan registers. A new TESTMODE port
is created to enable the test points.

�0��

-�

��0�0%�1
�0��

�� �� ����

&%'

2�)����
2�)�����

�-�-��

����

�.��)3�
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-20

DFT Compiler Scan User Guide Version H-2013.03-SP4
Example 7-1 Example of a User-Defined Test Point Flow

Read in the design and synthesize it
read_file -format verilog ./rtl/design.v
current_design TEST
link
read_sdc TEST.sdc
compile -scan

Define the clock, reset, test-mode ports
set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing {45 55}
set_dft_signal -view existing_dft -type Reset \
 -port RST -active_state 0
set_dft_signal -view spec -type TestMode \
 -port TESTMODE -active_state 1
set_scan_configuration -chain_count 10

Provide the UDTP specifications
set_test_point_element -type observe U_ANALOG/DI \
 -clock_signal CLK -control_signal TESTMODE

set_test_point_element -type force_0 U_ANALOG/RSTN \
 -clock_signal CLK -control_signal TESTMODE

set_test_point_element -type force_01 U_ANALOG/DO \
 -clock_signal CLK -control_signal TESTMODE

Run pre-DFT DRC
create_test_protocol
dft_drc -verbose

Preview and insert DFT
preview_dft -show all -test_points all
insert_dft

Run post-DFT DRC
dft_drc -verbose
report_scan_path

Write out the netlist
write -hierarchical -format ddc -output TEST_udtp_scan.ddc
change_names -rules verilog
write -hierarchical -format verilog -output TEST_udtp_scan.v
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-21
Chapter 7: Advanced DFT Architecture Methodologies
Inserting Test Points 7-21

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Using AutoFix

The AutoFix feature automatically fixes scan rule violations resulting from the following types
of uncontrollable signals:

• Clock signals

• Asynchronous set signals

• Asynchronous reset signals

• Three-state bus enable signals

• Bidirectional enable signals

By default, only the three-state bus and bidirectional fixing capabilities are enabled. You can
enable fixing for one or more additional signal types to fix testability problems in your design.
You can specify AutoFix configurations at the top-level design, hierarchical cell, and leaf cell
levels. AutoFix is supported in both the multiplexed flip-flop and LSSD scan styles.

When enabled, AutoFix automatically fixes all violations of the specified type(s) found by the
dft_drc command. If there are no violations, AutoFix makes no changes to the design.

This section contains the following subsections:

• When to Use AutoFix

• The AutoFix Flow

• Using AutoFix

• AutoFix Script Example

When to Use AutoFix
Use AutoFix to resolve testability problems caused by uncontrollable signals, as described
in the following subsections:

• Uncontrollable Clock Signals

• Uncontrollable Asynchronous Set and Reset Signals

• Uncontrollable Three-State Bus Enable Signals

• Uncontrollable Bidirectional Enable Signals
Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-22

DFT Compiler Scan User Guide Version H-2013.03-SP4
Uncontrollable Clock Signals
Each scan flip-flop in a design must be clocked by a signal that can be controlled by a
primary input port. Otherwise, the clocking of data into the flip-flop cannot be controlled
during test. Uncontrollable clock signals are flagged by the dft_drc command as design
rule violations. If you do not fix these violations, the associated flip-flops are not included in
scan chains and faults downstream from the flip-flop outputs might not be detectable.

When AutoFix is enabled for uncontrollable clock signals, it inserts a multiplexer test point to
select a controllable clock signal during test, as shown in Figure 7-13. The multiplexer is
controlled by a test-mode signal. For mission-mode operation, the test-mode signal is
inactive and the circuit operation is unchanged. During test, the signal is asserted and the
flip-flop is clocked by the controllable primary input signal.

Figure 7-13 AutoFix Controllability Logic for an Uncontrollable Clock Signal

Uncontrollable Asynchronous Set and Reset Signals
The asynchronous set and reset inputs of each flip-flop must be inactive during test.
Otherwise, the data in the flip-flop can be set or cleared at any time, leaving unknown data
in the flip-flop.

When AutoFix is enabled for uncontrollable asynchronous set or reset signals, by default it
inserts a multiplexer test point to select a controllable set or reset signal during test, as
shown in Figure 7-14. The multiplexer is controlled by a test-mode signal. For mission-mode
operation, the test-mode signal is inactive and the circuit operation is unchanged. During
test, the asynchronous signal is driven by the controllable primary input signal.

Figure 7-14 AutoFix MUX-Based Controllability Logic for an Uncontrollable Reset Signal

&%'

��
�����

�&��&�����
,���
���������&
�

�&��&�����
,���
���������&
�

�

�

��
�����

�&��&�����
,���
���������&
�

�&��&�����
,���
���������&
�

����

�

�

Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-23
Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-23

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
AutoFix can also insert gating logic to de-assert the uncontrollable asynchronous set or
reset signal, as shown in Figure 7-15. The gating logic is controlled by a test-mode or
scan-enable control signal. For mission-mode operation, the control signal is inactive and
the circuit operation is unchanged. When controlled by a test-mode signal, the
asynchronous signal is held inactive throughout the entire test program. When controlled by
a scan-enable signal, the asynchronous signal is held inactive during scan shift but remains
controlled by the functional logic during scan capture.

Figure 7-15 AutoFix Gating-Based Controllability Logic for an Uncontrollable Reset Signal

Uncontrollable Three-State Bus Enable Signals
Three-state bus enable signals must be controllable during scan shift. Otherwise, the
three-state buses might float or be driven to contention as controlling scan cells shift values
through the scan chains.

When AutoFix is enabled for an uncontrollable three-state enable signal, it inserts a
multiplexer test point to select a constant enable signal during test, as shown in Figure 7-16.
The multiplexer is controlled by a scan-enable signal. For mission-mode and scan capture
operation, the test-mode signal is inactive and the circuit operation is unchanged. During
scan shift, the signal is asserted during scan shift and the three-state driver is controlled by
the constant value. Scan capture operation is unchanged.

Figure 7-16 AutoFix Controllability Logic for an Uncontrollable Tristate Signal

The constant value applied to the three-state driver depends on the type of three-state bus,
shown in Figure 7-17. For an internal bus that exists entirely within the current design, only
a single tristate driver is active on each tristate net during scan shift; the rest are held

��
�����
��

��
���

�&��&�����
,���
���������&
�

�&��&�����
,���
���������&
�

�&��&�����
,��
�����
����&
,��

���&
� �&��&�����
,��
�����
����&
,��

���&
�

��
���
���)�� �

�

Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-24

DFT Compiler Scan User Guide Version H-2013.03-SP4
inactive. For an external bus that has a driver outside the current design, none of the drivers
are active on each tristate net during scan shift.

Figure 7-17 Three-State Bus Types

If you have a three-state bus that spans multiple blocks that are AutoFixed separately, at
least one block should be fixed as an internal bus so that the bus is driven during scan shift.

Uncontrollable Bidirectional Enable Signals
Bidirectional enable signals must be controllable during scan shift. Otherwise, the
bidirectional ports might float or be driven to contention as controlling scan cells shift values
through the scan chains.

When AutoFix is enabled for an uncontrollable bidirectional enable signal, it inserts a
multiplexer test point to select a constant enable signal during test, as shown in Figure 7-18.
By default, the constant value is chosen so that the bidirectional driver is in input mode
during scan shift; scan capture operation is unchanged.

Figure 7-18 AutoFix Controllability Logic for an Uncontrollable Bidirectional Signal

Scan-out ports driven by bidirectional drivers are always forced to the output direction during
scan shift, regardless of whether AutoFix bidirectional fixing is enabled or how it is

��
���

����

�

� � � � �

1&���&
���#��� ��
���,!� *2���&
���#��� ��
���,!�

�&��&�����
,��
,���������&
�
�&
,������&
� �&��&�����
,��

,���������&
�
�&
,������&
�

��
���
���)�� �

�

Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-25
Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-25

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
configured. For more information, see “Sharing a Scan Output With a Functional Port” on
page 6-32.

If a bidirectional driver cell drives an output port instead of an inout port, AutoFix classifies
the driver as a three-state bus driver instead of a bidirectional driver because data values
cannot propagate in the input direction.

The AutoFix Flow
The AutoFix design flow is very similar to the ordinary scan synthesis design flow. The
general steps in the design flow are illustrated in Figure 7-19.

Figure 7-19 Scan Synthesis Design Flow With AutoFix

Test-ready compile

Design rule checking

Scan and test point specification

Preview scan chains and test points

Insert scan chains and test points

Check results

Repeat for each
block as needed
Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-26

DFT Compiler Scan User Guide Version H-2013.03-SP4
You start with the compile -scan and dft_drc commands. Then you specify the
parameters for scan insertion and AutoFix. After you set these parameters, you run the
preview_dft command to get a preview of the scan chains and AutoFix test points. If
necessary, you repeat the setup steps to obtain the desired configuration of scan chains and
test points.

When this configuration is satisfactory, you perform scan chain routing and test point
insertion with the insert_dft command. Finally, you check the results with the dft_drc
and report_scan_path commands.

Using AutoFix
The following sections explain how to use AutoFix:

• Enabling AutoFix Capabilities

• Configuring Clock AutoFixing

• Configuring Set and Reset AutoFixing

• Configuring Three-State Bus AutoFixing

• Configuring Bidirectional AutoFixing

• Applying Hierarchical AutoFix Specifications

• Previewing the AutoFix Implementation

Enabling AutoFix Capabilities
You can enable or disable individual AutoFix capabilities using the options of the
set_dft_configuration command shown in Table 7-2.

Table 7-2 Options of the set_dft_configuration Command to Enable AutoFix

Signal type to AutoFix Enabling option of the
set_dft_configuration command

Default

Clock signals -fix_clock disable | enable disable

Asynchronous set signals -fix_set disable | enable disable

Asynchronous reset signals -fix_reset disable | enable disable

Three-state bus enable signals -fix_bus disable | enable enable

Bidirectional enable signals -fix_bidirectional disable | enable enable
Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-27
Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-27

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
By default, only the three-state bus and bidirectional fixing capabilities are enabled. To show
the current set_dft_configuration settings, use the report_dft_configuration
command. To remove the current settings, use the reset_dft_configuration command.

After enabling an AutoFix capability, configure it using the set_autofix_configuration
command.

Configuring Clock AutoFixing
Use the following options of the set_autofix_configuration command to configure clock
AutoFixing:

set_autofix_configuration
 -type clock
 [-test_data clock_signal]
 [-control_signal test_mode_signal]

To specify an existing scan clock signal to use, define it as a TestData signal as well as a
ScanClock signal, then specify it with the -test_data option of the
set_autofix_configuration command:

set_dft_signal -view existing_dft -type ScanClock -port CLK \
 -timing [list 45 55]
set_dft_signal -view spec -type TestData -port CLK

set_autofix_configuration -type clock -test_data CLK

If no clock signal is specified, AutoFix chooses an available scan clock signal that is also
defined as a TestData signal. If no such signal exists, AutoFix creates a dedicated scan
clock signal to use for fixing uncontrollable asynchronous clock signals.

To specify an existing test-mode signal to use for AutoFixed clock test points, use the
-control_signal option of the set_autofix_configuration command:

set_dft_signal -view existing_dft -type TestMode -port AUTOFIX_TM

set_autofix_configuration -type clock -control_signal AUTOFIX_TM

If no control signal is specified, AutoFix chooses an available test-mode signal that is not
already used for another purpose. If no such signal exists, AutoFix creates a dedicated test
mode signal.
Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-28

DFT Compiler Scan User Guide Version H-2013.03-SP4
Configuring Set and Reset AutoFixing
Use the following options of the set_autofix_configuration command to configure set
and reset AutoFixing:

set_autofix_configuration
 -type set | reset
 [-method mux | gate]
 [-test_data set_reset_signal]
 [-control_signal control_signal]
 [-fix_latch disable | enable]

By default, AutoFix uses MUXs to fix uncontrollable asynchronous set or reset signals. To
specify an existing controllable set or reset signal to be selected by the MUXs, define it as a
TestData signal as well as a Set or Reset signal, then specify it with the -test_data option
of the set_autofix_configuration command:

set_dft_signal -view existing_dft -type Reset -port RSTN -active_state 0
set_dft_signal -view spec -type TestData -port RSTN -active_state 0

set_autofix_configuration -type set -test_data RSTN
set_autofix_configuration -type reset -test_data RSTN

If no such signal is specified, AutoFix chooses a set or reset signal that is also defined as a
TestData signal. If no such signal exists, AutoFix creates a dedicated asynchronous reset
signal to use for fixing uncontrollable asynchronous set and reset signals.

Use the -type set or -type reset option of the set_autofix_configuration command
to configure set or reset AutoFixing, respectively. You can use a single existing
asynchronous set or reset signal to AutoFix both uncontrollable set and reset signals.
However, the same asynchronous signal cannot be used to AutoFix both the set and reset
pins of the same cell. If this occurs in your design, you must specify separate set and reset
signals.

To specify an existing test-mode signal to control the MUXs, use the -control_signal
option of the set_autofix_configuration command:

set_dft_signal -view spec -type TestMode -port AUTOFIX_TM

set_autofix_configuration -type set -control_signal AUTOFIX_TM
set_autofix_configuration -type reset -control_signal AUTOFIX_TM

If no control signal is specified, AutoFix chooses an available test-mode signal that is not
already used for another purpose. If no such signal exists, AutoFix creates a dedicated test
mode signal.

To fix uncontrollable sets and resets using gating logic instead of a MUX, use the -method
option to specify the gate fixing method:

set_autofix_configuration -type set -method gate
set_autofix_configuration -type reset -method gate
Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-29
Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-29

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
To specify a scan-enable or test-mode signal to control the gating logic, use the
-control_signal option of the set_autofix_configuration command:

set_autofix_configuration -type set -method gate -control_signal TM_FIX
set_autofix_configuration -type reset -method gate -control_signal TM_FIX

If no control signal is specified, AutoFix chooses an available test-mode signal that is not
already used for another purpose. If no such signal exists, AutoFix creates a dedicated test
mode signal.

By default, AutoFix does not consider set or reset pins of latch cells. To consider latch set
and reset pins, use the -fix_latch enable option of the set_autofix_configuration
command.

Configuring Three-State Bus AutoFixing
Use the following options of the set_autofix_configuration command to configure
three-state bus AutoFixing:

set_autofix_configuration
 -type internal_bus | external_bus
 [-method no_disabling | enable_one | disable_all]

The internal_bus type configures three-state buses that do not drive ports of the current
design. The external_bus type configures three-state buses that drive ports of the current
design.

Use the -method option to control how the tristate drivers are to be enabled during scan
shift. The values are

• no_disabling – do not insert controlling logic

• enable_one – enable one driver; disable all other drivers

• disable_all – disable all drivers

The default methods for the internal_bus and external_bus types are enable_one and
disable_all, respectively. If you have a three-state bus that spans multiple blocks that are
AutoFixed separately, configure one block to use the enable_one method to avoid bus float
during scan shift.

AutoFix combines all scan-enable signals defined without the -usage option into a single
merged signal to enable all three-state bus AutoFix test points. This ensures that no
three-state contention occurs when data is scanned though the shift chains. You cannot use
the -control_signal option to specify a control signal for three-state bus AutoFixing.
Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-30

DFT Compiler Scan User Guide Version H-2013.03-SP4
Configuring Bidirectional AutoFixing
Use the following options of the set_autofix_configuration command to configure
bidirectional AutoFixing:

set_autofix_configuration
 -type bidirectional
 [-method input | output | no_disabling]

Use the -method option to control how the bidirectional drivers are to be enabled during
scan shift. The values are

• input – force bidirectional drivers to input direction

• enable_one – force bidirectional drivers to output direction

• no_disabling – do not insert controlling logic

The default method for the bidirectional type is input.

AutoFix combines all scan-enable signals defined without the -usage option into a single
merged signal to enable all bidirectional AutoFix test points. This ensures that no
bidirectional contention occurs when data is scanned through the shift chains. You cannot
use the -control_signal option to specify a control signal for bidirectional AutoFixing.

Applying Hierarchical AutoFix Specifications
By default, AutoFix specifications applied with the set_autofix_configuration command
apply to the entire design. You can fix only certain hierarchical cells or leaf cells by specifying
them with the -include_elements option of the set_autofix_configuration command.
For example,

set_autofix_configuration -type set -include_elements {MY_CORE}
set_autofix_configuration -type reset -include_elements {MY_CORE}

You can also exclude certain hierarchical cells or leaf cells by specifying them with the
-exclude_elements option of the set_autofix_configuration command. For example,

set_autofix_configuration -type set -exclude_elements {U_IP_CORE}
set_autofix_configuration -type reset -exclude_elements {U_IP_CORE}

You can specify both the -include_elements and -exclude_elements options to exclude
cells within an included cell, but not vice versa.

The set_autofix_configuration command applies a global configuration; subsequent
specifications for a capability take precedence over previous specifications. If you need to
specify different fixing configurations for different areas of the design, use the
Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-31
Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-31

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
set_autofix_element command, which differs from the set_autofix_configuration
command as follows:

• The set_autofix_element command applies a local fixing configuration to the
specified list of leaf cells, hierarchical cells, nets, or designs.

• Multiple set_autofix_element command specifications can be applied to the design.

You can mix global and local specifications. The global fixing configuration is used where no
local configuration applies. For example,

set_autofix_configuration -type clock -test_data CLK
set_autofix_element -type clock -test_data RXCLK {U_RX_BLK}
set_autofix_element -type clock -test_data TXCLK {U_TX_BLK}

Note the following precedence rules:

• Local specifications, applied with the set_autofix_element command, take
precedence over global specifications, applied with the set_autofix_configuration
command.

• Local specifications at lower hierarchy levels take precedence over local specifications at
higher levels.

• If multiple specifications apply to the same object, later specifications take precedence
over earlier specifications.

• Specifications for different fixing types are independent and do not affect each other.

Previewing the AutoFix Implementation
After you enable and configure the AutoFix capabilities, you can preview the scan
architecture with the fixes included. To do this, use the preview_dft -test_points all
-show {cells} command, which provides the following information:

• The number of test points implemented by AutoFix

• The scan chain configuration with AutoFix considered

The test point section of the preview report shows the test points to be implemented. It does
not include three-state bus or bidirectional test points.

The scan cells section of the preview report shows only the sequential cells included in scan
chains; it does not show the cells omitted due to DRC violations. Check to see if the
DRC-violating cells to be AutoFixed exist in the report. If needed, you can revise the AutoFix
configuration and rerun the preview_dft command.

Note:
Before DFT insertion, the dft_drc command always reports the DRC violations without
AutoFix considered; use the preview_dft command to assess the effects of AutoFix.
Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-32

DFT Compiler Scan User Guide Version H-2013.03-SP4
When you are satisfied with the scan chains and test points reported by the preview_dft
command, insert DFT using the insert_dft command. You should always run the dft_drc
command after DFT insertion to check for any remaining design rule violations.

AutoFix Script Example
The script in Example 7-2 fixes uncontrollable clock and reset signals using AutoFix.

Example 7-2 Scan Synthesis With Test Point Insertion

current_design MY_DESIGN
compile -scan
create_test_protocol
dft_drc

configure scan
set_scan_configuration -clock_mixing mix_edges ...

configure DFT signals
set_dft_signal -view spec -type TestMode -port TEST_MODE

set_dft_signal -view existing_dft -type ScanClock \
 -port {CLK RXCLK TXCLK} -timing {45 55}
set_dft_signal -view existing_dft -type Reset -port RSTN -active_state 0

configure signals for AutoFix
set_dft_signal -view spec -type TestData -port {CLK RXCLK TXCLK RSTN}

configure clock AutoFix
set_autofix_configuration -type clock -test_data CLK
set_autofix_element -type clock -test_data RXCLK {U_RX_BLK}
set_autofix_element -type clock -test_data TXCLK {U_TX_BLK}

configure reset AutoFix
set_dft_configuration -fix_reset enable
set_autofix_configuration -type reset -test_data RSTN \
 -exclude_elements {U_IP_CORE}

preview_dft -test_points all
insert_dft
dft_drc
report_scan_path -chain all
Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-33
Chapter 7: Advanced DFT Architecture Methodologies
Using AutoFix 7-33

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Pipelined Scan-Enable Architecture

Pipelined scan-enable signals are used for transition delay testing by making use of
launch-on-shift (LOS). This method of transition delay testing requires additional circuitry to
manipulate the scan-enable signals. Also, the pipelined scan-enable signals must be treated
as single-cycle paths at the capture clock frequency.

Pipelined scan-enable signals are never used with launch-on-capture (LOC), which does not
require additional scan-enable circuitry and can use relaxed timing on the scan-enable
signals.

Figure 7-20 shows a representation of the scan-enable pipelining logic.

Figure 7-20 Pipelined Scan-Enable Architecture

To enable pipelined scan-enable signals, use the following command:

set_scan_configuration
 -pipeline_scan_enable true
 [-pipeline_fanout_limit integer]

The -pipeline_fanout_limit option specifies the maximum number of scan flip-flops that
can be driven by each pipelined scan-enable logic construct. The default is to not apply a
limit. For more information, see the man page.

Note:
If you combine clock mixing with pipelined scan-enable signals, lock-up latches might be
ineffective because the clock timing in the extra shift uses the launch waveform table
rather than shift timing. As a result, the first flip-flop following the clock domain crossing
is marked as disturbed by ATPG. You can avoid this problem by disabling clock mixing
with the -clock_mixing no_mix option of the set_scan_configuration command.

The pipelined scan-enable architecture requires a pipeline enable signal. This signal
determines the launch mode: launch-on-shift (LOS) when it is active and launch-on-capture

%��(�+�����-��.��

��
���

&%'

%�"���&��
��
& �&
,���

���&
�

%�"���&�����
& �&
,������&
��
��&��
���&������
Chapter 7: Advanced DFT Architecture Methodologies
Pipelined Scan-Enable Architecture 7-34

DFT Compiler Scan User Guide Version H-2013.03-SP4
(LOC) when it is inactive. To explicitly define a pipeline enable signal, use the
set_dft_signal command as follows:

dc_shell> set_dft_signal -view spec -type LOSPipelineEnable \
 -port PSE_EN -active_state 1 -test_mode all

If no such signal exists, the tool creates a signal named global_pipe_se.

Post-DFT DRC uses the LOC protocol. The protocol generated by TetraMAX ATPG also
uses the LOC protocol. The LOS protocol must be created by copying and modifying this
protocol.

Pipelined Scan-Enable Signals in Hierarchical Flows
The following two hierarchical flows are supported for pipelined scan-enable architecture:

• Pipelined scan-enable registers inserted at the subdesign level

Use the following setting at both the subdesign level and the top level:

set_scan_configuration -pipeline_scan_enable true

The DFT architecture recognizes when a test model already contains pipeline
scan-enable logic and inserts this logic only where it does not already exist. The result is
that all scan cells will have exactly one level of scan-enable pipelining.

• Pipelined scan-enable registers inserted only at the top level

Use the following settings at the subdesign level:

set_scan_configuration -domain_based_scan_enable true \
 -clock_mixing no_mix

Use the following setting at the top level:

set_scan_configuration -pipeline_scan_enable true

You can use a mixture of the two types of subdesigns (those with pipeline scan-enable logic
inserted in the block and those without). Top-level integration adds or omits pipeline
scan-enable logic as required for each subdesign.

Clock mixing should not be used at the subdesign level. It can be used at the top level, but
there are potential side effects. For more information, see the clock-mixing note in “Pipelined
Scan-Enable Architecture” on page 7-34.
Chapter 7: Advanced DFT Architecture Methodologies
Pipelined Scan-Enable Architecture 7-35
Chapter 7: Advanced DFT Architecture Methodologies
Pipelined Scan-Enable Architecture 7-35

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Limitations
Note the following requirements and limitations:

• All scan-enable signals must have the same pipelined scan-enable depth after DFT
insertion. Valid depths are zero (not pipelined) and one (pipelined).

• You cannot define scan-enable signals with the -usage option of the set_dft_signal
command when using the pipelined scan-enable architecture.

• The pipelined scan-enable architecture does not work correctly with DFT-inserted OCC
controllers.

• If you use power-aware functional output gating with pipelined scan-enable signals, the
critical path for transition delay testing becomes the path from the scan-enable pipeline
register through the toggle suppression gate.

Multiple Test Modes

A design’s scan interface must accommodate a variety of structural tests. Scan test, burn-in,
and other tests performed at various production steps might require different types of access
to scan elements of a design. To accommodate these different test requirements, multiple
scan architectures can be provided on the same scan design. This approach is also useful
for complex test schemes such as DFTMAX compression adaptive scan and core wrapping,
which target tests in different parts of a design at different times.

This section explains the process for setting up architectures to perform multiple test-mode
scan insertion. It includes the following subsections:

• Introduction to Multiple Test Modes

• Defining Test Modes

• Applying Test Specifications to a Test Mode

• Using Multiple Test Modes in Hierarchical Flows

• Supported Test Specification Commands for Test Modes

• Multiple Test-Mode Scan Insertion Script Examples

Introduction to Multiple Test Modes
You can reconfigure the scan chains in your design to suit various tester requirements by
defining different modes of operation, called test modes. For example, suppose you have a
simple design with 12 scan cells that must operate in two different scan modes. In one
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-36

DFT Compiler Scan User Guide Version H-2013.03-SP4
mode, scan data is shifted through two chains (six cells each), and in the other mode, scan
data is shifted through three chains (four cells each). Figure 7-21 shows how DFT Compiler
inserts MUXs to support these two scan chain configurations. These MUXs are known as
reconfiguration MUXs.

Note:
Reconfiguration MUXs might appear at any level in your design. This is usually
dependent on the location of the scan elements where the MUXing takes place.

Figure 7-21 Configuring Scan Chains With Test-Mode Logic

Each test mode is activated by asserting one or more test-mode signals according to a
particular test-mode encoding. Different test modes can have different scan-in and scan-out
pin counts, and can even have independent sets of scan-in and scan-out pins altogether.

Defining Test Modes
To define a test mode, use the define_test_mode command:

define_test_mode test_mode_name

Each test mode must have a unique name that is used to refer to the test mode in
subsequent DFT commands or reports. The name of the default standard scan test mode is

A B C D

I J K L

E F G H

test_si1

test_si2

test_mode

test_si3

test_so1

test_so2

test_so3
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-37
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-37

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Internal_scan. You can configure this default mode and define additional modes, or you
can create an entirely new set of named modes without using the default test mode.

Example 7-3 defines three newly-named test modes.

Example 7-3 Defining Three New User-Defined Test Modes

define_test_mode LONG_CHAINS
define_test_mode MEDIUM_CHAINS
define_test_mode SHORT_CHAINS

Defining the Usage of a Test Mode
By default, a test mode represents a standard scan test mode of operation. To specify how
a test mode is to be used, use the -usage option of the define_test_mode command. The
valid keywords for this option are:

• scan – This is the traditional standard scan mode operation, which is the default if the
-usage option is not specified. The scan chains are driven directly by top-level scan-in
ports, and they drive, in turn, top-level scan-out ports. This mode is used for testing all
logic internal to the core.

• scan_compression – This is the compressed scan mode of operation provided by the
DFTMAX tool. In this mode, the internal scan chains are driven by scan data
decompressors, and the scan chains drive the scan data compressors. This mode is
used for testing all logic internal to the core with reduced test data volume and test
application time.

• wrp_if – This is the inward facing, or INTEST, mode of wrapper operation. This mode is
used for testing all logic internal to the core. In this mode, wrappers are enabled and
configured to drive and capture data within the design, in conjunction with the internal
scan chains.

• wrp_of – This is the outward facing, or EXTEST, mode of wrapper operation. This mode
is used for testing all logic external to the design. Wrappers are enabled and configured
to drive and capture data outside of the design. In this mode the internal chains are
disabled.

• wrp_safe – This is the safe wrapper mode. In this mode, the internal chains are disabled,
and the internal core is protected from any toggle activity. This mode is optional and
provides isolation of the core while other cores are being tested. When active, safe mode
enables driving steady states into or out of the design.

Example 7-4 defines three standard scan test modes plus a DFTMAX compressed scan
mode.
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-38

DFT Compiler Scan User Guide Version H-2013.03-SP4
Example 7-4 Providing Test-Mode Usage Information With the -usage Option

define_test_mode LONG_CHAINS
define_test_mode MEDIUM_CHAINS
define_test_mode SHORT_CHAINS
define_test_mode COMPRESSED_CHAINS -usage scan_compression

After test modes have been defined, you can use the list_test_modes command to report
the currently defined test-mode names. Example 7-5 shows the report for the three standard
scan test modes defined in Example 7-3.

Example 7-5 Test Modes Reported by the list_test_modes Command

Test Modes
==========

 Name: LONG_CHAINS
 Type: InternalTest
 Focus:

 Name: MEDIUM_CHAINS
 Type: InternalTest
 Focus:

 Name: SHORT_CHAINS
 Type: InternalTest
 Focus:

 Name: Mission_mode
 Type: Normal

Defining the Encoding of a Test Mode
Each test mode is activated by asserting one or more test-mode signals according to a
particular encoding associated with that test mode. To declare these test-mode signals, use
the set_dft_signal -type TestMode command. If no test-mode signals are available, or
not enough test-mode signals are available to satisfy the test-mode encodings, DFT
Compiler creates new test-mode ports as needed.

By default, DFT Compiler assigns a binary encoding to the test modes. Binary encoding
requires the fewest number of test-mode signals. With binary encoding, n test-mode signals
can provide test-mode encodings for up to 2n-1 test modes, allowing for an encoding that
deactivates all test modes and activates mission mode.
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-39
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-39

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
To report the test-mode signals and encodings associated with each test mode, use the
preview_dft command. Example 7-6 shows the preview report for the three standard scan
test modes defined in Example 7-3.

Example 7-6 Test-Mode Encodings Reported by the preview_dft Command

================================
Test Mode Controller Information
================================

Test Mode Controller Ports

test_mode: test_mode2
test_mode: test_mode1

Test Mode Controller Index (MSB --> LSB)
--
test_mode2, test_mode1

Control signal value - Test Mode

00 LONG_CHAINS - InternalTest

01 MEDIUM_CHAINS - InternalTest

10 SHORT_CHAINS - InternalTest

You can also specify one-hot test-mode encoding by using the following command:

set_dft_configuration -mode_decoding_style one_hot

This command causes one-hot test-mode encodings to be used, and simplified test-mode
decoding logic to be built that takes advantage of the properties of one-hot encodings.
One-hot encodings provide simplified decoding logic, at the expense of a greater number of
required test-mode signals. With one-hot encoding, n test-mode signals can provide
test-mode encodings for up to n test modes, with mission mode being activated by an
encoding where none of the test-mode signals are asserted.

Note:
One-hot test-mode encodings take the active state of each test-mode signal into
account. If you define all test-mode signals using the -active_state 0 option of the
set_dft_signal command, each one-hot encoding contains a single asserted 0 value.

You can also specify your own test-mode encodings with the -encoding option of the
define_test_mode command. The syntax of the encoding argument consists of one or
more test-mode signal names and binary value pairs. These pairs are separated by a space
when multiple ports are specified.
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-40

DFT Compiler Scan User Guide Version H-2013.03-SP4
Example 7-7 shows how to use a binary encoding where mission mode is activated by the
00 encoding and the three test-mode encodings have at least one test-mode signal
asserted.

Example 7-7 Specifying User-Defined Binary Test-Mode Encodings

set_dft_signal -view spec -port {TM1 TM0} -type TestMode

define_test_mode LONG_CHAINS -encoding {TM1 0 TM0 1}
define_test_mode MEDIUM_CHAINS -encoding {TM1 1 TM0 0}
define_test_mode SHORT_CHAINS -encoding {TM1 1 TM0 1}

If you are providing your own one-hot encodings, configure the test-mode decoding to
one_hot to build simplified one-hot decoding logic. Example 7-8 shows how to configure
one-hot encodings for the three example test modes.

Example 7-8 Specifying User-Defined One-Hot Test-Mode Encodings

set_dft_signal -view spec -port {TM2 TM1 TM0} -type TestMode

set_dft_configuration -mode_decoding_style one_hot

define_test_mode LONG_CHAINS -encoding {TM2 0 TM1 0 TM0 1}
define_test_mode MEDIUM_CHAINS -encoding {TM2 0 TM1 1 TM0 0}
define_test_mode SHORT_CHAINS -encoding {TM2 1 TM1 0 TM0 0}

If your test-mode control signals come from internal design pins, such as the outputs of test
control registers, use the -hookup_pin option from the internal pins flow to make the
connections. Example 7-9 shows how to hook up two test-mode signals to corresponding
control register output pins.

Example 7-9 Using Internal Design Pins for Test-Mode Signals

set_dft_signal -view spec -type TestMode \
 -port TM1 -hookup_pin TESTCTL_reg[1]/Q
set_dft_signal -view spec -type TestMode \
 -port TM0 -hookup_pin TESTCTL_reg[0]/Q

define_test_mode LONG_CHAINS -encoding {TM1 0 TM0 1}
define_test_mode MEDIUM_CHAINS -encoding {TM1 1 TM0 0}
define_test_mode SHORT_CHAINS -encoding {TM1 1 TM0 1}

If the internal pins do not directly correspond to top-level ports, you must use the internal
pins flow. For more information, see “Internal Pins Flow” on page 7-92.
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-41
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-41

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Applying Test Specifications to a Test Mode
After you have defined test modes, you can apply mode-specific test specifications to each
test mode. Not all commands and options can be used to apply mode-specific test
specifications. For more information on the available commands and options, see
“Supported Test Specification Commands for Test Modes” on page 7-46.

When you apply test specifications before defining any test modes, they are applied to the
default test mode. As new test modes are defined, they inherit the test specification settings
from this default mode. You can use this behavior to predefine global test specifications
shared by all modes.

After you define a test mode with the define_test_mode command, that test mode
becomes the current test mode. Subsequent scan specification commands apply only to
that test mode. You can use this behavior to implicitly apply mode-specific test specifications
after defining a test mode, as shown in Example 7-10.

Example 7-10 Applying Scan Specifications Using Implicitly Defined Current Test Mode

define_test_mode LONG_CHAINS
set_scan_configuration -chain_count 2 -clock_mixing mix_clocks

define_test_mode MEDIUM_CHAINS
set_scan_configuration -chain_count 3 -clock_mixing mix_clocks

define_test_mode SHORT_CHAINS
set_scan_configuration -chain_count 5

You can also use the current_test_mode command to change the current test mode at any
time, as shown in Example 7-11.

Example 7-11 Applying Scan Specifications Using Explicitly Defined Current Test Mode

define_test_mode LONG_CHAINS
define_test_mode MEDIUM_CHAINS
define_test_mode SHORT_CHAINS

current_test_mode LONG_CHAINS
set_scan_configuration -chain_count 2 -clock_mixing mix_clocks

current_test_mode MEDIUM_CHAINS
set_scan_configuration -chain_count 3 -clock_mixing mix_clocks

current_test_mode SHORT_CHAINS
set_scan_configuration -chain_count 5
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-42

DFT Compiler Scan User Guide Version H-2013.03-SP4
You can use the -test_mode option to directly apply a scan specification to a particular test
mode at any time, regardless of the current test mode, as shown in Example 7-12.

Example 7-12 Applying Scan Specifications Using the -test_mode Option

set_scan_configuration -test_mode LONG_CHAINS \
 -chain_count 2 -clock_mixing mix_clocks
set_scan_configuration -test_mode MEDIUM_CHAINS \
 -chain_count 3 -clock_mixing mix_clocks
set_scan_configuration -test_mode SHORT_CHAINS \
 -chain_count 5

To apply a scan specification to all test modes after previously defining some test modes,
use the -test_mode all option, as shown in Example 7-13.

Example 7-13 Applying Scan Specification to All Test Modes

set_dft_signal -view spec -test_mode all \
 -type ScanDataIn -port {SI1 SI2 SI3}

Note:
The -test_mode option also accepts the all_dft keyword, which is equivalent to all.

When multiple scan specification commands are applied to a test mode, they are applied
cumulatively. A new scan specification command overwrites a previous scan specification
according to the same precedence rules used in a single test-mode flow.

Example 7-14 shows how to apply clock mixing to all test modes except for the
SHORT_CHAINS test mode:

Example 7-14 Overwriting a Previous Scan Specification Setting for a Test Mode

set_scan_configuration -test_mode all \
 -clock_mixing mix_clocks
set_scan_configuration -test_mode LONG_CHAINS \
 -chain_count 2
set_scan_configuration -test_mode MEDIUM_CHAINS \
 -chain_count 3
set_scan_configuration -test_mode SHORT_CHAINS \
 -chain_count 5 -clock_mixing no_mix ;# overwrites mix_clocks

The default for the -clock_mixing option is no_mix. In this example, the first command
applies the -clock_mixing no_clocks option to all test modes. The subsequent two
commands configure the chain counts for the first two test modes. Since the -chain_count
option does not overwrite the -clock_mixing option, the mix_clocks specification remains
in place for the LONG_CHAINS and MEDIUM_CHAINS test modes. In the last command, the
-clock_mixing option reapplies the default clock mixing behavior of no_mix to the
SHORT_CHAINS test mode to overwrite the mix_clocks behavior previously applied to all test
modes.
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-43
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-43

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
When applying scan specifications in a multiple test-mode environment, perform these
steps:

1. Define TestMode signals with the set_dft_signal -test_mode all command.

2. Define all test modes, their usage, and optional encodings with the define_test_mode
command.

3. Define clock and asynchronous DFT signals and constants that are common to all test
modes with the set_dft_signal -test_mode all command.

4. Define any mode-specific DFT signals with the set_dft_signal -test_mode
test_mode_name command.

5. Specify any scan specifications to be used in all test modes using the -test_mode all
option of the set_scan_configuration and set_scan_path commands.

6. Specify any scan specifications to be used in specific test modes using the -test_mode
test_mode_name option of the set_scan_configuration and set_scan_path
commands.

Note:
If you reference any test modes using the -test_mode option of any DFT configuration
commands, you must define those test modes with the define_test_mode command
before referencing them.

Using Multiple Test Modes in Hierarchical Flows
In hierarchical flows, different cores might have different test modes defined. In this case,
DFT Compiler creates as many top-level test modes as needed to accommodate all of the
core-level test modes.

By default, the relationship between core-level and top-level test modes is determined by
test mode name according to the following rules:

• For each core-level test mode, a top-level test mode of the same name is created.

• If multiple cores share a test mode with the same name, those core-level test modes are
included in a top-level test mode of the same name.

• If a core does not have a test mode that matches a top-level test mode name, it is
excluded from that top-level test mode.

The preview_dft and insert_dft commands report the core-level test modes used in
each of the top-level test modes.

Consider an example where coreA has two test modes named SHORT_CHAINS and
MEDIUM_CHAINS, and coreB has two test modes named MEDIUM_CHAINS and
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-44

DFT Compiler Scan User Guide Version H-2013.03-SP4
LONG_CHAINS. At the top level, DFT Compiler creates all three test modes. The
preview_dft and insert_dft commands report the core-level test modes as shown in
Example 7-15.

Example 7-15 Top-Level Test Mode Report for Default Name-Based Relationships

Control signal value - Integration Test Mode
 Core Instance - Test Mode
--
00 SHORT_CHAINS - InternalTest
 coreA - SHORT_CHAINS: InternalTest

01 MEDIUM_CHAINS - InternalTest
 coreA - MEDIUM_CHAINS: InternalTest
 coreB - MEDIUM_CHAINS: InternalTest

10 LONG_CHAINS - InternalTest
 coreB - LONG_CHAINS: InternalTest

Note that coreB does not participate in top-level test mode SHORT_CHAINS, and coreA
does not participate in top-level test mode LONG_CHAINS.

At the top level, you can override the default name-based association of core-level test
modes by using the define_test_mode -target command. The -target option takes a
list of core and test mode pairs that should be included in that top-level test mode.

The previous example can be modified to use the closest matches for the missing core-level
test modes, as shown in Example 7-16.

Example 7-16 Specifying User-Defined Core-Level Test Mode Relationships

top-level test mode definitions
define_test_mode SHORT_CHAINS \
 -target {coreA SHORT_CHAINS coreB MEDIUM_CHAINS}
define_test_mode MEDIUM_CHAINS \
 -target {coreA MEDIUM_CHAINS coreB LONG_CHAINS}
define_test_mode LONG_CHAINS \
 -target {coreA MEDIUM_CHAINS coreB LONG_CHAINS}

The preview_dft and insert_dft commands report the core-level test modes as shown
in Example 7-17.

Example 7-17 Top-Level Test Mode Report For User-Defined Test Mode Relationships

Control signal value - Integration Test Mode
 Core Instance - Test Mode
--
00 SHORT_CHAINS - InternalTest
 coreA - SHORT_CHAINS: InternalTest
 coreB - MEDIUM_CHAINS: InternalTest
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-45
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-45

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
01 MEDIUM_CHAINS - InternalTest
 coreA - MEDIUM_CHAINS: InternalTest
 coreB - MEDIUM_CHAINS: InternalTest

10 LONG_CHAINS - InternalTest
 coreA - MEDIUM_CHAINS: InternalTest
 coreB - LONG_CHAINS: InternalTest

Note:
If you use the -target option of the define_test_mode command, you must completely
define the core test mode relationships for all cores and test modes. When the -target
option is used, name-based test mode association is no longer performed for any core or
test mode.

Supported Test Specification Commands for Test Modes
This section lists the commands and options you can use to configure DFT insertion for
specific test modes. These commands and options honor the -test_mode option or the
current test-mode focus. Other DFT configuration commands and options apply to all test
modes.

set_dft_signal
You can use the set_dft_signal -test_mode command to declare different DFT signals
for different test modes. For example, each test mode can have different scan-in and
scan-out ports.

Keep in mind that pre-DFT DRC only analyzes the global all test mode; it does not consider
mode-specific signals applied to other modes. As a result,

• Mode-specific signals defined with the -view spec option, such as scan-in and scan-out
signals, can be safely made, as these signals do not yet exist during pre-DFT DRC.

• Mode-specific signals defined with the -view existing option, such as constants and
reset signals, must be made with care, as these signals are not considered during
pre-DFT DRC. However, they are incorporated into the mode-specific test protocols used
by post-DFT DRC.

Note that you can apply a baseline set of signals to the all test mode to be used by
pre-DFT DRC, along with mode-specific signals to be used by post-DFT DRC.

All test modes must share the same scan-enable signals. You cannot specify different
scan-enable signals for different test modes.

If the -test_mode option is not specified, this command applies to the current test mode.
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-46

DFT Compiler Scan User Guide Version H-2013.03-SP4
set_scan_configuration
The following set_scan_configuration options can be applied to specific test modes:

• -chain_count

• -max_length

• -clock_mixing

If the -test_mode option is not specified, these options apply to the current test mode. Other
options of the set_scan_configuration command apply to all test modes.

set_scan_path
The following set_scan_path options can be applied to specific test modes:

• -scan_master_clock

• -exact_length

Use the set_scan_path -test_mode command to provide scan chain specifications for the
test modes in your design.

The scan path specification can be given for any chains in any defined test mode. It can
include pin access information provided with the -scan_data_in, -scan_data_out,
-scan_enable, -scan_master_clock, and -scan_slave_clock options. The specification
can also specify a list of design elements to be included. When specifying pins with the
-scan_data_in or -scan_data_out options, the signals must be previously defined with
the set_dft_signal command using the ScanDataIn or ScanDataOut signal types.

If the scan path specification applies to a test mode which has the usage specified as scan,
both the port and hookup arguments of the set_dft_signal command can be specified for
the ScanDataIn and ScanDataOut signals.

If the scan path specification applies to a test mode which has the usage specified as
scan_compression, then only the -hookup option of the set_dft_signal command can
be specified for the ScanDataIn and ScanDataOut signals. A port argument must not be
used for compressed scan mode scan path definitions, as these codec-connected
compressed chains have no direct access from the ports.

If the -test_mode option is not specified, the specification applies to the current test mode.

Multiple Test-Mode Scan Insertion Script Examples
This section provides examples of basic scan, DFTMAX compressed scan, and core
wrapping scripts in a multiple test-mode environment.
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-47
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-47

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Example 7-18 shows a basic scan script that defines four scan test modes. The scan1 mode
has one chain, the scan2 mode has two chains, the scan3 mode has four chains, and the
scan 4 mode has eight chains. Each set of chains uses separate scan-in and scan-out pins.

Example 7-18 Basic Scan Multiple Test-Mode Script

Define the pins for use in any test mode with "-test_mode all"
 for {set i 1} {$i <= 15 } { incr i 1} {
 create_port -direction in test_si[$i]
 create_port -direction out test_so[$i]
 set_dft_signal -type ScanDataIn -view spec -port test_si[$i] \
 -test_mode all
 set_dft_signal -type ScanDataOut -view spec -port test_so[$i] \
 -test_mode all
 }

#Define Test Clocks
set_dft_signal -view existing_dft -type TestClock -timing {45 55} \
 -port clk_st

#Define TestMode signals to be used
set_dft_signal -view spec -type TestMode -port \
 [list i_trdy_de i_trdy_dd i_cs]

#Define the test modes
define_test_mode scan1 -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1}
define_test_mode scan2 -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 0}
define_test_mode scan3 -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1}
define_test_mode scan4 -usage scan \
 -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0}

#Configure the basic scan modes
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
 -test_mode scan1
set_scan_configuration -chain_count 2 -clock_mixing mix_clocks \
 -test_mode scan2
set_scan_configuration -chain_count 4 -clock_mixing mix_clocks \
 -test_mode scan3
set_scan_configuration -chain_count 8 -clock_mixing mix_clocks \
 -test_mode scan4

Give a chain spec to be applied in each of the modes
set_scan_path chain1 -view spec -scan_data_in test_si[1] \
 -scan_data_out test_so[1] -test_mode scan1

set_scan_path chain2 -view spec -scan_data_in test_si[2] \
 -scan_data_out test_so[2] -test_mode scan2

set_scan_path chain3 -view spec -scan_data_in test_si[3] \
 -scan_data_out test_so[3] -test_mode scan2
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-48

DFT Compiler Scan User Guide Version H-2013.03-SP4
set_scan_path chain4 -view spec -scan_data_in test_si[4] \
 -scan_data_out test_so[4] -test_mode scan3

set_scan_path chain5 -view spec -scan_data_in test_si[5] \
 -scan_data_out test_so[5] -test_mode scan3

set_scan_path chain6 -view spec -scan_data_in test_si[6] \
 -scan_data_out test_so[6] -test_mode scan3

set_scan_path chain7 -view spec -scan_data_in test_si[7] \
 -scan_data_out test_so[7] -test_mode scan3

set_scan_path chain8 -view spec -scan_data_in test_si[8] \
 -scan_data_out test_so[8] -test_mode scan4

set_scan_path chain9 -view spec -scan_data_in test_si[9] \
 -scan_data_out test_so[9] -test_mode scan4

set_scan_path chain10 -view spec -scan_data_in test_si[10] \
 -scan_data_out test_so[10] -test_mode scan4

set_scan_path chain11 -view spec -scan_data_in test_si[11] \
 -scan_data_out test_so[11] -test_mode scan4

set_scan_path chain12 -view spec -scan_data_in test_si[12] \
 -scan_data_out test_so[12] -test_mode scan4

set_scan_path chain13 -view spec -scan_data_in test_si[13] \
 -scan_data_out test_so[13] -test_mode scan4

set_scan_path chain14 -view spec -scan_data_in test_si[14] \
 -scan_data_out test_so[14] -test_mode scan4

set_scan_path chain15 -view spec -scan_data_in test_si[15] \
 -scan_data_out test_so[15] -test_mode scan4

set_dft_insertion_configuration -synthesis_optimization none

create_test_protocol
dft_drc
preview_dft -show all

insert_dft

current_test_mode scan1
dft_drc -verbose

current_test_mode scan2
dft_drc -verbose

current_test_mode scan3
dft_drc -verbose
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-49
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-49

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
current_test_mode scan4
dft_drc -verbose

list_test_modes

list_licenses
change_names -rules verilog -hierarchy
write -format verilog -hierarchical -output vg/top_scan.v
write_test_protocol -test_mode scan1 \
 -output stil/scan1.stil -names verilog
write_test_protocol -test_mode scan2 \
 -output stil/scan2.stil -names verilog
write_test_protocol -test_mode scan3 \
 -output stil/scan3.stil -names verilog
write_test_protocol -test_mode scan4 \
 -output stil/scan4.stil -names verilog

exit

Example 7-19 shows a DFTMAX compression script. In this script, three test modes are
created. One mode is used for compression testing, a second mode is used for basic scan
test and has eight chains, and a third mode uses a single basic scan chain.

Example 7-19 Basic DFTMAX Compressed Scan Multiple Test-Mode Script

Define the pins for compression/base_mode using "-test_mode all"
These modes are my_comp and my_scan1
 for {set i 1} {$i <= 13 } { incr i 1} {
 create_port -direction in test_si[$i]
 create_port -direction out test_so[$i]
 set_dft_signal -type ScanDataIn -view spec -port test_si[$i] \
 -test_mode all
 set_dft_signal -type ScanDataOut -view spec -port test_so[$i] \
 -test_mode all
 }
#Define Test Clocks
set_dft_signal -view existing_dft -type TestClock -timing {45 55} \
 -port clk_st

#Define TestMode signals to be used
set_dft_signal -view spec -type TestMode -port \
 [list i_trdy_de i_trdy_dd i_cs]

#Define the test modes and usage
define_test_mode my_base1 -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1}
define_test_mode my_base2 -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 0}
define_test_mode burn_in -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1}
define_test_mode scan_compression1 -usage scan_compression \
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-50

DFT Compiler Scan User Guide Version H-2013.03-SP4
 -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0}
define_test_mode scan_compression2 -usage scan_compression \
 -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 1}

#Enable adaptive scan
set_dft_configuration -scan_compression enable

#Configure adaptive scan
set_scan_compression_configuration -base_mode my_base1 -chain_count 32 \
 -test_mode scan_compression1 -xtolerance high
set_scan_compression_configuration -base_mode my_base2 -chain_count 256 \
 -test_mode scan_compression2 -xtolerance high

#Configure the basic scan modes
set_scan_configuration -chain_count 4 -test_mode my_base1
set_scan_configuration -chain_count 8 -test_mode my_base2
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
 -test_mode burn_in

set_dft_insertion_configuration -synthesis_optimization none

Give a chain spec to be applied in my_base1
This will also define the scan ports for scan_compression1
set_scan_path chain1 -view spec -scan_data_in test_si[1] \
 -scan_data_out test_so[1] \
 -test_mode my_base1
set_scan_path chain2 -view spec -scan_data_in test_si[2] \
 -scan_data_out test_so[2] \
 -test_mode my_base1
set_scan_path chain3 -view spec -scan_data_in test_si[3] \
 -scan_data_out test_so[3] \
 -test_mode my_base1
set_scan_path chain4 -view spec -scan_data_in test_si[4] \
 -scan_data_out test_so[4] \
 -test_mode my_base1

Give a chain spec to be applied in my_base2
This will also define the scan ports for scan_compression2
set_scan_path chain5 -view spec -scan_data_in test_si[5] \
 -scan_data_out test_so[5] -test_mode my_base2
set_scan_path chain6 -view spec -scan_data_in test_si[6] \
 -scan_data_out test_so[6] -test_mode my_base2
set_scan_path chain7 -view spec -scan_data_in test_si[7] \
 -scan_data_out test_so[7] -test_mode my_base2
set_scan_path chain8 -view spec -scan_data_in test_si[8] \
 -scan_data_out test_so[8] -test_mode my_base2
set_scan_path chain9 -view spec -scan_data_in test_si[9] \
 -scan_data_out test_so[9] -test_mode my_base2
set_scan_path chain10 -view spec -scan_data_in test_si[10] \
 -scan_data_out test_so[10] -test_mode my_base2
set_scan_path chain11 -view spec -scan_data_in test_si[11] \
 -scan_data_out test_so[11] -test_mode my_base2
set_scan_path chain12 -view spec -scan_data_in test_si[12] \
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-51
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-51

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
 -scan_data_out test_so[12] -test_mode my_base2

Give a chain spec to be applied in burn_in
set_scan_path chain4 -view spec -scan_data_in test_si[13] \
 -scan_data_out test_so[13] -test_mode burn_in

create_test_protocol
dft_drc
preview_dft -show all

insert_dft

list_test_modes

current_test_mode scan_compression1
report_dft_signal
dft_drc -verbose

current_test_mode scan_compression2
report_dft_signal
dft_drc -verbose

current_test_mode my_base1
report_dft_signal
dft_drc -verbose

current_test_mode my_base2
report_dft_signal
dft_drc -verbose

current_test_mode burn_in
report_dft_signal
dft_drc -verbose

change_names -rules verilog -hierarchy
write -format verilog -hierarchical \
 -output vg/10x_xtol_moxie_top_scan_mm.v
write_test_protocol -test_mode scan_compression1 \
 -output stil/scan_compression1.stil -names verilog
write_test_protocol -test_mode scan_compression2 \
 -output stil/scan_compression2.stil -names verilog
write_test_protocol -test_mode my_base1 \
 -output stil/my_base1.stil -names verilog
write_test_protocol -test_mode my_base2 \
 -output stil/my_base2.stil -names verilog
write_test_protocol -test_mode burn_in \
 -output stil/10x_xtol_moxie.burn_in.stil -names verilog

exit
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-52

DFT Compiler Scan User Guide Version H-2013.03-SP4
Example 7-20 shows a core wrapper script. This script defines all the modes that are
created in a wrapper insertion process, which supports at-speed test and shared wrapper
cells.

Example 7-20 Basic Core Wrapper Multiple Test-Mode Script

#Define Test Clocks
set_dft_signal -view existing_dft -type TestClock -timing {45 55} \
 -port clk_s

#Define TestMode signals to be used
set_dft_signal -view spec -type TestMode -port \
 [list i_trdy_de i_trdy_dd i_cs i_wr]

#Define the test modes and usage
define_test_mode burn_in -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 0 i_wr 1}
define_test_mode domain -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1 i_wr 0}
define_test_mode my_wrp_if -usage wrp_if \
 -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1 i_wr 1}
define_test_mode my_wrp_if_delay -usage wrp_if \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 0 i_wr 0}
define_test_mode my_wrp_if_scl_delay -usage wrp_if \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 0 i_wr 1}
define_test_mode my_wrp_of -usage wrp_of \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1 i_wr 0}
define_test_mode my_wrp_of_delay -usage wrp_of \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1 i_wr 1}
define_test_mode my_wrp_of_scl_delay -usage wrp_of \
 -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0 i_wr 0}
define_test_mode my_wrp_safe -usage wrp_safe \
 -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0 i_wr 1}

#Set scan chain count as desired
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
 -test_mode burn_in
set_scan_configuration -chain_count 5 -test_mode domain
set_scan_configuration -chain_count 8 -test_mode wrp_if
set_scan_configuration -chain_count 8 -test_mode wrp_of

Enable and configure wrapper client
set_dft_configuration -wrapper enable

#Configure for shared wrappers, using existing cells and \
 create glue logic around existing cells
set_wrapper_configuration -class core_wrapper \
 -style shared \
 -shared_cell_type WC_S1 \
 -use_dedicated_wrapper_clock true \
 -safe_state 1 \
 -register_io_implementation in_place \
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-53
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-53

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
 -delay_test true

#Create the test protocol and run pre-drc
create_test_protocol
dft_drc -verbose

#Report the configuration of the wrapper utility, optional
report_wrapper_configuration

#Preview all test structures to be inserted
preview_dft -test_wrappers all
preview_dft -show all

report_dft_configuration

#Run scan insertion and wrap the design
set_dft_insertion_configuration -synthesis_optimization none
insert_dft

list_test_modes

current_test_mode burn_in
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_burn_in.rpt

current_test_mode domain
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_domain.rpt

current_test_mode my_wrp_of
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_my_wrp_of.rpt

current_test_mode my_wrp_of_delay
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_my_wrp_of_delay.rpt

current_test_mode my_wrp_of_scl_delay
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_my_wrp_of_scl_delay.rpt

current_test_mode my_wrp_if
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_my_wrp_if.rpt

current_test_mode my_wrp_if_delay
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_my_wrp_if_delay.rpt

current_test_mode my_wrp_if_scl_delay
report_scan_path -view existing_dft -cell all > \
 reports xg_wrap_dedicated_delay_my_wrp_if_scl_delay.rpt
Chapter 7: Advanced DFT Architecture Methodologies
Multiple Test Modes 7-54

DFT Compiler Scan User Guide Version H-2013.03-SP4
report_dft_signal -view existing_dft -port *
report_area

change_names -rules verilog -hierarchy

write -format ddc -hierarchical -output db/scan.ddc
write -format verilog -hierarchical -output vg/scan_wrap.vg
write_test_model -output db/des_unit.scan.ctldb
write_test_protocol -test_mode burn_in -output stil/burn_in.spf
write_test_protocol -test_mode domain -output stil/domain.spf
write_test_protocol -test_mode my_wrp_if_delay \
 -output stil/my_wrp_if_delay.spf
write_test_protocol -test_mode my_wrp_if_scl_delay \
 -output stil/my_wrp_if_scl_delay.spf
write_test_protocol -test_mode my_wrp_if -output stil/my_wrp_if.spf
write_test_protocol -test_mode my_wrp_of -output stil/my_wrp_of.spf
write_test_protocol -test_mode my_wrp_of_delay \
 -output stil/my_wrp_of_delay.spf
write_test_protocol -test_mode my_wrp_of_scl_delay \
 -output stil/my_wrp_of_scl_delay.spf
write_test_protocol -test_mode wrp_if -output stil/extra_wrp_if.spf

exit

Note that you can also run the report_scan_path -test_mode tms command, which
displays a report containing test-related information about the current design, as shown in
Example 7-21.

Example 7-21 report_scan_path Output Example

dc_shell> report_scan_path -test_mode tms
Number of chains: 3
Scan methodology: full_scan
Scan style: multiplexed_flip_flop

Clock domain: mix_clocks
Chn Scn Prts (si --> so) #Cell Inst/Chain Clck (prt, tm,edge)
--- ------------------- ----- ---------- -------------------
S 1 test_si1 --> test_so1 2 U2/1 (s) CK3, 45.0,rising)
S 2 test_si2 --> test_so2 2 U2/2 (s) (CK2, 45.0,rising)
W 3 test_si3 --> test_so3 8 U2/WrapperChain_0 (s) (WCLK,45.0, rising)

Multivoltage Support

The increasing presence of multiple voltages in designs has resulted in the need for DFT
insertion to build working scan chains with minimal voltage crossings and minimal level
shifters. This section describes the methodology for running DFT insertion in designs
containing multiple voltages.
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-55
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-55

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
The following subsections describe multivoltage support:

• Configuring Scan Insertion for Multivoltage Designs

• Configuring Scan Insertion for Multiple Power Domains

• Mixture of Multivoltage and Multiple Power Domain Specifications

• Reusing Multivoltage Cells

• Scan Path Routing and Isolation Strategy Requirements

• Using Domain-Based Strategies for DFT Insertion

• DFT Considerations for Low-Power Design Flows

• Previewing a Multivoltage Scan Chain

• Scan Extraction Flows in the Presence of Isolation Cells

• Limitations

Configuring Scan Insertion for Multivoltage Designs
The following command instructs the DFT insertion process to build scan chains that can
cross different voltage regions:

dc_shell> set_scan_configuration -voltage_mixing true

When set to true, DFT insertion attempts to minimize voltage crossings to reduce the
number of level shifters added. The default of this option is false.

If you use any commands, such as the set_scan_path command, that violate the voltage
mixing specification, the preview_dft and insert_dft commands issue the following
warning message and continue with scan insertion:

Warning: elements are supplied by different voltages. (TEST-1026)

Configuring Scan Insertion for Multiple Power Domains
The following command instructs the DFT insertion process to build scan chains that can
cross different power domains:

dc_shell> set_scan_configuration \
 -power_domain_mixing true

When set to true, DFT insertion attempts to minimize power domain crossings to reduce
the number of isolation cells added. DFT insertion does not check or remove existing
isolation cells. The default of this option is false.
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-56

DFT Compiler Scan User Guide Version H-2013.03-SP4
If you use any commands, such as the set_scan_path command, that violate the power
domain mixing specification, the preview_dft and insert_dft commands issue the
following warning message and continue with scan insertion:

Warning: elements are supplied by different power domains. (TEST-1029)

Mixture of Multivoltage and Multiple Power Domain Specifications
The interaction between the -voltage_mixing and -power_domain_mixing options is as
shown in Figure 7-22.

Figure 7-22 Interaction Between Voltage Mixing and Power Domain Mixing

Here the scan cells are contained within three blocks as follows:

• Power domain PD1, Voltage V1

• Power domain PD2, Voltage V1

• Power domain PD3, Voltage V2

By default, DFT Compiler does not allow voltage mixing or power domain mixing within the
same scan path. Table 7-3 shows the allowable scan paths with the various combinations of
-voltage_mixing and -power_domain_mixing.

Table 7-3 Interactions Between the -voltage_mixing and -power_domain_mixing Options

If -voltage_mixing is: And -power_domain_mixing is: Allowable scan paths

False False None

False True Scan path 1 only

True False None

True True Scan paths 1 and 2

PD1, V1 PD2, V1

Scan path 1

PD3, V2

Scan path 2
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-57
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-57

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Note:
The behavior of DFT insertion in an always-on synthesis environment is such that you
must run an incremental compile after running the insert_dft command to insert any
missing multivoltage cells that might be needed.

Reusing Multivoltage Cells
By default, the insert_dft command reuses existing level shifters and isolation cells if they
are on the scan path. It reuses only combinational multivoltage cells and does not reuse
sequential multivoltage cells, such as latch-based isolation cells. If you do not want the
insert_dft command to reuse existing multivoltage cells (level shifters and isolation cells),
use the following command:

dc_shell> set_scan_configuration \
 -reuse_mv_cells false

This section includes the following subsections:

• Reusing Level Shifters in Scan Paths

• Reusing Isolation Cells in Scan Paths

Reusing Level Shifters in Scan Paths
If a scan path goes through a level shifter and you enable multivoltage cell reuse, scan
insertion connects the scan chain at the output side of the level shifter, as shown in
Figure 7-23.

Figure 7-23 Shared Level Shifter Along Scan Path

If the scan path goes through a level shifter and you disable multivoltage cell reuse, a new
level shifter is added to connect to the scan path. See Figure 7-24.

��
�0�

��-����#�����

4�

��

4�

�
��
��

�

		�

�
��
��

�

		�
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-58

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-24 Separate Level Shifters Along Scan Path

If the level shifter is within a block and you enable multivoltage cell reuse, then scan insertion
reuses the existing level shifter and hierarchical port, as shown in Figure 7-25.

Figure 7-25 Shared Level Shifter in a Block Along Scan Path

If you disable multivoltage cell reuse and the existing level shifter is within a block, then the
new level shifter is added within the block and a new hierarchical port is added. See
Figure 7-26.

��
�0�

��-����#������
4�

��

4�

��
���
�0

�
��
��

�

		�

�
��
��

�

		�

��
�0�

��-����#�����

4�

��

4�

�
��
��

�

		�

�
��
��

�

		�
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-59
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-59

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-26 Separate Level Shifters in a Block Along Scan Path

Reusing Isolation Cells in Scan Paths
In the following examples, the scan path and functional path for a given signal route to the
same downstream power domain, which is different from the source power domain.

If a scan path goes through an isolation cell in a parent power domain, and you enable
multivoltage cell reuse, then scan insertion connects the scan chain at the output side of the
isolation cell, as shown in Figure 7-27.

Figure 7-27 Shared Isolation Cell Along Scan Path in Parent Domain

If you disable multivoltage cell reuse, then the scan path is connected to the net before the
isolation cell and a new hierarchical port and isolation cell are added, as shown in
Figure 7-28.

��
�0�

��-����#������

4�

��

4�

�
��
��

�

		�

�
��
��

�

		�

��
���
��
���
�0

��
1���
���&�����

(��

��

(��

�
��
��

�

		�

�
��
��

�

		�

����
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-60

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-28 Separate Isolation Cells Along Scan Path in Parent Domain

If the isolation cell is within the source power domain, and you enable multivoltage cell
reuse, then scan insertion reuses the existing hierarchical port and isolation cell, as shown
in Figure 7-29.

Figure 7-29 Shared Isolation Cell Along Scan Path in Source Domain

If you disable multivoltage cell reuse, and the existing isolation cell is within the source
power domain, then a new hierarchical port and isolation cell are added, as shown in
Figure 7-30.

��

1���
���&������
(��

��

(��

�
��
��

�

		�

�
��
��

�

		�
����

����

��
���

��
1���
���&�����

(��

��

(��

�
��
��

�

		�

�
��
��

�

		�

����
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-61
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-61

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-30 Separate Isolation Cells Along Scan Chain in Source Domain

If the isolation cell is within the fanout power domain, and you enable multivoltage cell reuse,
then scan insertion reuses the existing hierarchical port and isolation cell, as shown in
Figure 7-31.

Figure 7-31 Shared Isolation Cell Along Scan Path in Fanout Domain

If you disable multivoltage cell reuse, and the existing isolation cell is within the fanout power
domain, then a new hierarchical port and isolation cell are added, as shown in Figure 7-32.

��

1���
���&������

(��

��

(��

�
��
��

�

		�

�
��
��

�

		�
����

����

��
���
��
���

��

(��

��

(��

�
��
��

�

		�

�
��
��

�

		� 1���
���&�����

����
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-62

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-32 Separate Isolation Cells Along Scan Path in Fanout Domain

If the scan path routes to a different downstream power domain than the functional path, an
existing isolation cell can be reused if the isolation strategy allows both the original power
domain connection and the new scan path power domain connection to be driven by the
isolation cell.

Consider the -diff_supply_only isolation strategy defined in the following example, which
specifies that isolation cells should be added to the parent power domain of PD1 with the
-location parent option:

set_isolation iso_PD1 \
 -domain PD1 \
 -diff_supply_only true \
 -applies_to outputs
set_isolation_control iso_PD1 \
 -domain PD1 \
 -location parent

The -diff_supply_only strategy allows an isolation cell in the source domain to isolate
multiple fanout power domains, if they differ from the source domain. If you enable
multivoltage cell reuse, then scan insertion reuses the existing isolation cell and hierarchical
port, as shown in Figure 7-33.

��

(��

��

(��

�
��
��

�

		�

�
��
��

�

		�
1���
���&�����

����

1���
���&�����

����
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-63
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-63

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-33 Shared Isolation Cell in Parent Domain with Multiple Sink Domains

If you disable multivoltage cell reuse, then a new isolation cell is added, as shown in
Figure 7-34:

Figure 7-34 Separate Isolation Cells in Parent Domain with Multiple Sink Domains

Consider the -diff_supply_only isolation strategy defined in the following example, which
specifies that isolation cells should be added within the power domain PD1 with the
-location self option:

set_isolation iso_PD1 \
 -domain PD1 \
 -diff_supply_only true \
 -applies_to outputs

��
1���
���&�����

(��

��

(��

�
��
��

�

		�

�
��
��

�

		�

����

(�!

��
���

��

1���
���&������(��

��

(��

�
��
��

�

		�

�
��
��

�

		�
����

(�!

��
���
����
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-64

DFT Compiler Scan User Guide Version H-2013.03-SP4
set_isolation_control iso_PD1 \
 -domain PD1 \
 -location self

If you enable multivoltage cell reuse, then scan insertion reuses the existing isolation cell
and hierarchical port, as shown in Figure 7-35:

Figure 7-35 Shared Block Isolation Cell with Multiple Sink Domains

If you disable multivoltage cell reuse, and the existing isolation cell is within a block, then a
new isolation cell and hierarchical port are added, as shown in Figure 7-36:

Figure 7-36 Separate Parent Isolation Cells with Multiple Sink Domains

1���
���&�����

(��

��

(��

�
��
��

�

		�

�
��
��

�

		�

����

(�!

��
���

��

(��

��

(��

�
��
��

�

		�

�
��
��

�

		�
����

(�!

��

1���
���&������

����

��
���
��
���
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-65
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-65

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Scan Path Routing and Isolation Strategy Requirements
The isolation strategy applied to a cross-domain net might restrict the power domain
connections allowed for that net:

• A set_isolation -diff_supply_only isolation strategy allows multiple fanout power
domains to be driven by the same isolated net, if they differ from the source domain.

• A set_isolation -source -sink isolation strategy requires that any specified source
and sink power domains connected to an isolated net match the isolation strategy.

When the insert_dft command routes a scan chain along an existing hierarchical output
port to a different downstream power domain, the isolation strategy requirements of the
existing net might require new isolation cells and hierarchical ports to be added along the
scan path.

Consider the -diff_supply_only isolation strategy defined in the following example, which
specifies that isolation cells should be added to the parent power domain of PD1:

set_isolation iso_PD1 \
 -domain PD1 \
 -diff_supply_only true \
 -applies_to outputs
set_isolation_control iso_PD1 \
 -domain PD1 \
 -location parent

If the existing functional path is routed through the same power domain, but the scan path is
routed to a different power domain, an isolation cell is added within the parent power domain
as shown in Figure 7-37.

Figure 7-37 Isolation Cell in Parent Domain with Differing Isolation Requirements

��

1���
���&�����(��

��

(��

�
��
��

�

		�

�
��
��

�

		�

����

(��

��
���

��
���
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-66

DFT Compiler Scan User Guide Version H-2013.03-SP4
Consider the -diff_supply_only isolation strategy defined in the following example, which
specifies that isolation cells should be added within the source power domain PD1:

set_isolation iso_PD1 \
 -domain PD1 \
 -diff_supply_only true \
 -applies_to outputs
set_isolation_control iso_PD1 \
 -domain PD1 \
 -location self

If the existing functional path is routed to a different power domain but the scan path is
routed through the same power domain, a hierarchical port is added to bypass the isolation
cell as shown in Figure 7-38.

Figure 7-38 Isolation Cell in Source Domain with Differing Isolation Requirements

You can configure the isolation cell strategy to place the isolation cells in the fanout domains
to avoid the creation of additional hierarchical scan pins. Consider the following example,
modified to use the -location fanout option:

set_isolation iso_PD1 \
 -domain PD1 \
 -diff_supply_only true \
 -applies_to outputs
set_isolation_control iso_PD1 \
 -domain PD1 \
 -location fanout

In this modified example, the isolation cells and resulting isolated nets are now located in the
fanout power domain, as shown in Figure 7-39. No additional hierarchical scan pins are
needed to meet the isolation strategy requirements.

1���
���&�����

(��

��

(��

�
��
��

�

		�

�
��
��

�

		�
����

(��

��
���

��

��
���
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-67
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-67

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-39 Isolation Cell in Fanout Domain with Differing Isolation Requirements

Consider the -source -sink isolation strategy defined in the following example, which
specifies two isolation strategies: one that requires isolation cells for nets that fan out to sink
power domain SS2, and one that requires isolation cells for nets that fan out to sink power
domain SS3.

set_isolation iso1_PD1 \
 -domain PD1 \
 -source SS1 -sink SS2
set_isolation_control iso1_PD1 \
 -domain PD1 \
 -location parent

set_isolation iso2_PD1 \
 -domain PD1 \
 -source SS1 -sink SS3
set_isolation_control iso2_PD1 \
 -domain PD1 \
 -location parent

If you enable multivoltage cell reuse, the insert_dft command is unable to reuse the
existing isolation cell ISO1 for the scan path connection, because the existing cross-domain
isolated net cannot drive two different power domains. Instead, a new isolation cell and
hierarchical port are added, as shown in Figure 7-40.

��

(��

�
��
��

�

		�

(��

��
���

1���
���&�����

������

(��

�
��
��

�

		�
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-68

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-40 Separate Isolation Cells in Parent Domain with Differing Isolation Requirements

Using Domain-Based Strategies for DFT Insertion
For the insert_dft command to properly insert level shifters and isolation cells, you must
specify the level shifter and isolation cell strategies on a power-domain basis, even if you
have specified similar strategies on the blocks and individual ports. If you only specify the
strategies on the blocks and ports, the insert_dft command might not be able to
automatically insert level shifters and isolation cells on any new ports that it creates.

For example, if your power intent specification is applied to all outputs with the -applies_to
outputs option:

create_power_domain PD1 -elements U_block

set_isolation iso_PD1 \
 -domain PD1 \
 -isolation_power_net VDD -isolation_ground_net VSS \
 -clamp_value 1 \
 -applies_to outputs

and if the insert_dft command creates new output pins on the blk_a block that requires
isolation, then isolation cells are automatically added where they are needed.

However, if your power intent specification is applied to selected existing design elements
with the -elements option:

create_power_domain PD1 -elements U_block

��

1���
���&������

(�������

��

(�������

�
��
��

�

		�

�
��
��

�

		�
����

(�!����!

��
���
����

��
���
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-69
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-69

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
set_isolation PD1 \
 -domain BLOCK \
 -isolation_power_net VDD -isolation_ground_net VSS \
 -clamp_value 1 \
 -elements {Z}

The isolation strategy applies only to existing output pin Z. Any new output pins that are
created by the insert_dft command are not isolated.

The same behavior applies to level shifter insertion strategies specified by the
set_level_shifter command.

DFT Considerations for Low-Power Design Flows
Low-power designs often use the following special cells:

• Isolation cells

• Retention registers

• Power switches

You must configure these special cells such that the data shifts through the scan chains
during test operations. After DFT insertion using the insert_dft command, the dft_drc
command can identify design rule violations on isolation cells and retention registers, if any,
that would prevent scan shifting through such cells. However, the command cannot identify
design rule violations on isolation cells and retention registers before the insert_dft
command is run.

The control signals for these special cells are typically driven by a power controller. If the
power controller is located off-chip, you can constrain the control signals at the ports for
correct shift operation. If the power controller is located on-chip and does not include
testability logic, the tool can insert power controller override logic for you. For more
information, see “Inserting Power Controller Override Logic” on page 7-74.

You must keep any DFT constraints on special cells in place up to the write_scan_def
command when you generate a SCANDEF file for scan chain reordering.

Also note that the dft_drc command cannot detect design rule violations on power
switches in pre- or post-DFT insertion.

A multivoltage-aware verification tool such as MVSIM or MVRC can detect such violations if
there are any. For further information, see the MVSIM and MVRC documentation.
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-70

DFT Compiler Scan User Guide Version H-2013.03-SP4
Isolation Cells

For example, if a scan chain traverses an isolation cell, you must ensure that the isolation
cell passes the scan data to the flip-flop driven by the isolation cell during the test operation,
as shown in Figure 7-41.

Figure 7-41 Proper Configuration of a Scan Chain That Includes an Isolation Cell

Retention Registers

The design’s retention registers must be in normal or power-up mode during the test
operation. You should check that any save or restore signals are at their correct states.

Registers That Drive Low-Power Control Signals

If the design contains registers that drive low-power control signals, such as the enable
signal of the isolation cells or the save/restore signals of the retention registers, you must not
put these registers onto the scan chains. Otherwise, this could cause these control signals
to switch during test operations. Figure 7-42 shows the consequences of putting such
registers on the scan chains.

These registers must also drive the low power control signals to a constant state so that the
controls cannot be toggled during test operations. You can check for this during the dft_drc
command by ensuring that these registers are included in the TEST-504 and TEST-505
violations.

SI

D Q

SE

SI

D Q

SE

ISO

EN

ISO_EN
0

Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-71
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-71

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-42 Consequences of Putting Registers That Drive Low-Power Control Signals on the
Scan Chains

Previewing a Multivoltage Scan Chain
The preview_dft -show all command reports the operating condition and the power
domain of a scan cell whenever a scan path crosses a voltage or power domain. It also
indicates whether a scan cell is driving a level shifter or an isolation cell.

In Example 7-22, (v) indicates that the scan cell drives a level shifter and (i) indicates that
the scan cell drives an isolation cell.

Example 7-22 Preview Report With Voltage and Power Domains

**
Preview_dft report
For : 'Insert_dft' command
Design : seqmap_test
Version: Z-2007.03
Date : Tue Jan 30 17:02:47 2007
**
Number of chains: 1
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: mix_clocks
Voltage Mixing: True
Power Domain Mixing: True

SI

D Q

SE

SI

D Q

SE

ISO

EN

SI

D
Q

SE

SAVE

RESTORE

...00101011...

...00101011...

...00101011...

...00101011...
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-72

DFT Compiler Scan User Guide Version H-2013.03-SP4
 (i) shows cell scan-out drives an isolation cell
 (l) shows cell scan-out drives a lockup latch
 (s) shows cell is a scan segment
 (t) shows cell has a true scan attribute
 (v) shows cell scan-out drives a level shifter cell
 (w) shows cell scan-out drives a wire

Scan chain '1' (test_si --> test_so) contains 56 cells:

 u2/q_reg[3] (voltage 1.08) (pwr domain 'pd_2') (clk, 55.0, falling)
 u2/q_reg[4]
 ...
 u2/q_reg[26]
 u2/q_reg[27]
 u1/q_reg[3] (v)(i) (voltage 0.80) (pwr domain 'pd_1')
 u1/q_reg[4]
 ...
 u1/q_reg[26]
 u1/q_reg[27]
 u2/q_reg[0] (v)(i) (voltage 1.08) (pwr domain 'pd_2') (clk, 45.0,
rising)
 u2/q_reg[1]
 ...
 u2/q_reg[22]
 u2/q_reg[23]
 u1/q_reg[0] (v)(i) (voltage 0.80) (pwr domain 'pd_1')
 u1/q_reg[1]
 ...

Scan Extraction Flows in the Presence of Isolation Cells
If you need to run the scan extraction flow on a netlist for a design that is already
scan-inserted and contains isolation cells, you must specify any constraints that are needed
at the enable pin of isolation cells in addition to the constraints that might be required for DFT
signals. If this is not done, you might fail to extract scan chains. DFT Compiler does not
check the validity of isolation logic.
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-73
Chapter 7: Advanced DFT Architecture Methodologies
Multivoltage Support 7-73

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Limitations
The following limitations apply to multivoltage and multipower domains:

• Multivoltage and multipower domains are supported only in multiplexed flip-flop scan
style.

• Multivoltage and multipower domains are supported only in the following flows:

❍ Basic scan, including AutoFix, observe point insertion, user-defined test point
insertion, and HSS

❍ DFTMAX compressed scan

• Multivoltage and multipower domains are not supported in the following flows:

❍ BSD insertion

❍ DFTMAX DBIST

❍ Core integration

Controlling Power Modes During Test

Power-sensitive designs often contain multiple power domains. This allows power supplies
for inactive logic to be switched off, reducing power consumption during operation. These
designs typically have a power controller block, which supplies the necessary power supply
control signals to power switches, isolation cells, and retention registers.

When the device is being tested, the power control signals must be controlled to ensure that
the design is testable. This section describes the features provided by DFT Compiler to
automate the control of power modes during test.

Inserting Power Controller Override Logic
The power controller block generates control signals for the power supply control logic that
exists throughout the design. The power control signals at the block outputs are defined
using commands that are part of the IEEE 1801 specification, also known as the Unified
Power Format (UPF) specification.

DFT Compiler does not create the power controller block, but it can insert testability logic at
the block outputs to override the power control signals during test mode. This logic is known
as the power controller override logic. This logic allows the signals to be controlled during
test mode without manually-created power controller initialization vectors. It also provides
observability of the power controller outputs for improved test coverage.
Chapter 7: Advanced DFT Architecture Methodologies
Controlling Power Modes During Test 7-74

DFT Compiler Scan User Guide Version H-2013.03-SP4
To use this feature, enable the power controller override feature, and specify the power
controller hierarchical cell instance with the following commands:

set_dft_configuration -power_control enable
set_dft_power_control power_controller_hier_cell

The control signal outputs of the power controller block must be defined using the signal
specification options of the applicable UPF commands:

• create_power_switch -control_port

• set_isolation_control -isolation_signal

• set_retention_control -save_signal

When a power controller block is configured, the insert_dft command inserts wrapper
chain override logic along the control signal outputs of the specified power controller block,
inside the level of hierarchy that contains the specified power controller block. Figure 7-43
shows the structure of the power controller override logic.

Figure 7-43 Power Controller Override Logic

The power controller override wrapper chain is composed of control-observe cells along the
power controller outputs. The wrapper chain is a separate chain that cannot be combined
with other scan chains. For designs with scan compression, the power controller override
wrapper chain exists outside the compressor-decompressor logic.

The following top-level ports are added during power controller override logic insertion:

• pco_in and pco_out

These ports are the scan-in and scan-out ports for the wrapper chain cells.

%�3�����&������� 4����&������
"����!�

"����&

+5)��5�
�6���

�����
�

)�
���

"����-������
"����#�������

"���!"�
������

+5)��5�
�6���

�����
�

)�
���

%�3���
��&��������
�-�������
�����
Chapter 7: Advanced DFT Architecture Methodologies
Controlling Power Modes During Test 7-75
Chapter 7: Advanced DFT Architecture Methodologies
Controlling Power Modes During Test 7-75

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
• pco_override

This port is asserted in test mode to override the power controller’s control signals with
the wrapper chain override values.

• pco_shift_clk

When clocked with ScanEnable de-asserted, this port captures the current output values
from the power controller to improve observability. When clocked with ScanEnable
asserted, this port shifts data through the shadow registers of the wrapper chain. When
the override is asserted, the current override state is not affected when data is shifted
through the wrapper chain shadow registers.

• pco_update_clk

This port is clocked to transfer the control signal values from the wrapper cell shadow
registers to the wrapper cell output registers.

During power controller override logic insertion, the design's UPF specification is updated to
reflect the new power switch control, isolation, and retention control points. The test_setup
procedure is also updated with test vectors that place the power control signals into a stable
state. If multiple test modes have been defined, they are all updated.

This stable state has the following characteristics:

• All controllable power supply switches are enabled.

• All controllable isolation cells are set to a pass-through state.

• All controllable retention cells are placed into save mode.

If you have defined all power controller signals in the UPF specification, the resulting test
protocol can be used directly in the TetraMAX tool with no editing. If any power controller
signals have not been captured in the UPF specification, you must add the required signal
values to the test_setup procedure.

Limitations
Note the following limitations of the power controller override feature:

• Only one power controller instance can be specified.

• If the power controller logic is distributed across several blocks, you must first group it into
a single block.

• It is not possible to specify that any particular ports be used as scan-in and scan-out for
the power controller override wrapper chain.

• It is not possible to use an existing scan segment as the power controller override
wrapper chain.
Chapter 7: Advanced DFT Architecture Methodologies
Controlling Power Modes During Test 7-76

DFT Compiler Scan User Guide Version H-2013.03-SP4
Power-Aware Functional Output Gating

During scan testing, while scan data shifts through scan chains, the functional logic driven
by the scan flip-flops also toggles. This can cause increased power dissipation during
testing, which could damage the design under test.

You can use the set_scan_suppress_toggling command to enable functional output
gating. When this command is used, the tool inserts gating logic to suppress toggling on the
functional output of scan flip-flops that either you specify or the tool automatically selects.
The tool uses AND-gating or OR-gating logic, depending on which constant value most
reduces toggling from other ungated signals entering the fanout logic cone.

Note:
This feature only works with designs that use the multiplexed flip-flop scan style.

Figure 7-44 shows the design after DFT insertion but without any gating logic inserted on
the functional output.

Figure 7-44 Design After DFT Insertion Without Gating Logic on the Functional Output

Figure 7-45 shows the design after the tool has inserted AND-gating logic on the output pin
of the FF2 flip-flop.

Si

D Q

Se
So

FF2

Si

D Q

Se
So

FF3

Si

D Q

Se
So

FF1

Din

ScanIn

ScanEnable

C1 C2
Chapter 7: Advanced DFT Architecture Methodologies
Power-Aware Functional Output Gating 7-77
Chapter 7: Advanced DFT Architecture Methodologies
Power-Aware Functional Output Gating 7-77

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-45 Design After DFT Insertion With AND Clock Gating Inserted on the FF2 Functional
Output

In the Figure 7-45 example, the logic cone C2 does not toggle during scan shifting because
the Q output of FF2 is gated by the extra AND gate, which is disabled by the scan-enable
signal.

If your scan flip-flops have only a single output pin that is shared between functional and
scan output, the logic path going from the flip-flop output pin to the functional logic is gated.
Figure 7-46 and Figure 7-47 show this case for both AND-gating logic and OR-gating logic,
respectively.

Si

D Q

Se
So

FF2

Si

D Q

Se
So

FF3

Si

D Q

Se
So

FF1

Din

ScanIn

ScanEnable

C1

C2
Chapter 7: Advanced DFT Architecture Methodologies
Power-Aware Functional Output Gating 7-78

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-46 Design With AND-Gating Logic Inserted on the Functional Output of FF2, Where
FF2 Has a Single Output Pin Shared Between Functional and Scan Output

Figure 7-47 Design With OR-Gating Logic Inserted on the Functional Output of FF2, Where FF2
Has a Single Output Pin Shared Between Functional and Scan Output

To use this feature, run the set_scan_suppress_toggling command as part of your DFT
specifications before you run the insert_dft command.

Si

D Q

Se

FF2

Si

D Q

Se
So

FF3

Si

D Q

Se
So

FF1

Din

ScanIn

ScanEnable

C1

C2

Si

D Q

Se

FF2

Si

D Q

Se

FF3

Si

D Q

Se

FF1

Din

ScanIn

ScanEnable

C1

C2
Chapter 7: Advanced DFT Architecture Methodologies
Power-Aware Functional Output Gating 7-79
Chapter 7: Advanced DFT Architecture Methodologies
Power-Aware Functional Output Gating 7-79

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
The set_scan_suppress_toggling command has the following syntax:

set_scan_suppress_toggling
 -selection_method [manual|auto|mixed]
 -include_elements collection_of_design_objects
 -exclude_elements collection_of_design_objects
 -ignore_timing_impact [true|false]
 -min_slack [0_to_1000]
 -total_percentage_gating [0.001_to_100]

Table 7-4 set_scan_suppress_toggling Command Syntax

Argument Description

-selection_method
manual | auto | mixed

This option defaults to manual, which applies gating
only for objects manually specified with the
-include_elements option. The auto value enables
automatic selection of flip-flops for gating using
power-based heuristics. The mixed value enables a
combined approach, allowing the manual
specification to be supplemented with automatic
selection by the tool.

-include_elements

collection_of_design_objects
This option is used to manually specify a collection of
design objects for gating. Flip-flop instance names,
hierarchical cell names, and flip-flop and design
references can be specified. A hierarchical cell
specification includes all scan flip-flops in the cell.

-exclude_elements

collection_of_design_objects

This option is used to manually specify a collection of
design objects that should be excluded from gating.
Flip-flop instance names, hierarchical cell names, and
flip-flop and design references can be specified. A
hierarchical cell specification includes all scan
flip-flops in the cell.

-ignore_timing_impact
true | false

This option is false by default. When this option is
set to true, the minimum slack requirement specified
by the -min_slack option is ignored. When set to
true, the -exclude_elements option might be useful
for guiding automatic selection.

-min_slack num_0_to_1000 This option specifies the required minimum slack
value after gating has been added. The default is 0,
which means the slack should be nonnegative after
gating.
Chapter 7: Advanced DFT Architecture Methodologies
Power-Aware Functional Output Gating 7-80

DFT Compiler Scan User Guide Version H-2013.03-SP4
Functional gating logic can be inserted if the scan flip-flop is part of a scan chain. A flip-flop
is excluded from gating consideration if it meets any of the following criteria:

• The flip-flop is manually excluded with the -exclude_elements option.

• The flip-flop is part of a shift register segment identified by the compile_ultra
command.

• In a bottom-up flow, the flip-flop is within a block where test models are used or you have
specified a set_dont_touch attribute on the block.

• The Q or QN pin of the flip-flop connects only to the scan-in signal. (They can be gated
if they are functionally connected.)

• The logic does not meet the minimum slack limit or would not meet the minimum slack
limit if gating is inserted.

When the -selection_method option is set to auto or mixed, flip-flops are automatically
selected for gating using propagated switching power analysis. A percentage value between
5 and 30 percent is typically specified with the -total_percentage_gating option.
Consider the tradeoffs between test-mode power consumption, functional power
consumption, and functional timing when choosing a gating percentage value. As the gating
percentage value is increased, leakage power increases, and the potential for layout
congestion and timing closure difficulty increases. While considering timing and power
tradeoffs, you should also consider that TetraMAX ATPG has several power-aware
algorithms that seek to reduce shift and capture flip-flop toggle rates during the ATPG
process.

When the -selection_method option is set to manual or mixed, all flip-flops specified with
the -include_elements option are gated, except those meeting the exclusion criteria
defined earlier.

When the -selection_method option is set to mixed, all flip-flops specified with the
-include_elements option are gated, even if the -total_percentage_gating target is
exceeded. If the -total_percentage_gating target is not met by the manually specified
flip-flops, additional flip-flops are selected automatically to meet the goal.

Use the report_scan_suppress_toggling command to confirm the option settings you
specified with the set_scan_suppress_toggling command. Use the

-total_percentage_gating

num_0.001_to_100

This option specifies the target percentage of scan
flip-flops to be automatically selected for gating when
the -selection_method option is set to auto or
mixed. The default for this option is 5.

Table 7-4 set_scan_suppress_toggling Command Syntax (Continued)

Argument Description
Chapter 7: Advanced DFT Architecture Methodologies
Power-Aware Functional Output Gating 7-81
Chapter 7: Advanced DFT Architecture Methodologies
Power-Aware Functional Output Gating 7-81

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
remove_scan_suppress_toggling command to remove the previous toggling suppression
settings applied.

Before DFT insertion, use the preview_dft command with the -show qgates option to see
which scan cells will be gated. This generates a report similar to the -show cells option,
except the gated scan cells are annotated with the (g) attribute to indicate gating. For
example:

dc_shell> preview_dft -show {qgates}

Number of chains: 8
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: no_mix

 (l) shows cell scan-out drives a lockup latch
 (s) shows cell is a scan segment
 (t) shows cell has a true scan attribute
 (w) shows cell scan-out drives a wire
 (g) shows cell scan-out drives a toggle suppressing gate

Scan chain '1' (SI1 --> SO1) contains 48 cells
 CORE/Dstrobe_reg (CLK, 45.0, rising)
 CORE/R1_reg[0] (g)
 CORE/R1_reg[1] (g)
 ...

When the -selection_method option is set to auto or mixed, the preview_dft command
reports the number of scan flip-flops automatically selected for gating, the number
considered for gating, the number that you manually included, and the number rejected due
to timing considerations.

During DFT insertion, the combinational gating cell instances are named using the
compile_instance_name_prefix variable, by default. To specify a different instance name
prefix for the gating cells, set the test_suppress_toggling_instance_name_prefix
variable to the desired prefix. When this variable is set, the scan cell leaf name and output
pin name are also appended to the specified prefix. For example, if you set the variable to
QGATE, a gating cell inserted at ENAB_reg/Q is named QGATE_ENAB_reg_Q.

After DFT insertion completes, you can use the test_scan_suppress_toggling cell
attribute to find the gating cells. For example,

dc_shell> set cells [get_cells -hierarchical * \
 -filter {test_scan_suppress_toggling == true}]
{CORE/U181 CORE/U182 U224 U225 U226}
Chapter 7: Advanced DFT Architecture Methodologies
Power-Aware Functional Output Gating 7-82

DFT Compiler Scan User Guide Version H-2013.03-SP4
Controlling Clock-Gating Cell Test Pin Connections

To insert clock-gating cells in a design, you can use the following methods:

• Automatic insertion of clock-gating cells by Power Compiler, using the -gate_clock
option of the compile or compile_ultra commands

• Manual instantiation or insertion of clock-gating cells

A clock-gating cell propagates the clock signal to downstream logic only when the enable
signal is asserted. During scan shift, if the enable signal is controlled by one or more scan
flip-flops, the shifting test data values cause the clock-gating signal to toggle during scan
shift. As a result, the clock signal does not reliably propagate through the clock-gating cell to
downstream scan flip-flops during scan shift, resulting in scan shift violations.

Figure 7-48 shows an example where the enable signal of an integrated clock-gating cell is
driven by a scan flip-flop. The scan chain path is highlighted in blue. During scan shift, the
clock-gating enable signal driven by FFG toggles, interrupting the scan shift clocks needed
for FF1 and FF2.

Figure 7-48 Clock-Gating Cell Enabled by Scan Flip-Flop Output

To remedy this, most clock-gating cells have test pins that force the clock signal to pass
through when the test pin is asserted. This ensures that downstream scan cells successfully
receive the clock signal and shift values along the scan chain. Figure 7-49 shows a
test-aware clock-gating cell with its test pin hooked up to the global scan-enable signal.
During scan shift, FF1 and FF2 receive the clock signal and successfully shift data.

&%'

�-

�
��
��

�

		1

	��

�

	��!

�&1��

�
��
��

�

		�

�
��
��

�

		�
��
Chapter 7: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections 7-83
Chapter 7: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections 7-83

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-49 Clock-Gating Cell Enabled by Scan Flip-Flop Output

This section describes the methods provided by DFT Compiler to control clock-gating cell
test pin connections.

Connecting User-Instantiated Clock-Gating Cells
You can use the insert_dft command to connect user-instantiated clock-gating cells, that
is, to connect to the clock-gating cells that have not been inserted by Power Compiler. You
use the set_dft_clock_gating_pin command to specify the unconnected test pin of the
clock-gating cells in your design. Then you run the insert_dft command to connect these
pins to the test ports.

Connecting user-instantiated clock-gating cells with the set_dft_clock_gating_pin and
insert_dft commands has the following advantages:

• Provides flexibility

• Does not require setting Power Compiler attributes

• Has no dependency on the identify_clock_gating command and the
power_cg_auto_identify variable

• Works with multiple ScanEnable and TestMode signal connectivity

Note:
When clock-domain-based connections are specified, using the set_dft_signal
-connect_to command, user-instantiated clock-gating pins are not connected by
domain. For this feature, only clock-gating cells recognized and inserted by Power
Compiler are supported.

The syntax for the set_dft_clock_gating_pin command is

set_dft_clock_gating_pin object_list -pin_name instance_pin_name
 [-control_signal ScanEnable | TestMode | scan_enable | test_mode]
 [-active_state 1 | 0]

&%'

�-

�
��
��

�

		1

	��

�

	��!

�&1��

�
��
��

�

		�

�
��
��

�

		�

���

��
Chapter 7: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections 7-84

DFT Compiler Scan User Guide Version H-2013.03-SP4
object_list

List of clock-gating cell instances for which test pins are specified. The argument is
mandatory.

-pin_name

Name of the test pin on the specified instances. This pin name must be common to all
specified instances. The argument is mandatory.

-control_signal

Specifies the type of control signal required by the test pin. The argument is optional. The
default is ScanEnable.

-active_state

Specifies the active state of the test pin. The argument is optional. The default is 1.

The command is cumulative.

The specified cells and test pin are not checked. Verify that you have specified the actual
clock-gating cells and test pin in the design and that they were not identified by Power
Compiler. Specifying cells that are not clock-gating cells can cause undesired results when
you run the dft_drc and insert_dft commands.

Using the set_dft_clock_gating_pin Commands: Examples

• To specify the test enable (TE) pin on instances U1 and U2 as the clock-gating pin, using
the default signal type ScanEnable:

set_dft_clock_gating_pin [list U1 U2] -pin_name TE

• To specify the test_mode pin as the clock-gating pin of control signal type TestMode on
the hierarchical design des_a:

set_dft_clock_gating_pin \
 [get_cells * -hierarchical -filter "@ref_name == des_a"] \
 -control_signal TestMode -pin_name test_mode

• To specify pin A as a clock-gating pin of control signal type ScanEnable with active state
1 for all instances of the unique library cell CGC1:

set_dft_clock_gating_pin \
 [get_cells * -hierarchical -filter "@reference == CGC1"] \
 -control_signal scan_enable -pin_name A

Use the report_dft_clock_gating_pin command to report the specifications you made
with the set_dft_clock_gating_pin command. To remove the DFT clock-gating pin
specifications, use the remove_dft_clock_gating_pin command.
Chapter 7: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections 7-85
Chapter 7: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections 7-85

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Interaction With Other Commands

Clock-gating cells identified with the set_dft_clock_gating_pin command can be used
or specified in the following commands:

• In the hook-up-only flow, using the following command:

set_dft_configuration -scan disable -connect_clock_gating enable

• Using the set_dft_signal -connect_to command

The connection is not made when doing clock-domain-based connections.

• Using the set_dft_clock_gating_configuration -exclude_elements command.

Script Example
Example 7-23 and Example 7-24 show a hookup-clock-gating only flow and a complete DFT
insertion flow, respectively.

Example 7-23 Hookup-Clock-Gating Only Flow

read verilog test.v
link
set_dft_signal -view existing_dft -type ScanClock -port clk \
 -timing {45 55}
set_dft_signal -type ScanEnable -port SE1 -view spec
set_dft_clock_gating_pin {clk_gate_out1_reg sub1/clk_gate_out1_reg} \
 -pin_name TE
set_dft_configuration -scan disable -connect_clock_gating enable
report_dft_clock_gating_pin
insert_dft

Example 7-24 Complete DFT Insertion Flow

read verilog test.v
link
set_dft_signal -view existing_dft -type ScanClock -port clk \
 -timing {45 55}
set_dft_signal -type ScanEnable -port SE1 -view spec
set_dft_clock_gating_pin {clk_gate_out1_reg sub1/clk_gate_out1_reg} \
 -pin_name TE
set_dft_configuration -scan enable -connect_clock_gating enable
report_dft_clock_gating_pin
create_test_protocol
dft_drc -verbose
insert_dft
Chapter 7: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections 7-86

DFT Compiler Scan User Guide Version H-2013.03-SP4
Limitations
Note the following limitations:

• You cannot connect the clock-gating pins by using the set_dft_signal -connect_to
command when making clock-domain-based connections.

• The feature is not supported for pipelined ScanEnable.

Excluding Clock-Gating Cells From Test-Pin Connection
You might have a portion of the design that is excluded from scan testing, and you do not
want DFT Compiler to connect the test pins of those clock-gating cells to test-mode or
scan-enable signals. To prevent the insert_dft command from connecting the test pins of
some clock-gating cells, use the -exclude_elements option of the
set_dft_clock_gating_configuration command:

set_dft_clock_gating_configuration -exclude_elements object_list

The object_list can include the following object types:

• Clock-gating cell leaf instances

• Clock-gating observation cell leaf instances

• Hierarchical cell instances – All clock-gating cells within the instances are included in the
specification.

• Clock-gating library cell – All instances of that cell are included in the specification.

• Clocks – All clock-gating cells in the clock domains are included in the specification.

Instead of connecting the test pins of excluded clock-gating cells to test-mode or
scan-enable signals, DFT Compiler leaves the existing connections in place, which are
typically constant drivers that de-assert the test-mode bypass. Figure 7-50 shows an
example of an excluded clock-gating cell.

Figure 7-50 Directly Specified Excluded Clock-Gating Cell

&%'

		1

		�

		�

	��

�

	��!

��&1���

�����"����
�#�$
�%�$��
�"%$&�
�%
��'
������(��&������)�����*+�	�,
Chapter 7: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections 7-87
Chapter 7: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections 7-87

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
The dft_drc command does not report any TEST-130 unconnected test-pin messages for
excluded clock-gating cells. However, any downstream scan cells driven by the excluded
clock-gating cells will result in D1 or D9 violations if their clock is uncontrolled.

If you do not know the clock-gating cell instances, but you do know the nonscanned flip-flops
whose upstream clock-gating cells should not be connected, you can use the
-dont_connect_cgs_of option of the set_dft_clock_gating_configuration
command:

set_dft_clock_gating_configuration -dont_connect_cgs_of object_list

The object_list can include the following object types:

• Flip-flop leaf instances

• Hierarchical cell instances – All flip-flops within the instances are included in the
specification.

With the -dont_connect_cgs_of option, DFT Compiler identifies any upstream
clock-gating cells from these registers, and prevents their test pin connections. Figure 7-51
shows an example of an excluded clock-gating cell.

Figure 7-51 Upstream Excluded Clock-Gating Cell

The upstream clock-gating cell can only drive nonscan cells or scan-replaced cells that are
excluded from scan stitching. If the clock-gating cell drives any valid scan cells that are
incorporated into scan chains, the test pin is connected to ensure proper scan shift clocking.

Figure 7-52 shows an example where hierarchical block UBLK is specified with the
-dont_connect_cgs_of option. The four flip-flops inside the block are included in the
specification. However, one of the flip-flops is a valid scan flip-flop that will be included on a
scan chain. As a result, the test pin of upstream clock-gating cell UICG1 is tied to a test
signal. The test pin of clock-gating cell UICG2 is left tied to its de-asserted constant value.

&%'

		1

		�

		�

	��

�

	��!

��&1���

�����"����
�#�$
�%�$��
�"%$&�
�%
��'
������
����
�������$��
"�*--��--.,
Chapter 7: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections 7-88

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-52 Upstream Excluded Clock-Gating Cell Due to Downstream Scan Flip-Flops

If DFT Compiler cannot find the upstream clock-gating cells for flip-flops during the
preview_dft or insert_dft commands, it issues TEST-154 information messages for
those flip-flops.

For both exclusion methods, use the report_dft_clock_gating_configuration
command to report the specifications that you previously set. Use the
reset_dft_clock_gating_configuration command to remove the specifications.

Exclusion works by leaving the default de-asserted constant value connected to the test pins
of excluded clock-gating cells. If an exclusion applies to a clock-gating cell with an existing
test pin connection other than the default de-asserted constant value, that existing test pin
connection remains in place.

The clock-gating cell test pin connection control methods have the following precedence, in
order of highest to lowest priority:

• set_dft_signal -connect_to (highest priority)

• set_dft_clock_gating_configuration -exclude_elements

• set_dft_clock_gating_configuration -dont_connect_cgs_of (lowest priority)

When the -dont_connect_cgs_of option is used, upstream clock-gating cells of the
specified registers are excluded from clock-gating cell test pin connection only if none of the
downstream registers are valid scan cells. When the -exclude_elements option is used,
the test pin connections of the specified clock-gating cells are suppressed even if there are
downstream valid scan cells.

Note:
These set_dft_clock_gating_configuration options work with, but are not intended
to be used for, user-instantiated clock-gating cells. If the test pin of a user-instantiated
clock-gating cell should not be hooked up, do not include it in a

�/%'

&%'

�����"����
�#�$
�%�$��
�"%$&�
�%
��'
������
����
�������$��
"�*+/��,

�-

	��

�

	��!

��&1����

	��

�

	��!

��&1����

�
��
��

�

Chapter 7: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections 7-89
Chapter 7: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections 7-89

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
set_dft_clock_gating_pin specification. Registers driven by user-defined clock
gating cells are traced through simple buffer and inverter logic only.

Connecting Clock-Gating Cell Test Pins Without Scan Stitching
You can use the insert_dft command to connect the test pins of clock-gating cells to
scan-enable or test-mode signals without also performing scan insertion or scan stitching.
Note, however, that only clock-gating cells with Power Compiler attributes are considered.

To use this feature, you must disable scan insertion and enable the clock-gating connection
before running the insert_dft command. This is accomplished by issuing the following
command:

set_dft_configuration -scan disable -connect_clock_gating enable

When using this flow, do not run the create_test_protocol or dft_drc commands. If you
do, it will prevent the insert_dft command from making the clock-gating cell test pin
connections.

Example 7-25 shows how to implement this feature.

Example 7-25 Using the insert_dft Command to Connect the Test Pins of Clock-Gating Cells

read ddc design.ddc
set_clock_gating_style -control_signal scan_enable
create_clock clk -name clk
compile_ultra -scan -gate_clock

set_dft_signal -type ScanEnable -view spec -port ICG_SE

Disable scan insertion, enable only clock-gating cell
test pin connections
set_dft_configuration -scan disable -connect_clock_gating enable

Run insert_dft to connect the clock-gating cell test pins only
insert_dft

The insert_dft command issues an information message indicating that clock-gating cell
test pins are being connected to the specified test signal:

 Routing clock-gating cells
Information: Routing clock-gating cell test pins with no specified
driver to scan enable 'ICG_SE'
1

Note:
This capability is not meant to be used as part of a scan-stitching flow. The feature is
solely intended to allow you to connect the test pins of clock-gating cells, separate from
any scan synthesis run. To connect clock-gating test pins to a different scan-enable
signal during scan stitching, use the -usage option of the set_dft_signal command.
Chapter 7: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections 7-90

DFT Compiler Scan User Guide Version H-2013.03-SP4
For more information, see “Connecting Test Pins to Clock-Gating Cells Using the
insert_dft Command” on page 1-59.

The following scenarios show how to use the insert_dft command to connect clock-gating
cell test pins to various types of test signal ports and pins:

• To connect to the default test_se port:

compile_ultra -gate_clock -scan
set_dft_configuration -scan disable -connect_clock_gating enable
insert_dft

• To connect to an existing scan-enable port:

compile_ultra -gate_clock -scan
set_dft_configuration -scan disable -connect_clock_gating enable
set_dft_signal -view spec -type ScanEnable -port SE
insert_dft

• To connect to an existing test-mode port:

set_clock_gating_style -control_point after -control_signal TestMode
compile_ultra -gate_clock -scan
set_dft_configuration -scan disable -connect_clock_gating enable
set_dft_signal -view spec -type TestMode -port TM
insert_dft

• To connecting to an input pad cell hookup pin:

compile_ultra -gate_clock -scan
set_dft_configuration -scan disable -connect_clock_gating enable
set_dft_signal -view spec -type ScanEnable -port SE \
 -hookup_pin UPAD_SE/IO_Q
insert_dft

• To connect to an internal pin—for example, to a black-box output:

compile_ultra -gate_clock -scan
set_dft_configuration -scan disable -connect_clock_gating enable
Enable internal pins flow
set_dft_drc_configuration -internal_pins enable
set_dft_signal -view spec -type ScanEnable -port SE \
 hookup_pin IP_CORE/SE_OUT
insert_dft

The following features apply to automatic connection of clock-gating cell test pins:

• Connections are made only to the test pins of valid clock-gating cells that have been
correctly identified and have the required Power Compiler attributes.

• Only connections to clock-gating cells are made unless boundary scan insertion is
enabled, in which case boundary scan insertion takes precedence.
Chapter 7: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections 7-91
Chapter 7: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections 7-91

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
• Connections specified with the set_dft_signal -connect_to command are honored.

• The internal pins flow is supported.

The following features or capabilities do not work or have limited capability:

• If test models need to be connected, you must specify the core-level ScanEnable pin to
be connected to the top-level ScanEnable signal, using the set_dft_signal
-connect_to command.

• Partially incomplete flows (in which you have performed the clock-gating cell connections
to the blocks but not performed the rest of the DFT flow) should not be used for top-level
DFT insertion.

Internal Pins Flow

The DFT Compiler internal pins flow is a test methodology that provides a way to use
internal pins, such as scan-in, scan-out, and clocks ports, as top-level ports. This section
has the following subsections:

• Understanding the Architecture

• DFT Commands

• Scan Insertion Flow

• Mixing Ports and Internal Pins

• Specifying Equivalency Between External Clock Ports and Internal Pins

• Limitations to the Internal Pins Flow

Understanding the Architecture
In the traditional scan architecture approach, the scan chain clock, set/reset, scan-in,
scan-out, and scan-enable signals are top-level ports. The internal pins flow enables the use
of internal pins instead of top-level ports. The diagram in Figure 7-53 shows the architecture
of a typical top-level design with internal pins used for scan inputs, scan outputs, clocks, and
resets.
Chapter 7: Advanced DFT Architecture Methodologies
Internal Pins Flow 7-92

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-53 Top-Level Design With Internal Signal Connections

In the internal pins flow, the original design is modified in the internal database so that the
internal pins are used as top-level ports. These changes are transparent and do not affect
the netlist and protocol that is written out.

DFT Commands
The internal pins flow is controlled primarily by two commands:

• set_dft_drc_configuration – enables the internal pins flow

• set_dft_signal – specifies all hookup pins

Enabling the Internal Pins Flow
The set_dft_drc_configuration command enables the internal pins flow. See the
following example:

dc_shell> set_dft_drc_configuration \
 -internal_pins enable

The default of the -internal_pins switch is disable.

Scan chain 1

Scan chain 2

Scan chain 3

RST

CLK

S11

S12

S13

SE

Top-Level Design

SO1

SO3

SO2
Chapter 7: Advanced DFT Architecture Methodologies
Internal Pins Flow 7-93
Chapter 7: Advanced DFT Architecture Methodologies
Internal Pins Flow 7-93

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Specifying Hookup Pins
All hookup pins are specified by use of the -hookup_pin switch in the set_dft_signal
command. The following examples show how to use the -hookup_pin switch for various
data types.

Clocks:

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock \
 -hookup_pin {pinName} -timing [list 45 55]

Reset:

dc_shell> set_dft_signal -view existing_dft -type Reset \
 -hookup_pin {pinName} -active_state 0|1

Constant:

dc_shell> set_dft_signal -view existing_dft -type Constant\
 -hookup_pin {pinName} -active_state 0|1

TestMode:

dc_shell> set_dft_signal -view spec -type TestMode \
 -hookup_pin {pinName} -active_state 0|1

Scan_in:

dc_shell> set_dft_signal -view spec -type ScanDataIn \
 -hookup_pin {pinName}

Scan_out:

dc_shell> set_dft_signal -view spec -type ScanDataOut \
 -hookup_pin {pinName}

Scan_enable:

dc_shell> set_dft_signal -view spec -type ScanEnable \
 -hookup_pin {pinName}

Scan path definition for using hookup pins:

dc_shell> set_scan_path {scanChainName} -scan_data_in \
 {pinName} -scan_data_out {pinName}

Note:
The internal pins flow does not work when inputs are used for the -hookup_pin option.

Note:
For all scan signals without an as-yet existing path between the port and hookup pin, only
the -hookup_pin option should be used. That is, do not use -port for the internal pins
flow.
Chapter 7: Advanced DFT Architecture Methodologies
Internal Pins Flow 7-94

DFT Compiler Scan User Guide Version H-2013.03-SP4
Scan Insertion Flow
This section describes the scan insertion flow, which is currently the only flow that supports
internal pins modification.

The following data types are supported in this flow as internal signals:

• ScanMasterClock

• MasterClock

• ScanClock

• Reset

• Constant

• TestMode

• ScanEnable

• ScanDataIn

• ScanDataOut

Internal pins are stitched during DFT insertion, based on what you specify with the
set_dft_signal command. These specifications should precede the running of dft_drc
command.

Figure 7-54 shows a typical internal pins flow for scan insertion.
Chapter 7: Advanced DFT Architecture Methodologies
Internal Pins Flow 7-95
Chapter 7: Advanced DFT Architecture Methodologies
Internal Pins Flow 7-95

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-54 Simple Scan Insertion Flow

Mixing Ports and Internal Pins
You can mix the specification of top-level ports with user-specified internal pins for all the
signal types. For example, you can specify both a top-level port and an internal pin as a
clock, as shown in Figure 7-55.

set_dft_drc_configuration \
 -internal_pins enable | disable
set_dft_signal -view existing_dft \
 -type ScanClock -hookup_pin {pinName} \
 -timing [list 45 55]
set_dft_signal -view existing -type Reset \
 -hookup_pin {pinName} -active_state 0/1
set_dft_signal -view existing -type TestMode \
 -hookup_pin {pinName} -active_state 0/1
set_dft_signal -view spec -type ScanDataIn \
 -hookup_pin {pinName}
set_dft_signal -view spec -type ScanDataOut \
 -hookup_pin {pinName}
set_dft_signal -view spec -type ScanEnable \
 -hookup_pin {pinName}
set_scan_path {scanChainName} \
 -scan_data_in {pinName}
 -scan_data_out {pinName}

Stitch to the specified pins for signal types
 TestMode
 ScanDataIn
 ScanDataOut
 ScanEnable

UI specification

DFT insertion
Chapter 7: Advanced DFT Architecture Methodologies
Internal Pins Flow 7-96

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 7-55 Mixing Specifications of Top-Level Ports and Internal Pins

Specifying Equivalency Between External Clock Ports and
Internal Pins
Specifying an equivalency between external clock ports and internal pins allows you both to
designate internal pins for clocks and to write out a usable top-level STIL procedure file. You
use the -associated_internal_clocks option of the set_dft_signal command to

Scan chain 1

Scan chain 2

topClk

top_scan_in1

top_scan_in2

top_scan_out1

top_scan_out2

int

top_SE

set_dft_signal -port topClk -view existing_dft \
 -type ScanClock -timing {45 55}

set_dft_signal -view existing_dft -type ScanClock \
 -hookup_pin blackBox/int_clk -timing {45 55}
Chapter 7: Advanced DFT Architecture Methodologies
Internal Pins Flow 7-97
Chapter 7: Advanced DFT Architecture Methodologies
Internal Pins Flow 7-97

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
specify that a particular set of internal hierarchical pins has the same timing values and
active state as an externally applied clock signal. The set of hierarchical pins is specified as
a list.

These pins are considered internal clock sources by the preview_dft and insert_dft
commands when the clock domains for the design are being determined. The top-level
clock, to which the set_dft_signal command applies, is used in the test model to describe
the scan clock of the chain that contains the scan elements triggered by these internal
clocks.

The command syntax is

set_dft_signal -view existing_dft -port clk_port_name -type ScanClock \
 -associated_internal_clocks [list internal_pin_name]
 -timing timing_values

The following conditions apply:

• This feature is enabled only for the -view existing_dft specification.

• The association is valid only when -type is MasterClock, ScanMasterClock,
ScanSlaveClock, or ScanClock.

• The -associated_internal_clocks argument only accepts a list, which may contain a
single pin or multiple pins.

• To remove the internal pin associations, you must use the remove_dft_signal
command to remove both the DFT signal and the association.

• The specification of a list of internal pins causes the creation of a list of internal clock
pins. Scan flip-flops are associated with these pins and not with the top-level clock ports.
This means there are, at a minimum, as many clock domains as the number of pins in
the list. The way scan flip-flops are allocated to chains follows the same architecting
rules. The behavior of set_scan_configuration options remains the same.

Examples of Associating Hierarchical Pins With an External Clock Port

The following examples demonstrate how to associate hierarchical pins with an external port
for various cases.

• The following command associates hierarchical pin blkA/pinA with clockA.

set_dft_signal -view existing_dft -type ScanClock -port clockA \
 -timing {45 55} -associated_internal_clocks [list blkA/pinA]

• The following command associates hierarchical pins blkA/pinA and blkB/pinB with
clockA.

set_dft_signal -view existing_dft -type ScanClock -port clockA \
 -associated_internal_clocks [list blkA/pinA blkB/pinB] \
 -timing {45 55}
Chapter 7: Advanced DFT Architecture Methodologies
Internal Pins Flow 7-98

DFT Compiler Scan User Guide Version H-2013.03-SP4
• The result of the following two commands is that only hierarchical pin blkB/pinB is
associated with clockA. Pin blkA/pinA is no longer associated with clockA.

set_dft_signal -view existing_dft -type ScanClock -port clockA \
 -associated_internal_clocks [list blkA/pinA] \
 -timing {45 55}
set_dft_signal -view existing_dft -type ScanClock -port clockA \
 -associated_internal_clocks [list blkB/pinB] \
 -timing {45 55}

• The result of the following two commands is that the timing specification of clockA is
redefined as {55 45} and only blkB/pinB is associated with clockA. Pin blkA/pinA will not
be associated with clockA.

set_dft_signal -view existing_dft -type ScanClock -port clockA \
 -associated_internal_clocks [list blkA/pinA] \
 -timing {45 55}
set_dft_signal -view existing_dft -type ScanClock -port clockA \
 -associated_internal_clocks [list blkB/pinB] \
 -timing {55 45} -hookup_sense inverted

Limitations

Note the following limitations:

• The set_dft_signal -internal_clocks command has no effect on the associated
internal clocks.

• The -hookup_sense option has no effect. You can only associate the same clock edge
of a list of pins to a top-level clock edge.

• The report_dft_signal command does not show the hookup signals.

Limitations to the Internal Pins Flow
The following limitations currently apply to the internal pins flow:

• In most cases, the output protocol is not accurate and cannot be used in the TetraMAX
tool. The exception to this limitation occurs when you have only specified internal pins for
the clocks and have also specified an association to a top-level clock pin.

• DBIST, phase-locked loop (PLL), core wrapper, boundary scan, and scan extraction
flows do not support the internal pin flow.

• You cannot run Hierarchical Scan Synthesis on blocks that were created using the
internal pin flow.
Chapter 7: Advanced DFT Architecture Methodologies
Internal Pins Flow 7-99
Chapter 7: Advanced DFT Architecture Methodologies
Internal Pins Flow 7-99

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Creating Scan Groups

DFT Compiler offers a methodology that enables you to define certain scan chain portions
so that they can be efficiently grouped with other scan chains. This is done without the need
to insert scan at the submodule levels.

This section includes the following subsections:

• Configuring Scan Grouping

• Scan Group Flows

• Known Limitations

Configuring Scan Grouping
DFT Compiler includes the following set of commands that enable you to configure scan
grouping:

• set_scan_group – creates scan groups

• remove_scan_group – removes scan groups

• report_scan_group – reports scan groups

Creating Scan Groups
The set_scan_group command enables you to create a set of sequential cells, scan
segments, or design instances that should be grouped together within a scan chain. If a
design instance is specified, all sequential cells and segments within it are treated as a
group and is logically ordered.

The syntax for this command is as follows:

set_scan_group scan_group_name
 -include_elements {list_of_cells_or_segments}
 [-access {list_of_access_pins}]
 [-serial_routed true|false]

scan_group_name

Specifies a unique group name.

-include_elements {list_of_cells_or_segments}

Specifies a list of cell names or segment names that are included in the group.
Chapter 7: Advanced DFT Architecture Methodologies
Creating Scan Groups 7-100

DFT Compiler Scan User Guide Version H-2013.03-SP4
-access {list_of_access_pins}

Specifies a list of all access pins. Note that these access pins represent only a serially
routed scan group specification. If the -serial_routed option is set to false, all
specified access pins are ignored.

-serial_routed [true | false]

Specifies whether the scan group is serially routed (true) or not (false). The default is
false.

Note the following:

• There is no -view option to the set_scan_group command, because the options only
works in the specification view.

• All scan group specifications are applied across all test modes. You cannot specify a
scan group to be applied on a particular test mode.

• An element specified as part of a scan group cannot be specified as part of a scan path,
and vice versa.

• Scan group specifications are not cumulative. If you specify the same group name, the
last scan group specification before the insert_dft command is used.

• Grouping elements implies that they must be adjacent in a scan chain.

Example
dc_shell> set_scan_group G1 -include_elements \
 [list ff1 ff3] -access \
 [list ScanDataIn ff1/TI ScanDataOut \
 ff3/QN] -serial_routed true

dc_shell> set_scan_group G2 -include_elements \
 [list ff2 a/ff1]

dc_shell> set_scan_group G3 -include_elements \
 [list U1/1]

dc_shell> set_scan_group G4 -include_elements \
 [list U1/3]

Removing Scan Groups
The remove_scan_group command removes all specified scan groups. The syntax of this
command is as follows:

remove_scan_group scan_group_name
Chapter 7: Advanced DFT Architecture Methodologies
Creating Scan Groups 7-101
Chapter 7: Advanced DFT Architecture Methodologies
Creating Scan Groups 7-101

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
scan_group_name

This option specifies the name of the scan group to be removed.

Example
dc_shell> remove_scan_group G1

Integrating an Existing Scan Chain Into a Scan Group
If you have existing serial routed segments at the current design level that you want to
incorporate as part of a longer scan chain, you can use the set_scan_group
-serial_routed true command to accomplish this. When you run the insert_dft
command, it will then connect to this segment while keeping the segment in tact.

You need to provide the following information to the set_scan_group -serial_routed
true command:

• Use the -include_elements option to specify the names of the elements within the
segment.

• Use the -access option to specify how the insert_dft command should connect to this
segment.

Consider the existing scan chain shown in Figure 7-56.

Figure 7-56 Integrating an Existing Scan Chain

In this example, the scan chain connects the flip-flops U0 through U1 to U2. The
insert_dft command treats U0 through U2 as a subchain or group and connects through
the scan-in pin of U0, the output pin of U2, and the scan-enable pin of U0. You can then use
the following command to specify the existing scan segment:

set_scan_group group1 -include_elements [list U0 U1 U2] \
 -access [list ScanDataIn U0/SI ScanDataOut U2/Q ScanEnable U0/SE]

If you do not know the names of the individual elements within the scan group, you can try
extracting the element names by using the dft_drc command. Note, however, that this
strategy works only if the scan segment starts and ends at the top level of the current design.
See “Performing Scan Extraction” on page 7-3 for details on how to extract pre-existing scan

SI Q

SE
U0

SI Q

SE
U1

SI Q

SE
U2
Chapter 7: Advanced DFT Architecture Methodologies
Creating Scan Groups 7-102

DFT Compiler Scan User Guide Version H-2013.03-SP4
chains in your design. After you have extracted the names of the elements of the scan chain,
you can specify them using the -include_elements option. You might need to disconnect
the net connecting the top-level scan-in port to the scan-in pin of the first flip-flop of the
chain, as well as the net connecting the data-out or scan-out pin of the last flip-flop of the
chain to the scan-out port.

Reporting Scan Groups
The report_scan_group command reports the names of the sequential cells or scan
segments associated with a particular scan group, as specified by the set_scan_group
command).

The syntax of this command is as follows:

report_scan_group [scan_group_name]

scan_group_name

This option specifies the name of the scan group used for reporting purposes. If a group
name is not specified, all serially routed and unrouted groups are reported.

Scan Group Flows
You can specify scan groups in DFT Compiler in either the standard flat flow or the
Hierarchical Scan Synthesis (HSS) flow.

In the standard flat flow, you can specify valid scan cells as input to scan groups. In the logic
domain, these cells get ordered logically and placed as a group in a scan chain.

In the HSS flow, you can specify core segment names as part of a scan group and then
reuse them in a scan path specification.

Known Limitations
The following known limitations apply when you specify scan groups in DFT Compiler:

• A scan group can contain only a set of elements that belong to one clock domain.

• You cannot specify a collection as a scan group element.

• You cannot specify a group as part of another group.

• You cannot specify a previously defined scan path in a scan group.
Chapter 7: Advanced DFT Architecture Methodologies
Creating Scan Groups 7-103
Chapter 7: Advanced DFT Architecture Methodologies
Creating Scan Groups 7-103

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Identification of Shift Registers

When you perform a test-ready compile with the compile_ultra -scan command, DC
Ultra can identify shift registers and perform scan replacement only on the first register of
each identified shift register. Information about the identified shift registers is stored in the
design database. DFT Compiler uses this information during scan stitching to efficiently
incorporate the shift registers into the scan chain. This flow reduces the area overhead for
scan replacement.

DC Ultra can recognize the following types of shift registers during a test-ready compile:

• Simple shift registers

Each flip-flop directly captures the output of the previous flip-flop.

• Synchronous-logic shift registers

Each flip-flop captures a combinational logic function which includes the output of the
previous flip-flop.

For more information on how to configure DC Ultra to identify shift registers during a
test-ready compile, see the “Sequential Mapping” chapter in the Design Compiler
Optimization Reference Manual.

The insert_dft command uses the stored shift register information from DC Ultra to
optimize the scan path stitching process. For each shift register, the first scan-replaced cell
provides scan controllability for the entire shift register. Simple shift registers are used
directly in the scan path. Synchronous-logic shift registers are updated by the insert_dft
command so that the shift register logically degenerates to a simple shift register when the
scan-enable signal is asserted. If needed, identified shift registers are broken up during DFT
insertion to meet scan chain balancing or maximum scan chain length requirements.

Use the following methods to determine the shift registers that were identified by the
compile_ultra -scan command:

• Use the preview_dft -show segments command to report the identified shift registers,
which are treated as scan segments after being identified.

• Use the shift_register_head and shift_register_flop cell attributes to identify the
leading shift register scan cells and subsequent nonscan cells, respectively:

dc_shell> get_cells -hierarchical * -filter \
 {shift_register_head==true || shift_register_flop==true}

For best results, write out the design in .ddc format to preserve the identified shift register
attributes.
Chapter 7: Advanced DFT Architecture Methodologies
Identification of Shift Registers 7-104

DFT Compiler Scan User Guide Version H-2013.03-SP4
Shift Register Identification in an ASCII Netlist Flow
If you are using the ASCII netlist flow, the attributes for identified shift registers are not stored
in the netlist file. Instead, you must perform shift register recognition when the netlist is read
in, even if the shift registers were previously recognized at the time the netlist file was
written.

When you read in an ASCII netlist (Verilog or VHDL) on which test-ready scan replacement
has previously been performed, execute the set_scan_state test_ready command to
indicate that the netlist is scan-replaced. This command identifies any previously-identified
simple shift registers that have their leading cell scan-replaced by DC Ultra. This simple
shift-register recognition does not require any additional licenses.

To perform synchronous-logic shift-register identification, set the following variable to true
before running the set_scan_state test_ready command:

the default of this variable is false
set_app_var \
 compile_seqmap_identify_shift_registers_with_synchronous_logic_ascii \
 true

This variable enables the set_scan_state test_ready command to use the DC Ultra shift
register identification engine. In addition, you must ensure that the following two variables
remain set to their default of true so that the DC Ultra shift register identification engine
itself is enabled:

shown for completeness; the default of these variables is true
set_app_var compile_seqmap_identify_shift_registers true
set_app_var \
 compile_seqmap_identify_shift_registers_with_synchronous_logic \
 true

When you enable the identification of shift registers with synchronous logic in the ASCII flow,
DC Ultra issues the following information message:

Information: Performing full identification of complex shift registers.
(TEST-1190)

Synchronous-logic shift register identification requires a DC Ultra license.
Chapter 7: Advanced DFT Architecture Methodologies
Identification of Shift Registers 7-105
Chapter 7: Advanced DFT Architecture Methodologies
Identification of Shift Registers 7-105

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Chapter 7: Advanced DFT Architecture Methodologies
Identification of Shift Registers 7-106

8
Wrapping Cores 8

This chapter shows you how to add a test wrapper to a core design. A test wrapper provides
both test access and test isolation during scan pattern application. The commands
necessary to implement a test wrapper around a core are described in the following
sections:

• Wrapper Chain Concepts

• Core Wrapping Flows

• Creating User-Defined Core Wrapping Test Modes

• Wrapping Cores With Existing Scan Chains

• Core Wrapping Scripts

8-1

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Wrapper Chain Concepts

A test wrapper chain is a chain of wrapper cells placed along the I/O boundary of a core
between the I/O ports and core logic. Wrapper cells provide both controllability and
observability at functional core inputs and outputs. Figure 8-1 illustrates a core with wrapper
cells inserted between the core logic and the surrounding top-level logic.

Figure 8-1 Test Wrapper

An input wrapper cell is associated with an input port; an output wrapper cell is associated
with an output port. Wrapper chains can contain only input wrapper cells, only output
wrapper cells, or a mix of both types of wrapper cells, depending on whether selective
access to input and output wrapper cells is needed.

The input wrapper cells can control the inputs to the core, observe responses from the
surrounding logic, or both. The output wrapper cells can control inputs to the surrounding
logic, observe core responses, or both. Different core wrapper modes use different
combinations of control and observe capabilities.

owbr_capture_en_n

W1

cfi
cti

shift
clk

cto

cfo
CORE

UDL W3

cfi
cti

shift
clk

cto

cfo
UDL

wrp_si
wrp_so

test_mode1

wrp_shift

wrp_clock

Input
wrapper

cells

Output
wrapper

cells

capture_en capture_en

W4

cfi
cti

shift
clk

cto

cfo

capture_en

W2

cfi
cti

shift
clk

cto

cfo

capture_en

Glue
logic

shift

iwbr_capture_en_n

test_mode2
Chapter 8: Wrapping Cores
Wrapper Chain Concepts 8-2

DFT Compiler Scan User Guide Version H-2013.03-SP4
Core wrapping is primarily intended to wrap core data ports. The following ports are
excluded from wrapping:

• Functional and test clock ports

• Any asynchronous set or reset signal

• Scan-input, scan-output, scan-enable, and other global test signal ports

• Wrapper shift signal ports

• Any port with a constant signal value defined

Wrapper Cells
Wrapper cells are inserted in a core-level synthesis run. Each wrapper cell is inserted at the
core’s top level, connected to the port being wrapped.

By default, DFT Compiler uses the WC_D1 dedicated wrapper cell for core wrapping. A
dedicated wrapper cell is a wrapper cell that uses its own internal dedicated flip-flop to
provide controllability, observability, and shift capabilities. Figure 8-2 shows the internal logic
of the WC_D1 dedicated wrapper cell.

Figure 8-2 WC_D1 Wrapper Cell

The interface to the WC_D1 wrapper cell consists of the following signals:

cti – Core test input

This is the test input to the wrapper cell. It can come from either a primary input (if the
cell is the first cell in the wrapper chain) or the cto signal of the previous wrapper cell in
the chain.

cto – Core test output

This is the test output of the wrapper cell. It can drive either a primary output (if the cell
is the last cell in the wrapper chain) or the cti signal of the next wrapper cell in the chain.

�

+

+

�
���

���

�
"�!����&

���

���

�#�������

�#�����&

7&���
Chapter 8: Wrapping Cores
Wrapper Chain Concepts 8-3
Chapter 8: Wrapping Cores
Wrapper Chain Concepts 8-3

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
cfi – Core functional input

For input wrapper cells, this input is fed from the logic surrounding the core. For output
wrapper cells, this input is fed from the core.

cfo – Core functional output

For input wrapper cells, this input drives the core. For output wrapper cells, this output
drives the logic surrounding the core.

shift_clk – Wrapper clock

This is usually driven by the wrp_clock signal in the core. It clocks the flip-flop in the
wrapper cell.

shift_en – Shift enable

This is like a scan-enable signal for wrapper cells. When the signal is high, the wrapper
clock shifts data through the cti and cto scan data pins. When the signal is low, the
wrapper clock captures the functional input value or holds the current state, depending
on the value of the capture_en signal. The shift enable signal can be controlled differently
for input and output wrapper cells.

capture_en – Capture enable

This signal controls what is captured when the wrapper cell is not shifting. When the
signal is low, the wrapper clock captures the functional input value. When the signal is
high, the wrapper clock holds the current wrapper cell state.

Safe-State Wrapper Cells
A wrapper cell provides observability at its input, and controllability at its output. The same
WC_D1 wrapper cell is used for both core inputs and core outputs. However, the controlled
output of the wrapper cell can toggle as data is shifted through the wrapper chain. In some
cases, if edge-triggered or level-sensitive logic exists in the fanout of the wrapper cell,
unintended circuit operation can occur.

To avoid this, you can specify a safe value for a wrapper cell. DFT Compiler uses the
WC_D1_S wrapper cell to implement the safe value capability. It contains an additional
multiplexer at its output to drive a static safe logic value, enabled by a safe value control
signal. Figure 8-3 shows the internal logic of the WC_D1_S wrapper cell.
Chapter 8: Wrapping Cores
Wrapper Chain Concepts 8-4

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 8-3 WC_D1_S Wrapper Cell

The interface to the WC_D1_S wrapper cell consists of the same signals as the WC_D1
wrapper cell, plus the following additional signals:

safe_control – Control signal

This signal determines when the safe state value is driven at the output.

safe_value – Logic value

This signal specifies the safe state logic value.

Shared-Register Wrapper Cells
If your design has existing boundary I/O registers by the ports, you can share these
functional registers with the wrapper cell logic to reduce the core wrapping area overhead.
Shared wrapper cells replace the existing functional register, providing equivalent
functionality in functional mode. Figure 8-4 shows the internal logic for the WC_S1 and
WC_S1_S shared wrapper cells. The signals are identical to the signals used for dedicated
wrapper cells.

�

+

+

�

���

���

�
"�!����&

���

���

�#�������

�#�����&

�

+

�
���-
�!�

�
�����&���� 7&�����
Chapter 8: Wrapping Cores
Wrapper Chain Concepts 8-5
Chapter 8: Wrapping Cores
Wrapper Chain Concepts 8-5

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 8-4 WC_S1 and WC_S1_S Wrapper Cells

In order for the core wrapping feature to share the existing functional register, the I/O register
and the port must meet the following conditions:

• The register’s data input or output must be connected to a boundary port with a wire or
logic path. The logic path must be sensitized to produce a buffering or inverting effect,
and the sensitization must be controlled by a constant signal type (static value of 0 or 1)
on a primary input or output.

• The shared registers must be clocked by a functional clock.

Note:
If the functional clock for the shared registers also clocks other functional registers
internal to the core, it can disturb the internal core logic during boundary cell
operation. You should either provide a separate functional clock for shared wrapper
cells, or use the -use_dedicated_wrapper_clock option. For more information, see
“Simple Core Wrapping Flow” on page 8-11

If you enable the shared wrapper cell style, DFT Compiler inserts shared wrapper cells
wherever possible. Figure 8-5 illustrates some cases where shared wrapper cells can be
used. The shared wrapper cell is placed at the same hierarchical location as the existing
design register.

�

+

+

�
���

���

�
"�!����&

���

���

�#�������

�#�����&

�

+

+

�

���

���

�
"�!����&

���

���

�#�������

�#�����&
�

+

�
���-
�!�

�
�����&����

7&���
7&�����
Chapter 8: Wrapping Cores
Wrapper Chain Concepts 8-6

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 8-5 Examples of Supported Design Register Sharing

However, if a register does not meet the requirements, a dedicated wrapper cell is used
instead. Figure 8-6 illustrates some cases where shared wrapper cells cannot be used.

Figure 8-6 Examples of Unsupported Design Register Sharing

If a register qualifies as both an input shared register and an output shared register, the
register becomes an input shared register, and a dedicated wrapper cell is placed at the
output port. See Figure 8-7.

Figure 8-7 Shared Input and Output Register Example

If an output shared register has a safe state specified, a WC_S1_S wrapper cell is normally
used. However, if the register’s output drives internal logic in addition to the output port, the
safe state logic inside a WC_S1_S wrapper cell would prevent the register from reliably
driving the internal logic. When DFT Compiler detects this situation, it uses a WC_S1 shared
wrapper cell and moves the safe state logic to the output port. See Figure 8-8.

0 0 7&���

7&���8 8

/ / 7&���

9 9
7&���

0 08 87&��� 7&���
Chapter 8: Wrapping Cores
Wrapper Chain Concepts 8-7
Chapter 8: Wrapping Cores
Wrapper Chain Concepts 8-7

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 8-8 Output Shared Register With Safe State and Internal Fanout Connections

Wrapper Operation Modes
When a wrapper chain is inserted, test-mode signals control the wrapper chain operating
mode. Depending on the value of the test-mode signals, the test wrapper can operate in one
of four modes of operation—inward-facing, outward-facing, normal, or safe. The four modes
operate as follows:

• INTEST: inward-facing mode

This mode is used when input vectors need to be applied to the core and the core
response needs to be observed at the output. The wrapper cells on the core inputs
provide controllability, and the wrapper cells on the core outputs provide observability.
This mode is used to test the core and isolate the surrounding logic. If safe values are
specified to protect the surrounding fanout logic from the core output response, they are
driven at the core outputs. Figure 8-9 shows operation of the design in INTEST mode,
and Figure 8-10 shows the timing in INTEST mode.

Figure 8-9 INTEST Mode of Operation of Wrapper Cells

7&���

8
8

�
�����&����

���

���

�
"�!����&

���

���

�#�������

�#�����&

�
���-
�!�

�
�����&����

���

���

�
"�!����&

���

���

�#�������

�#�����&

�
���-
�!�

�
�����&����

�

�

�

�

� �

�

+

+

�

�

+

�

+

+

�

�

+

&�)�
��:��

�
))�
����:
��:��

�
))�
����:
��:��

��&���������
Chapter 8: Wrapping Cores
Wrapper Chain Concepts 8-8

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 8-10 INTEST Mode Timing

• EXTEST: outward-facing mode

This mode is used to test the logic surrounding the core and isolate the core itself. The
wrapper cells on the core inputs provide observability, and the wrapper cells on the core
outputs provide controllability. If safe values are specified to protect the core inputs from
the surrounding fanin logic responses, they are driven at the core inputs. Figure 8-11
shows operation of the design in EXTEST mode, and Figure 8-12 shows the timing in
EXTEST mode.

Figure 8-11 EXTEST Mode of Operation of Wrapper Cells

Figure 8-12 EXTEST Mode Timing

• NORMAL: normal mode of operation

This is the functional mode of operation. The test wrapper is transparent. Figure 8-13
shows operation of the design in NORMAL mode.

���

�������

3�"��#���

5�&"!��3�
""�������6��#�����&

5�!�"!��3�
""�������6��#�����&

5�&���&
����
&�����6�0*

��+;��3���+�)
��

��:��
�)�+����

0#�����"
����&�7� 0#�����"
����&�78���
"�!��

���

���

�
"�!����&

���

�#�������

�#�����&

�
���-
�!�

�
�����&����

���

�
"�!����&

���

���

�#�������

�#�����&

�
���-
�!�

�
�����&����

�

�

�

�

� �

�

+

+

�

�

+

�

+

+

�

�

+

&�)�
��:��

�
))�
����:
��:��

�
))�
����:
��:��

��� ���

��&��������� ��&���������

��&��&���
�&�������9.%�� ��&��&���
�&�������9.%��

���

�������

3�"��#���

5�&"!��3�
""�������6��#�����&

5�!�"!��3�
""�������6��#�����&

5�&���&
����
&�����6�0*

��+;��3���+�)
��

��:��
�)�+����

0#�����"
����&�7� 0#�����"
����&�78���
"�!��
Chapter 8: Wrapping Cores
Wrapper Chain Concepts 8-9
Chapter 8: Wrapping Cores
Wrapper Chain Concepts 8-9

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 8-13 Normal Mode of Operation of Wrapper Cells

When the test-mode signals activate a standard scan mode, the wrapper chain is also
configured for this transparent state for scan operation.

• SAFE: safe mode

This mode drives the safe value from all wrapper cells that have a safe value specified.
Safe values are driven into core inputs by any such input wrapper cells, and safe values
are driven into the surrounding fanout logic by any such output wrapper cells. Figure 8-14
shows operation of the design in SAFE mode.

Figure 8-14 SAFE Mode of Operation of Wrapper Cells

This mode might be useful when another core is being tested, and this core and its
surrounding logic should remain quiet. If no wrapper cells have a safe value specified,
this mode is not created.

Core Wrapping Test Modes
When core wrapping is enabled, the insert_dft command creates the following test
modes by default:

• wrp_if

This is an inward-facing uncompressed scan mode. The wrapper chain is placed in the
INTEST mode of operation. Both wrapper chains and core internal chains are active.

• ScanCompression_mode

This is an inward-facing compressed scan mode. The wrapper chain is placed in the
INTEST mode of operation. Both wrapper chains and core internal chains are active and

���

���

�
"�!����&

���

���

�#�������

�#�����&

�
���-
�!�

�
�����&����

���

���

�
"�!����&

���

���

�#�������

�#�����&

�
���-
�!�

�
�����&����

�

�

�

�

� �

�

+

�

+

&�)�
��:��

�
))�
����:
��:��

�
))�
����:
��:��

+

�

�

+
+

�

�

+

���

���

�
"�!����&

���

���

�#�������

�#�����&

�
���-
�!�

�
�����&����

�

�

�

�

+

+

�

�

+

&�)�
��:��

�
))�
����:
��:��

���

���

�
"�!����&

���

�#�������

�#�����&

�
���-
�!�

�
�����&����

�

�

�

�

+

+

�

�

+
�
))�
����:

��:��
���
Chapter 8: Wrapping Cores
Wrapper Chain Concepts 8-10

DFT Compiler Scan User Guide Version H-2013.03-SP4
compressed by the scan compression codec. This mode is created if scan compression
is also enabled.

• wrp_of

This is an outward-facing uncompressed scan mode. Only the wrapper chain is active; it
is placed in the EXTEST mode of operation.

• wrp_safe

This mode drives safe values in both the inward and outward directions according to the
safe value specifications. This mode is created if a safe value has been defined for any
port.

When core wrapping is enabled, DFT Compiler does not create the Internal_scan mode by
default because it does not provide inward-facing or outward-facing hierarchical test
capabilities.

You can also create user-defined core wrapping test modes. For more information, see
“Creating User-Defined Core Wrapping Test Modes” on page 8-42.

Core Wrapping Flows

DFT Compiler provides multiple core wrapping flows. These flows differ in how the wrapper
cells are assembled into wrapper chains, and in how the control signals activate the different
capabilities of the core-wrapping logic.

The simple core wrapping flow provides basic core wrapping capabilities. The maximized
reuse core wrapping flow minimizes the area and timing impact of core wrapping by reusing
more existing functional registers. The delay test core wrapping is a legacy flow that is
documented for completeness.

This section includes the following subsections:

• Simple Core Wrapping Flow

• Maximized Reuse Core Wrapping Flow

• Delay Test Core Wrapping Flow

Simple Core Wrapping Flow
To use the simple core wrapping flow, you must include the DesignWare dw_foundation.sldb
synthetic library in your link library list. This synthetic library contains the wrapper cell
designs.

dc_shell> set link_library {* my_tech_lib.db dw_foundation.sldb}
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-11
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-11

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
To enable core wrapping, use the following command:

dc_shell> set_dft_configuration -wrapper enable

By default, DFT Compiler does not create safe state wrapper cells. To specify a safe state
value for all wrapper cells in the wrapper chain, use the -safe_state option of the
set_wrapper_configuration command:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -safe_state 1

The set_wrapper_configuration command allows you to specify global configuration
parameters that apply to the entire wrapper chain.

By default, DFT Compiler inserts dedicated wrapper cells to wrap input and output ports. If
you have existing boundary I/O registers that you want to share with the wrapper cells, you
can enable the shared wrapper cell style by using the -style shared option of the
set_wrapper_configuration command:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -style shared

When the shared wrapper cell style is enabled, by default, DFT Compiler uses dedicated
wrapper cells as a fallback for any ports that do not meet the sharing criteria. To prevent the
fallback insertion of dedicated wrapper cells, use the -dedicated_cell_type none option
of the set_wrapper_configuration command:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -style shared -dedicated_cell_type none

DFT Compiler automatically selects the type of wrapper cell (WC_D1, WC_D1_S, WC_S1,
or WC_S1_S) based on the capabilities needed for each wrapper cell.

The set_wrapper_configuration command applies to all ports in the design. To specify
the wrapper cell characteristics of specific ports, you can use the set_boundary_cell
command.

To specify safe state values for specific ports, use the -safe_state option of the
set_boundary_cell command:

dc_shell> set_boundary_cell -class core_wrapper \
 -ports port_list -type WC_D1_S -safe_state 0 | 1

Note:
When using the set_boundary_cell command, you must explicitly provide the wrapper
cell type in the specification. The specified type should match the safe state and shared
register characteristics for that port. In the preceding example, a dedicated wrapper cell
is used.
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-12

DFT Compiler Scan User Guide Version H-2013.03-SP4
To prevent the insertion of wrapper cells for a specific list of ports, use the following
command:

dc_shell> set_boundary_cell -class core_wrapper \
 -ports port_list -type none

This might be needed in cases where an output port drives downstream clock pins or
asynchronous set or reset signals. If the output port is wrapped, toggle activity in the
wrapper cell might cause unintended activity in the downstream logic. Since excluding ports
from the wrapper chain reduces test coverage, you should use this capability only when
necessary.

To specify a dedicated wrapper cell for ports that would otherwise use a shared wrapper cell,
specify a WC_D1 or WC_D1_S wrapper cell:

dc_shell> # no safe state:
dc_shell> set_boundary_cell -class core_wrapper \
 -ports port_list -type WC_D1

dc_shell> # safe state:
dc_shell> set_boundary_cell -class core_wrapper \
 -ports port_list -type WC_D1_S -safe_state safe_value

Note:
You cannot use the set_boundary_cell command to force a shared wrapper cell type
to be used for a port if the I/O register does not meet the requirements for a shared
wrapper cell or if sharing has not been enabled with the -style shared option.

When a shared wrapper cell is used for a port, DFT Compiler replaces, or swaps, the entire
I/O register for that port with a shared wrapper cell, as shown in Figure 8-5 on page 8-7. This
process introduces a level of hierarchy around the register and renames the register cell
itself.

To preserve the original hierarchical instance path of the register, use the
-register_io_implementation in_place option of the set_wrapper_configuration or
set_boundary_cell command:

dc_shell> # global:
dc_shell> set_wrapper_configuration -class core_wrapper \
 -style shared \
 -register_io_implementation in_place

dc_shell> # per-port:
dc_shell> set_boundary_cell -class core_wrapper \
 -ports port_list -type WC_S1 \
 -register_io_implementation in_place

This option implements the shared wrapper cell functionality by using discrete logic gates
around the existing I/O register, as shown in Figure 8-15. The location of the original I/O
register is not disturbed.
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-13
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-13

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 8-15 Shared Wrapper Cell Using In-Place Register Implementation

For dedicated wrapper cells, DFT Compiler uses the dedicated wrapper clock signal. For
shared wrapper cells, it keeps the register’s existing functional clock signal. This can disturb
the internal core logic during boundary cell operation. You should either provide a separate
functional clock for shared wrapper cells, or use the -use_dedicated_wrapper_clock
option of the set_wrapper_configuration or set_boundary_cell command:

dc_shell> # global:
dc_shell> set_wrapper_configuration -class core_wrapper \
 -style shared \
 -use_dedicated_wrapper_clock true

dc_shell> # per-port:
dc_shell> set_boundary_cell -class core_wrapper \
 -ports port_list -type WC_S1 \
 -use_dedicated_wrapper_clock true

When enabled, this option uses the dedicated wrapper clock signal when wrapper test
modes are active, but retains the original functional clock signal for other modes. See
Figure 8-16.

Figure 8-16 MUXing Dedicated Wrapper Clocks For Shared Wrapper Cells

Wrapper chains follow the same clock mixing requirements as normal scan chains. By
default, if the wrapper cells use multiple clock signals for wrapper operation, the cells will be
placed in separate wrapper chains, one chain for each clock used.

The set_scan_configuration -clock_mixing mix_clocks command allows
differently-clocked wrapper cells to be mixed in the same wrapper chain. Use the
-clock_mixing option of the set_scan_configuration command to mix wrapper cells
belonging to different clock domains on a wrapper chain. For example,

dc_shell> set_scan_configuration -clock_mixing mix_clocks

8�)�:
�

+

+

�
88�)�:

8

0 0 7&���

&%' &%'

5)+�����,
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-14

DFT Compiler Scan User Guide Version H-2013.03-SP4
The default for the -clock_mixing option is no_mix. In this case, DFT Compiler creates
separate wrapper chains for each of the wrapper clock domains. Lock-up latches are
inserted between wrapper cells that do not use the same clock.

By default, DFT Compiler creates two new ports, wrp_shift and wrp_clock, for the wrapper
clock and shift signals. If you have existing ports to use for these signals, you can use the
set_dft_signal command to define them:

dc_shell> set_dft_signal -view spec -type wrp_clock \
 -port port_name

dc_shell> set_dft_signal -view spec -type wrp_shift \
 -port port_name

DFT Compiler also creates any test-mode ports needed to provide the test-mode encodings
for the functional, scan, and wrapper modes. If you have existing ports to use for these
test-mode signals, you can use the set_dft_signal to define them as TestMode signals.

Reporting the Wrapper Cells
After you have configured your wrapper chain and wrapper cells, use the preview_dft
command with the -test_wrappers all option to preview the scan chain and wrapper
chain characteristics. Example 8-1 shows a wrapper chain preview report for a design.

Example 8-1 Preview Report of Shared I/O Registers

dc_shell> preview_dft -test_wrappers all
...
**
Test wrapper plan report
Design : coreJF
Version: 2004.12
Date : Wed Feb 2 12:00:12 2005
**

Number of designs to be wrapped : 1
MY_core

Number of Wrapper Interface ports : 5

port type port name
--------- ---------
WRP_CLOCK wrp_clock
WRP_CLOCK ck1
WRP_CLOCK ck2
WRP_SHIFT wrp_shift
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-15
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-15

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Note: Dedicated wrapper cells are grouped into a hierarchical instance
named:
"coreJF_Wrapper_inst" (Module name: "coreJF_Wrapper_inst_design")

Wrapper Length: 7

 Wrapper Wrapper Control Safe Wrapper
Index Port Function Cell Type Cell Impl Value Clock Cell Name
----- ---- -------- --------- ---- ---- ----- ------- ---------
6 A1 input WC_S1 - SWP - ck1 I1_reg
5 A2 input WC_D1 - SWP - wrp_clock A2_wrp0_8
4 A3 input WC_D1 - SWP - wrp_clock A3_wrp0_7
3 A4 input WC_D1 - SWP - wrp_clock A4_wrp0_6
2 Q1 output WC_S1 - SWP - ck1 Q1_reg
1 Q2 output WC_S1 - SWP - ck2 iQ2_reg
0 Q3 output WC_S1 - SWP - ck2 iQ3_reg

Number of ports not wrapped : 3
MAINT_PORT
ck1
ck2

Input and output wrapper chains as well as core scan chains are shown in the preview_dft
report. To see this information, run the following command:

dc_shell> preview_dft -show all -test_wrappers all

For all ports that have wrapper cells, the following information is reported:

• Index number of shared wrapper cells

• Port name

• Wrapper cell type: dedicated or shared

• Function of wrapper cell: input, output, three-state, or control

• Wrapper cell clock

• Wrapper cell instance names

After DFT is inserted with the insert_dft command, you can report both normal scan
chains and wrapper chains with the report_scan_path command. To report wrapper
chains, use the -test_mode option of the report_scan_path command to provide the
wrapper test-mode name. To list the available test modes, use the list_test_modes
command.
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-16

DFT Compiler Scan User Guide Version H-2013.03-SP4
Wrapper Signal Behavior
Table 8-1 describes the shift and capture behavior of the wrapper cells for the various test
modes.

Compressed scan modes, defined with the -usage scan_compression option, configure
the wrapper chain cells to operate in an inward-facing mode, just as the wrp_if mode does.

Standard scan modes, defined with the -usage scan option, configure dedicated wrapper
cells to be transparent and shared wrapper cells to be in functional mode. These modes are
not used for core-level testing; define and configure them only if core-level scan segments
are needed by a top-level test mode.

Separating Input and Output Wrapper Cells
By default, the simple wrapper mode inserts a wrapper chain with the following
characteristics:

• Input and output wrapper cells can be mixed on the same scan chain.

• Input and output wrapper cells share the same wrapper shift signal.

To prevent input and output wrapper cells from being mixed on the same scan chains, use
the -mix_cells false option of the set_wrapper_configuration command:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -mix_cells false

This command places the input and output wrapper cells in separate chains, but the wrapper
cells still share a common wrapper shift signal. To use separate shift signals for input and

Table 8-1 Test-Mode Behavior of Wrapper Cells in the Simple Core Wrapping Flow

Shift Capture
(inputs)

Capture
(outputs)

Safe control
(inputs)

Safe control
(outputs)

Mission mode 0 0 0 0 0

Standard scan 0 0 0 0 0

Compressed scan Sa

a. The default name for this wrapper signal is wrp_shift.

1 0 0 1

wrp_if S 1 0 0 1

wrp_of S 0 1 1 0

wrp_safe 0 0 0 1 1
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-17
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-17

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
output wrapper cells, define two signals as wrp_shift signals with the set_dft_signal
command, then specify them with the -input_shift_enable and -output_shift_enable
options of the set_wrapper_configuration command:

dc_shell> set_dft_signal -view spec \
 -type wrp_shift -port {wrp_ishift wrp_oshift}

dc_shell> set_wrapper_configuration -class core_wrapper \
 -mix_cells false \
 -input_shift_enable wrp_ishift \
 -output_shift_enable wrp_oshift

The wrp_ishift signal will be used as the wrapper shift signal for the input wrapper chain,
and the wrp_oshift signal will be used as the wrapper shift signal for the output wrapper
chain.

Wrapping Three-State and Bidirectional Ports
To prevent contention during core integration, three-state and bidirectional ports are
wrapped differently from regular input and output ports. The wrapper cells are inserted in
different locations.

For a three-state port, as shown in Figure 8-17, wrapper cells are added to the data-out and
enable paths of the tristate driver or pad cell connected to the port. When the enable path
wrapper cell asserts the tristate driver signal, the data-out path wrapper cell controls the
output port value; otherwise, the data-out path wrapper cell has no effect.

Figure 8-17 Three-State Port Wrapping

Specifying a safe state for a three-state port has no effect, because DFT Compiler
automatically inserts safe-value logic on the enable pin of the three-state driver to assert a
high-impedance safe state. The safe value applied to the tristate driver enable pin depends
on the sense (inverted or noninverted) of the enable pin.

For a bidirectional port, as shown in Figure 8-18, wrapper cells are added to the data-out
and enable paths as well as the data-in path of the bidirectional pad connected to the port.
When the enable path wrapper cell asserts the output enable value for the pad, the data-out
path controls the port; otherwise, the data-in path wrapper cell is controlled by the port.

output
wrapper cell

output
wrapper cell

Output
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-18

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 8-18 Bidirectional Port Wrapping

DFT Compiler applies a safe value specified for a bidirectional port to the output pin of the
three-state driver.

Degenerate three-state and bidirectional ports, in which the driver cell functionality is
simplified using constant values, are not wrapped.

Controlling Wrapper Chain Count and Length
You can use the set_scan_configuration -chain_count command to control the
number of scan chains and wrapper chains in the design:

dc_shell> set_scan_configuration -chain_count N

This command affects the chain counts as follows:

• In scan test modes, it specifies the number of scan chains.

• In wrapper test modes, it specifies the total number of chains, including both scan chains
and wrapper chains.

In each test mode, DFT Compiler balances the chains within the constraints of chain count,
clock mixing requirements, and other test constraints. In wrapper modes, DFT Compiler
determines the number of scan chains and wrapper chains that satisfies the total chain
count while achieving optimal chain balancing. Scan cells and wrapper cells cannot be
mixed on the same chain.

In wrapper modes, DFT Compiler chooses how many wrapper chains and scan chains to
create to satisfy the total chain count N. You can use the -chain_count option of the
set_wrapper_configuration command to directly specify the number of wrapper chains
created in wrapper modes:

dc_shell> set_scan_configuration -chain_count N ;# total chain count

dc_shell> set_wrapper_configuration -class core_wrapper \
 -chain_count W ;# wrapper chain count

output
wrapper cell

output
wrapper cell

input
wrapper cell

I/O
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-19
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-19

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
In this case, DFT Compiler creates W wrapper chains, then allocates the remaining (N – W)
chains to scan chains.

If no chain counts are specified, DFT Compiler builds the minimal number of scan chains in
each mode.

If clock mixing is not enabled with the set_scan_configuration -clock_mixing option,
separate wrapper chains are created for each wrapper clock used in the design, including
the dedicated wrapper clock used for any dedicated wrapper cells. To avoid making so many
wrapper chains, use one of the following techniques:

• Enable clock mixing with the set_scan_configuration -clock_mixing command.

• Use the dedicated wrapper clock for shared wrapper cells with the
-use_dedicated_wrapper_clock option of the set_wrapper_configuration or
set_boundary_cell command.

You can use the set_scan_configuration -max_length command to specify the
maximum length requirement of scan chains and wrapper chains in the design:

dc_shell> set_scan_configuration -max_length L

DFT Compiler then creates as many wrapper chains as necessary to keep the length of any
chain at or below the specified limit.

You can also use the set_wrapper_configuration -max_length command to apply a
maximum length requirement for only wrapper chains:

dc_shell> set_wrapper_configuration -class core_wrapper -max_length X

A wrapper-specific chain count or length specification, applied with the
set_wrapper_configuration command, takes precedence over a general chain count or
length specification, applied with the set_scan_configuration command. If a chain count
and chain length specification are both applied with the same command, the length
requirement is used and the count requirement is ignored.

Using the set_scan_path Command With Wrapper Chains
You can use the set_scan_path command to control detailed aspects of wrapper chain
construction. The following options are supported for wrapper chains:

set_scan_path
 -class wrapper scan_chain_name
 [-ordered_elements ordered_port_list]
 [-complete true | false]
 [-input_wrapper_cells_only enable | disable]
 [-output_wrapper_cells_only enable | disable]
 [-scan_enable se_port]
 [-test_mode test_mode_name]
 [-scan_data_in si_port]
 [-scan_data_out ordered_port_list]
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-20

DFT Compiler Scan User Guide Version H-2013.03-SP4
You must always specify the -class wrapper option when using set_scan_path to
configure wrapper chains.

You can use the -ordered_elements option to control the ordering of wrapper cells in the
wrapper chain. Provide an ordered list of ports, and DFT Compiler uses it to order the
corresponding wrapper cells according to the specification:

dc_shell> set_scan_path -class wrapper WC1 \
 -ordered_elements {C B A Z Y}

By default, DFT Compiler can add wrapper cells to the beginning of the specified chain. To
prevent this, specify the -complete true option. You cannot use multiple ordered list
specifications to add more wrapper cells to an already specified wrapper chain because the
last specification for a chain overwrites any previous specification. Wrapper cells cannot
belong to more than one chain, so if you specify a cell as belonging to more than one chain,
the last specification takes precedence.

As shown in Figure 8-18 on page 8-19, multiple wrapper cells are inserted for three-state
and bidirectional ports. You can reference these wrapper cells in the ordered list of ports by
appending /out, /en, or /in to the name of the bidirectional or three-state port. For example,
the following command specifies an ordering for ports named a, b, c, and d, where a is an
input port, b is a three-state port, and c and d are bidirectional ports.

dc_shell> set_scan_path Wchain0 -class wrapper \
 -ordered_elements [list A B/in B/out C/out \
 D/out B/en C/en D/en] -complete true \
 -test_mode test_mode_name

Note:
All of the wrapper cells for an individual three-state or bidirectional port must be in the
same wrapper chain. For example, you cannot specify that the enable wrapper cell and
output wrapper cell belong to different chains for a given port.

You can use the -scan_data_in and -scan_data_out options to specify the wrapper
scan-in or wrapper scan-out signals for a chain:

dc_shell> set_dft_signal -type ScanInData -port wsi
dc_shell> set_dft_signal -type ScanDataOut -port wso
dc_shell> set_scan_path -class wrapper WC2 \
 -ordered_elements [list A B C] \
 -scan_data_in wsi -scan_data_out wso

The following commands implement separate input and output wrapper chains with
separate wrapper shift signals using the set_scan_path command:

dc_shell> set_dft_signal -view spec \
 -type wrp_shift -port {wrp_ishift wrp_oshift}

dc_shell> set_scan_path -class wrapper WC_inputs \
 -input_wrapper_cells_only enable \
 -scan_enable wrp_ishift
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-21
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-21

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
dc_shell> set_scan_path -class wrapper WC_outputs \
 -output_wrapper_cells_only enable \
 -scan_enable wrp_oshift

A set_scan_path specification applied with the -class wrapper option and without the
-test_mode option applies to all wrapper modes. You can also explicitly specify the
-test_mode all option. To apply a set_scan_path specification to a specific wrapper
mode, you must predefine the wrapper mode before referencing it. For more information,
see “Creating User-Defined Wrapper Modes” on page 8-22.

For more information on the set_scan_path command, see the man page.

Creating User-Defined Wrapper Modes
DFT Compiler supports the definition of multiple user-defined wrapper modes. Use the
-usage option of the define_test_mode command to specify the wrapper mode for each
user-defined test mode:

dc_shell> define_test_mode MY_INTEST1 -usage wrp_if

dc_shell> define_test_mode MY_INTEST2 -usage wrp_if

dc_shell> define_test_mode MY_EXTEST1 -usage wrp_of

dc_shell> define_test_mode ...

You can then configure the characteristics of each wrapper mode by using the -test_mode
option of test configuration commands such as the set_scan_configuration and
set_wrapper_configuration commands. The set_boundary_cell command does not
support the -test_mode option.

To apply a test specification command to a specific wrapper mode using the -test_mode
option, you must define the wrapper mode before referencing the wrapper mode names:

dc_shell> define_test_mode wrp_if -usage wrp_if

dc_shell> define_test_mode wrp_of -usage wrp_of

dc_shell> set_wrapper_configuration -class core_wrapper \
 -chain_count 8 -test_mode wrp_if

dc_shell> set_wrapper_configuration -class core_wrapper \
 -max_length 40 -test_mode wrp_of

Note that only the following options of the set_wrapper_configuration command can be
used with the -test_mode option:

• -max_length

• -chain_count
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-22

DFT Compiler Scan User Guide Version H-2013.03-SP4
• -mix_cells

• -input_shift_enable

• -output_shift_enable

• -shift_enable

• -no_dedicated_wrapper_cells

For more information on defining test modes, see “Multiple Test Modes” on page 7-36.

DRC Rule Checks
You can perform DRC for the wrapper modes. To verify that the input wrapper chains shift in
wrp_if (INTEST) mode, use the following commands:

dc_shell> current_test_mode wrp_if

dc_shell> dft_drc

To verify that the output wrapper chains shift in wrp_of (EXTEST) mode, run the following
commands:

dc_shell> current_test_mode wrp_of

dc_shell> dft_drc

Multiple Voltage Domains
By default, dedicated wrapper cells are added to the top-level voltage domain. To have
dedicated wrapper cells added to voltage domains other than the top-level voltage domain,
use the following command:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -add_wrapper_cells_to_power_domains enable

When this option is enabled, no new wrapper chain hierarchical block is created to enclose
the dedicated wrapper cells. Wrapper cells are added according to the following rules:

• If the port is connected to an I/O register, the dedicated wrapper cell is added to the
top-level power-domain hierarchy of the I/O register.

• If the port is connected to a CTL model, the top-level power-domain hierarchy of the
instantiated CTL model is used as the location for the dedicated wrapper cell.

• If the port is connected to a gate, the top-level power-domain hierarchy of the gate is
used as the location for the dedicated wrapper cell.

• If none of these conditions apply, the cell is added to the top-level hierarchy.
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-23
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-23

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
SCANDEF Generation
SCANDEF generation is supported for input and output wrapper chains. Cells from input
wrapper chains are not allowed to be mixed with cells from other types of chains. Similarly,
cells from output wrapper chains are not allowed to be mixed with cells from other types of
chains.

Maximized Reuse Core Wrapping Flow
The simple core wrapping flow can add a number of dedicated wrapper cells when the
design ports are not directly connected to registers through simple buffering or inverting
logic. To reduce the number of added cells, the DFTMAX tool provides a maximized reuse
mode that can share existing functional registers that are accessible from the top-level ports
through combinational logic.

Figure 8-19 shows design registers, separated from their input or output ports by
combinational logic, that are replaced by shared wrapper cells when maximized reuse is
enabled.

Figure 8-19 Maximized Reuse Examples

Note:
The diagrams in this section show WC_S1 shared wrapper cell instances for clarity.
However, maximized reuse uses the in-place register implementation to ensure that the
names and locations of the wrapped functional registers are not disturbed.

Using existing functional registers as shared wrapper cells can reduce the area
requirements for core wrapping. However, the potential cost of using a shared wrapper cell
implementation is core testability; the combinational logic between the shared wrapper cell
and the ports is effectively placed outside the block as far as core wrapping logic is
concerned. This logic must be tested using the EXTEST wrapper mode that exercises the
surrounding logic.

The maximized reuse feature considers how many registers exist in the fanout from an input
port or the fanin to an output port. A single port might have many registers in its fanin or
fanout, which would require many shared wrapper cells to fully wrap the port. If the number

0

/

0

/
7&���

7&���

8 8

7&���
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-24

DFT Compiler Scan User Guide Version H-2013.03-SP4
of fanin or fanout registers for a port exceeds a reuse threshold value, a single dedicated
wrapper cell is used for that port.

Note:
A DFTMAX license is required to use the maximized reuse feature.

To enable the maximized reuse feature, use the following command:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -maximize_reuse enable -reuse_threshold N

where the value of N defines the reuse threshold. The default of N is 1.

With the -maximize_reuse option enabled, when the number of registers encountered from
an input or to an output exceeds the reuse threshold, a dedicated wrapper cell is added to
the port. If the number of registers is less than this threshold, the tool can use these registers
for wrapping the core. If a reuse threshold value of zero is specified, the tool converts all I/O
registers to shared wrapper cells. No dedicated wrapper cells are used unless specified by
the user. For more information on how the reuse threshold is computed, see “Computing
Reuse Threshold Values” on page 8-26.

The maximized reuse flow might result in a large number of shared wrapper cells, depending
on the number of combinationally connected I/O registers and the specified reuse threshold
value. To minimize area overhead, the maximized reuse flow uses an optimized shared
wrapper cell design without a feedback loop, as shown in Figure 8-20. Most of this wrapper
cell functionality is implemented by the internal data multiplexer in a scan-equivalent flip-flop.
The tool creates the wrapper test protocols to use the optimized wrapper cell structures.

Figure 8-20 WC_S1 and WC_S1_S Wrapper Cells in Maximized Reuse Flow

When the -maximize_reuse option is enabled, the tool sets the following options
automatically:

• -style shared

• -register_io_implementation in_place

• -mix_cells false

+

�
���

���

�#�����&

���

���

���

+

�

���

���

�#�����&

���

���

���

�

+

�
���-
�!�

�
�����&����

7&��� 7&�����
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-25
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-25

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Also, you should not use the following options of the set_wrapper_configuration
command with the -maximize_reuse option:

• -delay_test

• -core

• -shared_cell_type

• -shared_design_name

• -use_dedicated_wrapper_clock

Computing Reuse Threshold Values
When applying the reuse threshold value to a port, the tool determines the number of
registers associated with that port. If the number of registers for a port does not exceed the
reuse threshold, the registers are replaced with shared wrapper cells. If the number of
registers exceeds the reuse threshold, a dedicated wrapper cell is placed at the port.

For an input port, the tool determines the number of registers in the fanout of the port. In
addition, it includes any internal registers that feed data pins or synchronous set/reset pins
of the fanout registers. Figure 8-21 shows an input port with an associated register count of
three.

Figure 8-21 Input Port Register Count Computation Example

In this example, if the reuse threshold is set to a value of three or higher, the tool replaces
the registers with shared wrapper cells, as shown in Figure 8-22.

Figure 8-22 Input Port Registers After Wrapper Cell Replacement

The tool places the shared wrapper cells for the fanout registers in the input wrapper chain.
Because any internal registers feeding these fanout registers capture values from the core

0

1&"!������������

�����
����3��#�9�:�	

1&���&
��
��������

0

7&���

7&���

7&���
1&���&
��
��������
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-26

DFT Compiler Scan User Guide Version H-2013.03-SP4
logic instead of input ports, the tool places the shared wrapper cells for these internal
registers in the output wrapper chain.

In the maximized reuse flow, dedicated wrapper cells are added to input ports according to
the following rules:

• If the sum of the input fanout registers and the internal registers feeding them exceeds
the reuse threshold, then a dedicated wrapper cell is added to the input port.

• When the input register cells exceed the reuse threshold for a bidirectional port,
dedicated wrapper cells are added to the data-out, enable, and data-in paths.

• If an input port fans out to a CTL model and no netlist exists for that model, a dedicated
wrapper cell is added to the port.

• If an input port fans out to a CTL model, a netlist exists for that model, and the pin of the
CTL model connects internally to a register, a dedicated wrapper cell is added to the
port.

A warning is issued if all of the registers associated with an input port do not use the same
clock.

For an output port, the tool determines the number of registers in the fanin of the port. It does
not include any additional surrounding registers. Figure 8-23 shows an output port with an
associated register count of two.

Figure 8-23 Output Port Register Count Computation Example

In this example, if the reuse threshold is set to a value of two or higher, the tool replaces the
registers with shared wrapper cells, as shown in Figure 8-24.

Figure 8-24 Output Port Registers After Wrapper Cell Replacement

The tool places the shared wrapper cells for the fanin registers in the output wrapper chain.

9

$!�"!���������������;�:�

9

7&���

7&���
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-27
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-27

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
In the maximized reuse flow, dedicated wrapper cells are added to output ports according to
the following rules:

• If the sum of the output fanin registers exceeds the reuse threshold, then a dedicated
wrapper cell is added to the output port.

• When the number of the output register cells exceeds the reuse threshold value for a
three-state output port, dedicated wrapper cells are added to both data-out and enable
paths.

• If a port is driven by a CTL register and no netlist exists for the CTL model, a dedicated
wrapper cell is added to the port.

• If a port is driven by a CTL register when a netlist exists for the CTL model and if the pin
of the CTL model connects to a register inside the CTL model, then a dedicated wrapper
cell is added to the port.

• For three-state and bidirectional ports, only a functional register that directly controls the
pad is considered as a shared wrapper cell for the enable path of the pad. There can be
inverting or noninverting buffers between the register and the pad enable pin. If no such
register is found, a dedicated wrapper cell is added at the driver cell enable pin to control
the port.

A warning is issued if all of the registers associated with an output port do not use the same
clock.

If the same register is in the fanin or fanout of multiple ports, the register is replaced with a
shared wrapper cell if any port meets the threshold. In Figure 8-25, input port A has two
associated registers, and input port B has three associated registers. Register AB is in the
fanout of both ports.

Figure 8-25 Register in Fanout of Multiple Ports

In this example, if the reuse threshold is set to a value of two, the tool replaces the registers
for input port A with shared wrapper cells, and inserts a dedicated wrapper cell at input port

0

0�

/

0/

/�

/�

1&"!���������������<�9�:�

1&"!���������������<�=�:�	
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-28

DFT Compiler Scan User Guide Version H-2013.03-SP4
B, as shown in Figure 8-26. Register AB is replaced with a shared wrapper cell even though
it is also in the fanout of the dedicated wrapper cell for input port B.

Figure 8-26 Register in Fanout of Multiple Ports After Wrapper Cell Replacement

Registers that become shared wrapper cells for one port do not affect the associated
register count for other ports. In Figure 8-26, the associated register count for input port B is
three even though register AB is wrapped for input port A.

If a register is classified as both an input shared register and an output shared register, the
register becomes an input shared register and is removed from the output shared register
list. Unlike the simple core-wrapping flow, no dedicated wrapper cell is placed at the output
port.

A dedicated wrapper cell is added to an input port that drives the enable signal of a
clock-gating cell. In Figure 8-27, an integrated clock-gating cell has both a functional enable
pin and a test-mode pin. A dedicated wrapper cell is added for the functional enable signal
driven by input port CLKEN. No wrapper cells are inserted for the clock signal or the global
test-mode signal.

Figure 8-27 Integrated Clock Gating Cell Enable Signals

A warning message is issued if such a clock-gating enable signal is detected:

Warning: Port 'CLKEN' is connected to a clock gating cell 'UICG';
 a dedicated wrapper cell is added to the port. (TEST-1183)

No wrapper cell is added to a port that is bounded only by combinational logic unless you
explicitly specify a dedicated wrapper cell for that port. See Figure 8-28.

0

/
/�

/�

7&���

7&���

7&���

&%'

&%'-�
�- .*0.

*7

�&1 &%'

&%'-�
�- .*0.

*7

�&1

7&���
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-29
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-29

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 8-28 Combinational Feedthrough Paths

An information message is issued if a feedthrough port is detected and no dedicated
wrapper cell is manually specified for the port:

Information: No I/O registers are found for port 'B';
 not adding any dedicated wrapper cells to the port. (TEST-1180)
Information: No I/O registers are found for port 'Y';
 not adding any dedicated wrapper cells to the port. (TEST-1180)

Overriding the Reuse Threshold
The reuse threshold can be set on a port-by-port basis with the set_boundary_cell
command:

dc_shell> set_boundary_cell -class core_wrapper \
 -reuse_threshold N -ports {port_list}

This command sets the reuse threshold value to N (where N >= 0) for all ports in the
port_list specification.

To ignore the reuse threshold and force the use of a dedicated wrapper cell for one or more
ports, use the following command:

dc_shell> set_boundary_cell -class core_wrapper \
 -ports port_list -type WC_D1

If a port exceeds the reuse threshold and you want to manually specify some
port-associated registers as shared wrapper cells, use the following command:

dc_shell> set_boundary_cell -class core_wrapper \
 -include {IO_register_cell_list} -ports {port_name}

This command causes the cells listed in IO_register_cell_list associated with the port
port_name to be used as shared wrapper cells.

To manually specify some registers as shared wrapper cells for all associated ports that
exceed the reuse threshold, omit the -ports option:

dc_shell> set_boundary_cell -class core_wrapper \
 -include {IO_register_cell_list}

When using the -include option with the -ports option, any specified ports exceeding the
reuse threshold do not get a dedicated wrapper cell. When using the -include option

0

9
/

7&���
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-30

DFT Compiler Scan User Guide Version H-2013.03-SP4
without the -ports option, all ports associated with the specified registers exceeding the
reuse threshold do not get a dedicated wrapper cell. You can exceed the reuse threshold
when manually specifying shared wrapper cell registers with this option.

If a port meets the reuse threshold and you want to manually exclude some port-associated
registers as shared wrapper cells, use the following command:

dc_shell> set_boundary_cell -class core_wrapper
 -exclude {IO_register_cell_names} -ports {port_name}

This command causes the registers listed in IO_register_cell_names to be excluded for the
port port_name. If a register is excluded for the specified port but qualifies to be wrapped for
another port, the register is still wrapped.

To manually exclude some registers as shared wrapper cells for all associated ports that
meet the reuse threshold, omit the -ports option:

dc_shell> set_boundary_cell -class core_wrapper
 -exclude {threshold_value}

Note:
The -include and -exclude options of the set_boundary_cell command can cause
a port to become partially wrapped.

Applying a Combinational Depth Threshold
For a core-wrapped design, any logic that exists between the wrapper chain and the I/O
ports becomes logic that is external to the block for testing purposes. The
-reuse_threshold option of the set_wrapper_configuration command applies a
maximum fanout-breadth or fanin-breadth threshold limit for input and output shared
wrapper cells, respectively. However, this reuse threshold only indirectly limits the logic
depth that can exist outside the wrapper chain.

You can use the -depth_threshold option of the set_wrapper_configuration command
to directly specify the maximum number of combinational cells, including buffers and
inverters, that can exist between a port and its associated registers. For example,

dc_shell> set_wrapper_configuration -class core_wrapper \
 -depth_threshold 2

If this depth is exceeded, a dedicated wrapper cell is used for that port. This can be used to
prevent too much logic from being placed on the external side of the wrapper chain.

Figure 8-29 shows the wrapper cell insertion behavior when the -depth_threshold value
is set to 1.
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-31
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-31

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 8-29 Core Wrapping With a Combinational Depth Threshold Value of 1

Using Dedicated Wrapper Cells
Dedicated wrapper cells are used for any ports that exceed the reuse or combinational depth
thresholds. You can also manually force the use of a dedicated wrapper cell with the
following command:

dc_shell> set_boundary_cell -class core_wrapper \
 -ports port_list -type WC_D1

In the simple core-wrapping flow, dedicated wrapper cells use the dedicated wrapper clock.
In the maximized reuse flow, the tool attempts to identify the dominant clock domain
associated with the port and uses that clock for the dedicated wrapper cell.

The following rules guide the automatic selection of a clock for dedicated wrapper cells in the
maximized reuse flow:

• A port’s dedicated wrapper cell uses the same clock as the flip-flops associated with that
port.

• If the port is associated with flip-flops of multiple clock domains, the dominant clock is
used.

• If a dominant clock is not found, any user-specified wrapper clock, defined using the
set_dft_signal -type wrp_clock command, is used.

• If no user-specified wrapper clock has been defined, a dedicated wrapper clock is
created and used.

To specify that a particular clock, clock_name, is to be used for a specific dedicated wrapper
cell on a port, port_name, use the following command:

dc_shell> set_boundary_cell -class core_wrapper -type WC_D1 \
 -shift_clk clock_name -ports port_name

This specification overrides the automatic clock selection process. The specified clock can
belong to any part of the design hierarchy.

0 0
7&���

/
/ 7&���
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-32

DFT Compiler Scan User Guide Version H-2013.03-SP4
Previewing Shared Wrapper Cells
In the maximized reuse flow, the preview_dft command shows additional information
about how register reuse is applied.

The preview report uses annotations to indicate when a shared wrapper cell is associated
with multiple ports. Figure 8-30 shows a design to be core-wrapped in the maximized reuse
flow, and Example 8-2 shows the corresponding wrapper chain report from the
preview_dft command.

Figure 8-30 Design Example With Common Shared Wrapper Cells

Example 8-2 Wrapper Chain Preview Report with Common Shared Wrapper Cells

dc_shell> preview_dft -test_wrappers all
...
 Wrapper Wrapper Control Safe Wrapper
Index Port Function Cell Type Cell Impl Value Clock Cell Name
----- ---- -------- --------- ---- ---- ----- ------- ---------
 4 A input WC_S1 - INP - CLK FF2_reg
 4 B input WC_S1 INP - CLK FF2_reg(d)
 3 A input WC_S1 - INP - CLK FF1_reg
 3 B input WC_S1 INP - CLK FF1_reg(d)
 2 B input WC_S1 - INP - CLK FF3_reg
 2 Z output WC_S1 INP - CLK FF3_reg(*)
 1 B output WC_S1 - INP - CLK FF4_reg
 0 Y output WC_S1 - INP - CLK FF5_reg

Shared registers that are common to multiple input ports and multiple output ports are
shown with the letter d (d) for all subsequent entries after the first register entry; these
marked entries do not count against the total wrapped register count. Shared registers that
are common to both an input port and an output port but are used only as input wrapper cells
are shown with an asterisk (*) for the output port.

0
		�

		!

/
		#

9

8

		�

		"
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-33
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-33

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Note the following:

• FF1 and FF2 have duplicate entries because they are listed twice, one time for input port
A and one time for input port B. The duplicate entries are marked with the letter d (d).

• FF3 acts as both an input wrapper cell and as an output wrapper cell. After wrapping, it
is placed in the input wrapper chain; the output entry is marked as a duplicate entry with
an asterisk (*).

The preview report also indicates the reason why a dedicated wrapper cell is used at a port
instead of a shared wrapper cell. Figure 8-31 shows a design to be core-wrapped in the
maximized reuse flow, and Example 8-3 shows the corresponding wrapper chain report
from the preview_dft command.

Figure 8-31 Design Example With Dedicated Wrapper Cells

Example 8-3 Wrapper Chain Preview Report with Dedicated Wrapper Cells
dc_shell> preview_dft -test_wrappers all
...
Note: Dedicated wrapper cells are grouped into a hierarchical instance named:
"top_Wrapper_inst" (Module name: "top_Wrapper_inst_design")

Dedicated Wrapper
Cell Reason Description
----------------- -----------
TEST-1183 Port drives enable pin of clock-gating cell
TEST-1185 Number of I/O registers exceeds reuse threshold

Wrapper Length: 3

 Wrapper Wrapper
Index Port Function Cell Type ... Cell Name
----- ---- -------- --------- ---------
 2 A input WC_S1 FF1_reg
 1 EN input WC_D1 top_Wrapper_inst/top_EN_wrp0_1 (TEST-1183)
 0 Z output WC_D1 top_Wrapper_inst/top_Z_wrp0_0 (TEST-1185)

In the wrapper chain report, each port with a dedicated wrapper cell has a reason message
code indicating why the dedicated wrapper cell is used. A short description for each reason
is shown in a legend table before the report. For more information on a dedicated wrapper
cell reason, see the man page. For a complete list of dedicated wrapper cell reasons, see
SolvNet article 038531, “What Are the Reasons for Dedicated Wrapper Cells to Be
Inserted?”

0

-�

		�

8

		�
		!

		"
		#

	��

�

	��!

�&1

&%'
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-34

https://solvnet.synopsys.com/retrieve/038531.html
https://solvnet.synopsys.com/retrieve/038531.html

DFT Compiler Scan User Guide Version H-2013.03-SP4
Wrapper Signal Behavior
Table 8-2 describes the shift and capture behavior of the wrapper cells for the various test
modes. In the maximized reuse flow, dedicated wrapper cells use capture signals, but
shared wrapper cells have no capture signal.

The test modes operate as follows:

• Standard scan modes – Only core internal chains are active; the wrapper chain is
transparent.

• Compressed scan modes – Both wrapper chains and core internal chains are active;
they are all compressed by the scan compression codec.

• wrp_if – Both wrapper chains and core internal chains are active.

• wrp_of – Only wrapper chains are active; core internal chains are loaded with 0.

• wrp_safe – The safe values are driven from the core inputs into the core, and from the
core outputs into the surrounding logic.

Compressed scan modes, defined with the -usage scan_compression option, configure
the wrapper chain cells to operate in an inward-facing mode, just as the wrp_if mode does.

Standard scan modes, defined with the -usage scan option, configure dedicated wrapper
cells to be transparent and shared wrapper cells to be in functional mode. These modes are
not used for core-level testing; define and configure them only if core-level scan segments
are needed by a top-level test mode.

Table 8-2 Test-Mode Behavior of Wrapper Cells in the Maximized Reuse Flow

Shift
(inputs)

Shift
(outputs)

Capture
(inputs)

Capture
(outputs)

Safe
control
(inputs)

Safe
control
(outputs)

Mission mode Sa

a. The default name for this wrapper signal is wrp_shift.

S 0 0 0 0

Standard scan S S 0 0 0 0

Compressed scan 1 S 1 0 0 1

wrp_if 1 S 1 0 0 1

wrp_of S 1 0 1 1 0

wrp_safe S S 0 0 1 1
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-35
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-35

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Using the Pipelined Scan-Enable Feature
The pipelined scan-enable feature can be used in the maximized reuse flow. By default, two
signals are used to enable shifts for designs using wrapper cells:

• test_se – Pipelined, used for internal flip-flops

• wrp_shift – Pipelined, used for wrapper flip-flops (shared or dedicated)

When the pipelined scan-enable feature is enabled, pipelined scan-enable structures are
added to both of these signals. A pipelined scan-enable cell is used for each clock domain
used by the input and output wrapper cells, with pipeline registers clocked by that clock.
Pipelined scan-enable cells are not shared between input and output wrapper cells.

For example, if the design has two clock domains driving input wrapper cells and three clock
domains driving output wrapper cells and if the number of wrapper cells within each of these
domains meets the required pipeline fanout limit, a total of five pipelined scan-enable cells
are created. Two of the pipelined scan-enable cells drive input wrapper cells; the remaining
three pipelined scan-enable cells drive output wrapper cells. To create this pipelined
structure, use the following commands:

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration -class core_wrapper \
 -maximize_reuse enable

dc_shell> set_scan_configuration \
 -pipeline_scan_enable true -pipeline_fanout_limit P

To use the same scan-enable for all registers, define the signal as both a scan-enable signal
and a wrapper shift signal using the set_dft_signal command:

dc_shell> set_dft_signal -view spec -type ScanEnable -port SE

dc_shell> set_dft_signal -view spec -type wrp_shift -port SE

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration -class core_wrapper \
 -maximize_reuse enable

dc_shell> set_scan_configuration \
 -pipeline_scan_enable true -pipeline_fanout_limit P

In this case, pipelined scan-enable cells are not shared between internal cells, input wrapper
cells, or output wrapper cells.

To use separate scan-enables for input and output wrapper chains, use the following
commands:

dc_shell> set_dft_signal -view spec -type ScanEnable -port SE
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-36

DFT Compiler Scan User Guide Version H-2013.03-SP4
dc_shell> set_dft_signal -view spec -type wrp_shift -port WSE_I

dc_shell> set_dft_signal -view spec -type wrp_shift -port WSE_O

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration -class core_wrapper \
 -maximize_reuse enable \
 -input_shift_enable WSE_I -output_shift_enable WSE_O

dc_shell> set_scan_configuration \
 -pipeline_scan_enable true -pipeline_fanout_limit P

Note:
A single global_pipe_se signal is used for both internal and wrapper chains for all of
these scenarios.

For more information on the pipelined scan-enable feature, see “Pipelined Scan-Enable
Architecture” on page 7-34.

Low-Power Features
To minimize power consumption in wrp_of (EXTEST) mode, all core scan chain cells are
loaded with logic 0. This reduces toggle activity inside the block as clock pulses are issued
to test external logic. To accomplish this, the logic shown in Figure 8-32 drives the first scan
cell inputs of the internal scan chains.

Figure 8-32 Scan Data Gating Logic For Low-Power EXTEST

To add low-power clock gating to wrapper cells clocked by the dedicated wrapper clock, use
the following command:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -gate_dedicated_wrapper_cell_clk enable

The tool adds a clock-gating cell to the dedicated wrapper cell clock source so that the clock
is off when the wrapper cell is not in use, as shown in Figure 8-33. Shared wrapper cells
clocked by their preexisting functional clock signals are not affected.

��
����
�
��
��

� �
��
��

� �
��
��

�
-<�-��

0�
&��#
�&
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-37
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-37

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 8-33 Clock Gating Logic For Low-Power Dedicated Clock Operation

Low-power clock-gating logic for dedicated wrapper clocks uses discrete gating logic.

Hierarchical Core Wrapping
The hierarchical core wrapping feature can be used to build a core that contains only
wrapper and core chains, but does not contain any test control module (TCM) or wrapper
mode logic. This core can then be used at a higher level of integration with other wrapper
chains or compression architectures. This hierarchical wrapping feature is only available in
the maximized reuse flow.

To enable hierarchical wrapping, use the following commands:

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration -class core_wrapper \
 -maximize_reuse enable -hier_wrapping enable

By default, hierarchical wrapping is disabled.

When hierarchical wrapping is enabled, a single mode, Internal_scan, is created. This mode
creates both wrapper chains and core internal chains. In addition, the following core-level
input ports and signals are created:

• Three separate shift signals are created to control input wrapper chains, output wrapper
chains, and core internal chains.

• If safe states are specified, separate input and output safe control signals are created for
input and output wrapper cells.

• In the maximized reuse flow, shared wrapper cells do not use a capture signal. However,
if there are dedicated wrapper cells in the input and output wrapper chains, separate
input and output capture-enable signals are created for input and output wrapper cells.

By default, the tool creates these signals using default port and signal names. To use
existing placeholder ports for these signals instead, define them with the set_dft_signal
command by specifying the following signal types with the -type option:

• wrp_shift

• wrp_ded_capture_in

5)+���,

�������
�
�

7&���

7&���
=�����-���>�-<�-��
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-38

DFT Compiler Scan User Guide Version H-2013.03-SP4
• wrp_ded_capture_out

• wrp_safe_in

• wrp_safe_out

The test model generated after hierarchical wrapping includes attributes that identify input
and output wrapper chains, input and output wrapper scan-enable signals, input- and
output-dedicated safe control signals, and input- and output-dedicated wrapper
capture-enable ports.

Note:
Multiple test modes are not allowed at the core level when using hierarchical wrapping to
create the core.

After the core is created, to enable integration of hierarchically wrapped cores at a higher
level of the hierarchy, use the following commands:

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration -class core_wrapper \
 -maximize_reuse enable

During integration, the tool detects any hierarchical wrapped cores using the previously
stored test attributes. Wrapper cells are incrementally added as needed to augment
core-level wrapper capabilities, as shown in Figure 8-34. The tool creates the normal set of
wrapper test modes, selected by a test control module, according to user specifications. As
with typical wrapping flows, multiple test modes, including scan compression, are allowed at
this level.

Figure 8-34 Integrating Wrapper-Only Cores at a Higher Level

Core-level input wrapper chains are mixed with integration-level input wrapper cells, and
core-level output wrapper chains are mixed with integration-level output wrapper cells.
Core-level wrapper shift, capture, and safe control signals are connected to appropriate
integration-level wrapper logic.

Core-level wrapper chains can be integrated only one time. There is no support for recursive
wrapping flows that propagate wrapper capabilities up through multiple hierarchy levels.

&��-�

��(
7&��� 7&���

7&���

&��-�

7&��� 7&���

7&���

.�/

��
������

��
������
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-39
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-39

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Limitations of the Maximized Reuse Flow
Note the following limitations related to the behavior of the scan-enable signal in capture
mode:

• Preexisting scan-enable control of clock-gating cells

If the design has I/O registers controlled by clock-gating cells that are controlled by the
scan-enable port, these I/O registers might not shift during the capture mode operation
of the INTEST and EXTEST modes because scan-enable might not be active in capture
mode.

• Preexisting scan-enable control of set and reset

If the set or reset pins of the I/O registers are controlled by the scan-enable port, the I/O
registers might not shift during the capture mode of operation of the INTEST and
EXTEST modes because scan-enable might not be active in capture mode.

Delay Test Core Wrapping Flow
You can use the delay test core wrapping flow to insert a wrapper chain capable of applying
at-speed ATPG vectors to the wrapped core. To enable this flow, use the -delay_test
option of the set_wrapper_configuration command:

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration -class core_wrapper \
 -delay_test true

The delay test core wrapping flow is a variant of the simple core wrapping flow that uses the
same dedicated and shared wrapper cells, but it builds a different test controller. This test
controller configures the wrapper chains into the various modes required to perform
at-speed testing of the wrapped core and top-level logic surrounding the core using
transition patterns. Input and output wrapper cells are in the same chain, but they have
separate input and output shift and capture controls.

Note:
The delay test core wrapping is a legacy flow that is documented for completeness. For
best results, use the maximized reuse flow instead.

Wrapper Signal Behavior
In a delay-test wrapper insertion flow, two top-level control signals are created. These
signals are used as the shift and capture signals for the input and output wrapper cells in the
various test modes that are created. See Figure 8-35.
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-40

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 8-35 Decoding Logic for Delay Test Shift and Capture Signals

Table 8-3 describes the shift and capture behavior of the wrapper cells for the various test
modes.

Table 8-3 Test-Mode Behavior of Wrapper Cells in the Delay Test Core Wrapping
Flow

Shift
(inputs)

Shift
(outputs)

Capture
(inputs)

Capture
(outputs)

Safe
control
(inputs)

Safe
control
(outputs)

Mission mode 0 0 0 0 0 0

Standard scan 0 0 0 0 0 0

Compressed scan S1a

a. The default name for this wrapper signal is wrp_shift.

S1 ~S1 0 0 1

wrp_if S1 S1 ~S1 0 0 1

wrp_if_delay S1 S2b

b. The default name for this wrapper signal is wrp_shift1.

~S1 0 0 1

wrp_if_scl_delay S1 S2 ~S1 0 0 1

wrp_of S1 S1 0 ~S1 1 0

wrp_of_delay S1 S2 0 ~S2 1 0

wrp_of_scl_delay S1 S2 0 ~S2 1 0

wrp_safe 0 0 0 0 1 1

5)+��6�2

5)+��6�2
�

��
������

��
������

��
�����!

���
�����
������

����?�
��
���:����������
1&"!���#�������&
�
$!�"!���#�������&
�
1&"!���
"�!������&
�
$!�"!���
"�!������&
�
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-41
Chapter 8: Wrapping Cores
Core Wrapping Flows 8-41

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
The behaviors used in the INTEST modes (wrp_if*) are:

• Input chains shift in shift cycles and shift in capture cycles.

• Output chains shift in shift cycles and capture in capture cycles.

• Separate shift enable signals are used for input, output, and core chains.

• Modes are used for launch-on-last-shift transition ATPG for the wrapped core.

• Any specified safe values are driven at the core outputs.

The behaviors used in the EXTEST modes (wrp_of*) are:

• Wrapper chains are configured in EXTEST.

• Input chains shift in shift cycles and capture in capture cycles.

• Output chains shift in shift cycles and shift in capture cycles.

• Separate shift enable signals are used for input, output, and core chains.

• Modes are used for launch-on-last-shift transition ATPG of the wrapped core.

• Any specified safe values are driven at core inputs.

Creating User-Defined Core Wrapping Test Modes

Normally, when core wrapping is enabled, DFT Compiler creates a default set of core
wrapping test modes as described in “Core Wrapping Test Modes” on page 8-10. You can
also create user-defined test modes for wrapped cores using the define_test_mode
command.

Table 8-4 shows the test mode usage types you can specify with the -usage option of the
define_test_mode command. You can define one or more test modes for each usage.
When you define a test mode for a given usage, the default test mode is not created for that
usage.

Table 8-4 Test Mode Usage Types for Wrapped Cores

Test mode usage Test mode description Default test mode name

wrp_if Inward-facing uncompressed scan mode wrp_if

scan_compression Inward-facing compressed scan mode ScanCompression_mode

wrp_of Outward-facing uncompressed scan mode wrp_of

wrp_safe Safe mode wrp_safe
Chapter 8: Wrapping Cores
Creating User-Defined Core Wrapping Test Modes 8-42

DFT Compiler Scan User Guide Version H-2013.03-SP4
You can configure individual user-defined test modes using the -test_mode option of DFT
configuration commands. The -test_mode option cannot reference a default test mode
unless that mode name was explicitly defined with the define_test_mode command.

Example 8-4 defines a set of user-defined core wrapping test modes. The inward-facing
compressed scan mode, defined with -usage scan_compression, specifies the base mode
as the inward-facing uncompressed scan mode, defined with -usage wrp_if.

Example 8-4 User-Defined Core Wrapping Test Modes

define test modes
define_test_mode MY_INTEST -usage wrp_if
define_test_mode MY_INTEST_COMP -usage scan_compression
define_test_mode MY_EXTEST -usage wrp_of

configure scan modes
set_wrapper_configuration -test_mode MY_INTEST \
 -class core_wrapper -chain_count 1 -mix_cells true
set_scan_configuration -test_mode MY_INTEST \
 -chain_count 2 -clock_mixing mix_clocks \

set_wrapper_configuration -test_mode MY_EXTEST \
 -class core_wrapper -chain_count 2 -mix_cells false
set_scan_configuration -test_mode MY_EXTEST \
 -chain_count 2 -clock_mixing mix_clocks

set_scan_compression_configuration \
 -test_mode MY_INTEST_COMP -base_mode MY_INTEST \
 -chain_count 12

Wrapping Cores With Existing Scan Chains

To wrap a core that is already scan-stitched, you should use the scan-stitched core flow.
Figure 8-36 illustrates this flow.

scan Unwrapped standard scan mode Internal_scana

a. This default unwrapped test mode is not created when core wrapping is enabled; it can only be created for
a wrapped core by defining a user-defined test mode.

Table 8-4 Test Mode Usage Types for Wrapped Cores (Continued)

Test mode usage Test mode description Default test mode name
Chapter 8: Wrapping Cores
Wrapping Cores With Existing Scan Chains 8-43
Chapter 8: Wrapping Cores
Wrapping Cores With Existing Scan Chains 8-43

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 8-36 Scan-Stitched Core Flow Diagram

Start the flow with a CTL test model of the core. If you use a test model, DFT Compiler
cannot touch the scan logic in the model during wrapping.

1. Create an enclosing top-level hierarchy that instantiates the core.

Scan-stitched .ctlddc design

No

Yes

No

Yes

Yes

No

Next step

Configure wrapper

Design

Insert test wrapper

Select test mode

Create core hierarchy

OK?
rules

Preview
OK?

Generate report

Design

OK?
rules
Chapter 8: Wrapping Cores
Wrapping Cores With Existing Scan Chains 8-44

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 8-37 shows the hierarchy you should create. You must create an empty top-level
design with the same input and output pins as the core design, instantiate the test model
within the top-level design, and connect all of the input and output pins. You can also
include unconnected placeholder ports for wrapper signals in the top-level design.

You can use a text editor or an automated script to create a netlist file that accomplishes
this step.

Figure 8-37 Creating Core Hierarchy

2. Configure the core wrapper.

Use the set_dft_configuration -wrapper enable command to enable core
wrapping. If you do not issue this command, the other core wrapping commands will not
have any effect. To set the configuration for wrapping, use the
set_wrapper_configuration command. You can override the wrapper configuration
on any ports by using the set_boundary_cell command.

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration \
 -class core_wrapper -maximize_reuse true

3. Define the wrapper signals and configure the wrapper chains.

By default, control signals are added to the design to control the wrapper configuration.
To specify existing placeholder ports for these signals, use the set_dft_signal
command to specify the names and connections of these signals. These wrapper signals
must exist in the top-level design you previously created.

dc_shell> set_dft_signal -view spec \
 -type wrp_clock -port MY_wrp_clock

4. Configure the wrapper chain characteristics.

*����-��/�����
@�����/�����

0%0�*�/�����

����

��
���

��
����

&%'

*9�5)+�����,

>$�?0�=�..$7
/17�.*0�=�..$7
9�9?/�=�..$7

?0.7

�������
��������

���

@����

*����-�/17�.*0

>$�?0

&��-
��.��<�����

��(
Chapter 8: Wrapping Cores
Wrapping Cores With Existing Scan Chains 8-45
Chapter 8: Wrapping Cores
Wrapping Cores With Existing Scan Chains 8-45

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
You can use the set_wrapper_configuration and set_boundary_cell commands to
specify any wrapper chain characteristics. You can use the set_scan_path command to
specify the order of the wrapper cells.

dc_shell> set_wrapper_configuration -class core_wrapper \
 -chain_count 2

dc_shell> set_boundary_cell -class core_wrapper \
 -ports {CLKOUT} -type none

dc_shell> set_scan_path \
 -class wrapper WC0 \
 -ordered_elements [list ordered_port_list]

5. Check test design rules.

Use the dft_drc command to check test design rules.

dc_shell> create_test_protocol
dc_shell> dft_drc

6. Preview the wrapper and scan cells before inserting them.

Use the preview_dft command to report on the wrapper and scan cells before you
actually insert them.

dc_shell> preview_dft -test_wrappers all

7. Insert the wrapper cells.

Use the insert_dft command to insert the wrapper cells into the design and stitch the
wrapper chain.

dc_shell> insert_dft

8. (Optional) Select the test mode.

You should check the design rules for each test mode created. Use the
current_test_mode command to set the test mode to each of the modes of operation:

dc_shell> current_test_mode wrp_if

9. Check that the design is ready for ATPG by using the dft_drc command.

dc_shell> dft_drc

This verifies that the scan chains and wrapper cells operate correctly for the current test
mode. You can repeat this step for additional test modes.

Core Wrapping Scripts

The following script examples illustrate core wrapping.
Chapter 8: Wrapping Cores
Core Wrapping Scripts 8-46

DFT Compiler Scan User Guide Version H-2013.03-SP4
Core Wrapping With A Dedicated Wrapper
Example 8-5 wraps a core with a dedicated wrapper.

Example 8-5 Script Example for Dedicated Wrapper

read_ddc ddc/des_unit.ddc
current_design des_unit
uniquify
link

set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
 -port clk_st

Enable and configure wrapper client
set_dft_configuration -wrapper enable
set_wrapper_configuration -class core_wrapper \
 -style dedicated \
 -use_dedicated_wrapper_clock true \
 -safe_state 1

Set scan chain count as desired
set_scan_configuration -chain_count 10

Create the test protocol and run pre-drc
create_test_protocol
dft_drc -verbose

Report the configuration of the wrapper utility, optional
report_wrapper_configuration

Preview all test structures to be inserted
preview_dft -test_wrappers all
preview_dft -show all
report_dft_configuration

Run scan insertion and wrap the design
set_dft_insertion_configuration -synthesis_optimization none

insert_dft

current_test_mode Internal_scan
report_scan_path -view existing_dft -cell all \
 > reports/xg_wrap_dedicated_Internal_scan.rpt

current_test_mode wrp_of
report_scan_path -view existing_dft -cell all \
 > reports/xg_wrap_dedicated_wrp_of.rpt

current_test_mode wrp_if
report_scan_path -view existing_dft -cell all \
 > reports/xg_wrap_dedicated_wrp_if.rpt
Chapter 8: Wrapping Cores
Core Wrapping Scripts 8-47
Chapter 8: Wrapping Cores
Core Wrapping Scripts 8-47

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
report_dft_signal -view existing_dft -port *

report_area

change_names -rules verilog -hierarchy

write -format ddc -hierarchy -output ddc/scan.ddc
write -format verilog -hierarchy -output vg/scan_wrap.vg
write_test_model -output ddc/des_unit.scan.ctlddc
write_test_protocol -test_mode Internal_scan \
 -output stil/Internal_scan.spf
write_test_protocol -test_mode wrp_if \
 -output stil/wrp_if.spf
write_test_protocol -test_mode wrp_of \
 -output stil/wrp_of.spf

Core Wrapping With A Shared Wrapper
Example 8-6 wraps a core with a shared wrapper.

Example 8-6 Script Example for Shared Wrapping

read_ddc ddc/des_unit.ddc
current_design des_unit
uniquify
link

set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
 -port clk_st

Enable and configure wrapper client
set_dft_configuration -wrapper enable

Configure for shared wrappers, using existing cells and create glue
logic around existing cells
set_wrapper_configuration -class core_wrapper \
 -style shared \
 -shared_cell_type WC_S1 \
 -use_dedicated_wrapper_clock true \
 -safe_state 1 \
 -register_io_implementation in_place

Set scan chain count as desired
set_scan_configuration -chain_count 10

Create the test protocol and run pre-drc
create_test_protocol
dft_drc -verbose

Report the configuration of the wrapper utility, optional
report_wrapper_configuration
Chapter 8: Wrapping Cores
Core Wrapping Scripts 8-48

DFT Compiler Scan User Guide Version H-2013.03-SP4
Preview all test structures to be inserted
preview_dft -test_wrappers all
preview_dft -show all
report_dft_configuration

Run scan insertion and wrap the design
set_dft_insertion_configuration -synthesis_optimization none

insert_dft

current_test_mode Internal_scan
report_scan_path -view existing_dft -cell all \
 > reports/xg_wrap_dedicated_Internal_scan.rpt

current_test_mode wrp_of
report_scan_path -view existing_dft -cell all \
 > reports/xg_wrap_dedicated_wrp_of.rpt

current_test_mode wrp_if
report_scan_path -view existing_dft -cell all \
 > reports/xg_wrap_dedicated_wrp_if.rpt

report_dft_signal -view existing_dft -port *

report_area

change_names -rules verilog -hierarchy

write -format ddc -hierarchy -output ddc/scan.ddc
write -format verilog -hierarchy -output vg/scan_wrap.vg
write_test_model -output ddc/des_unit.scan.ctlddc
write_test_protocol -test_mode Internal_scan \
 -output stil/Internal_scan.spf
write_test_protocol -test_mode wrp_if \
 -output stil/wrp_if.spf
write_test_protocol -test_mode wrp_of \
 -output stil/wrp_of.spf

Core Wrapping With A Delay Test Wrapper
Example 8-7 wraps a core with a dedicated delay wrapper.

Example 8-7 Script Example for Dedicated Delay Wrapping

read_ddc ddc/des_unit.ddc
current_design des_unit
uniquify
link

set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
 -port clk_st
Chapter 8: Wrapping Cores
Core Wrapping Scripts 8-49
Chapter 8: Wrapping Cores
Core Wrapping Scripts 8-49

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Enable and configure wrapper client
set_dft_configuration -wrapper enable
set_wrapper_configuration -class core_wrapper \
 -style dedicated \
 -use_dedicated_wrapper_clock true \
 -safe_state 1 \
 -delay_test true
Set scan chain count as desired
set_scan_configuration -chain_count 10

Create the test protocol and run pre-drc
create_test_protocol
dft_drc -verbose

Report the configuration of the wrapper utility, optional
report_wrapper_configuration

Preview all test structures to be inserted
preview_dft -test_wrappers all
preview_dft -show all
report_dft_configuration

Run scan insertion and wrap the design
set_dft_insertion_configuration -synthesis_optimization none

insert_dft

current_test_mode Internal_scan

report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_Internal_scan.rpt

current_test_mode wrp_of
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_wrp_of.rpt

current_test_mode wrp_of_delay
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_wrp_of_delay.rpt

current_test_mode wrp_of_scl_delay
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_wrp_of_scl_delay.rpt

current_test_mode wrp_if
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_wrp_if.rpt

current_test_mode wrp_if_delay
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_wrp_if_delay.rpt
Chapter 8: Wrapping Cores
Core Wrapping Scripts 8-50

DFT Compiler Scan User Guide Version H-2013.03-SP4
current_test_mode wrp_if_scl_delay
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_wrp_if_scl_delay.rpt

report_dft_signal -view existing_dft -port *
report_area

change_names -rules verilog -hierarchy

write -format ddc -hierarchy -output ddc/scan.ddc
write -format verilog -hierarchy -output vg/scan_wrap.vg
write_test_model -output ddc/des_unit.scan.ctlddc
write_test_protocol -test_mode Internal_scan \
 -output stil/Internal_scan.spf
write_test_protocol -test_mode wrp_if \
 -output stil/wrp_if.spf
write_test_protocol -test_mode wrp_if_delay \
 -output stil/wrp_if_delay.spf
write_test_protocol -test_mode wrp_if_scl_delay \
 -output stil/wrp_if_scl_delay.spf
write_test_protocol -test_mode wrp_of \
 -output stil/wrp_of.spf
write_test_protocol -test_mode wrp_of_delay \
 -output stil/wrp_of_delay.spf
write_test_protocol -test_mode wrp_of_scl_delay \
 -output stil/wrp_of_scl_delay.spf

Core Wrapping With Shared Delay Wrapper
Example 8-8 wraps a core with a shared delay wrapper.

Example 8-8 Script Example for Shared Delay Wrapping

read_ddc ddc/des_unit.ddc
current_design des_unit
uniquify
link

set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
 -port clk_st

enable and configure wrapper client
set_dft_configuration -wrapper enable

Configure for shared wrappers, using existing cells and create glue
logic around existing cells
set_wrapper_configuration -class core_wrapper \
 -style shared \
 -shared_cell_type WC_S1 \
 -use_dedicated_wrapper_clock true \
 -safe_state 1 \
 -register_io_implementation in_place \
Chapter 8: Wrapping Cores
Core Wrapping Scripts 8-51
Chapter 8: Wrapping Cores
Core Wrapping Scripts 8-51

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
 -delay_test true

Set scan chain count as desired
set_scan_configuration -chain_count 10

Create the test protocol and run pre-drc
create_test_protocol
dft_drc -verbose

Report the configuration of the wrapper utility, optional
report_wrapper_configuration

Preview all test structures to be inserted
preview_dft -test_wrappers all
preview_dft -show all
report_dft_configuration

Run scan insertion and wrap the design
set_dft_insertion_configuration -synthesis_optimization none
insert_dft

current_test_mode Internal_scan

report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_Internal_scan.rpt

current_test_mode wrp_of
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_wrp_of.rpt

current_test_mode wrp_of_delay
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_wrp_of_delay.rpt

current_test_mode wrp_of_scl_delay
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_wrp_of_scl_delay.rpt

current_test_mode wrp_if
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_wrp_if.rpt

current_test_mode wrp_if_delay
report_scan_path -view existing_dft -cell all > \
 reports/
 xg_wrap_dedicated_delay_path_wrp_if_delay.rpt

current_test_mode wrp_if_scl_delay
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_wrp_if_scl_delay.rpt
report_dft_signal -view existing_dft -port *
report_area
change_names -rules verilog -hierarchy
Chapter 8: Wrapping Cores
Core Wrapping Scripts 8-52

DFT Compiler Scan User Guide Version H-2013.03-SP4
write -format ddc -hierarchy -output ddc/scan.ddc
write -format verilog -hierarchy -output vg/scan_wrap.vg
write_test_model -output ddc/des_unit.scan.ctlddc
write_test_protocol -test_mode Internal_scan \
 -output stil/Internal_scan.spf
write_test_protocol -test_mode wrp_if_delay \
 -output stil/wrp_if_delay.spf
write_test_protocol -test_mode wrp_if_scl_delay \
 -output stil/wrp_if_scl_delay.spf
write_test_protocol -test_mode wrp_if \
 -output stil/wrp_if.spf
write_test_protocol -test_mode wrp_of \
 -output stil/wrp_of.spf
write_test_protocol -test_mode wrp_of_delay \
 -output stil/wrp_of_delay.spf
write_test_protocol -test_mode wrp_of_scl_delay \
 -output stil/wrp_of_scl_delay.spf
Chapter 8: Wrapping Cores
Core Wrapping Scripts 8-53
Chapter 8: Wrapping Cores
Core Wrapping Scripts 8-53

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Chapter 8: Wrapping Cores
Core Wrapping Scripts 8-54

9
On-Chip Clocking Support 9

On-Chip Clocking (OCC) support is common to all scan ATPG (Basic-Scan and
Fast-Sequential) and adaptive scan environments. This implementation is intended for
designs that require ATPG in the presence of phase-locked loop (PLL) and clock controller
circuitry.

OCC support includes phase-locked loops, clock shapers, clock dividers and multipliers and
so on. In the scan-ATPG environment, scan chain load_unload is controlled through an
automatic test equipment (ATE) clock. However, internal clock signals that reach state
elements during capture are PLL-related.

OCC flows can use either the user-defined clock controller and clock chains or the
DFT-inserted OCC clock controller. If you use an existing user-defined clock controller, you
would need a set of user-defined commands to identify the existing clock controller outputs
with their corresponding clock chain control bits.

This chapter includes the following sections:

• Background

• Supported DFT Flows

• Clock Type Definitions

• Capabilities

• OCC Controller Types

• Enabling On-Chip Clocking Support

9-1

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
• OCC Flows

• Reporting Clock Controller Information

• DRC Support

• DFT-Inserted OCC Controller Configurations

• Waveform and Capture Cycle Example

• Limitations

Note:
This chapter covers flows that are intended for a DFT-to-TetraMAX implementation. For
information on using OCC controllers in a non-DFT-to-TetraMAX implementation, see the
TetraMAX Online Help.
Chapter 9: On-Chip Clocking Support
9-2

DFT Compiler Scan User Guide Version H-2013.03-SP4
Background

At-speed testing for deep-submicron defects requires not only more complex fault models
for ATPG and fault simulation, such as transition faults and path delay faults, but also
requires the accurate application of two high-speed clock pulses to apply the tests for these
fault models. The time delay between these two clock pulses, referred to as the launch clock
and the capture clock, is the effective cycle time at which the circuit will be tested.

A key benefit of scan-based at-speed testing is that only the launch clock and the capture
clock need to operate at the full frequency of the device under test. Scan shift clocks and
shift data can operate at a much slower speed, thus reducing the performance requirements
of the test equipment. However, complex designs often have many different high-frequency
clock domains, and the requirement to deliver a precise launch and capture clock for each
of these from the tester can add significant or prohibitive costs to the test equipment.
Furthermore, special tuning is often required for properly controlling the clock skew to the
device under test.

One common alternative for at-speed testing is to leverage existing on-chip clock generation
circuitry. This approach uses the active controller, rather than off-chip clocks from the tester,
to generate the high-speed launch and capture clock pulses. This type of approach
generally reduces tester requirements and cost and can also provide high-speed clock
pulses from the same source as the device in its normal operating mode without additional
skews from the test equipment or test fixtures.

When using this approach, additional on-chip controller circuitry is inserted to control the
on-chip clocks in test mode. The on-chip clock control is then verified, and at-speed test
patterns are generated that apply clocks through proper control sequences to the on-chip
clock circuitry and test-mode controls. The DFT Compiler and TetraMAX tools support a
comprehensive set of features to ensure that

• The test-mode control logic for the OCC controller operates correctly and has been
connected properly

• Test-mode clocks from the OCC circuitry can be efficiently used by TetraMAX ATPG for
at-speed test generation

• OCC circuitry can operate asynchronously to other shift clocks from the tester

• TetraMAX patterns do not require additional modifications to use the OCC and to run
properly on the tester
Chapter 9: On-Chip Clocking Support
Background 9-3
Chapter 9: On-Chip Clocking Support
Background 9-3

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Supported DFT Flows

On-chip clocking (OCC) is supported in the following DFT flows:

• Basic scan flow

• Top-down, nonhierarchical adaptive scan insertion flow

• Bottom-up basic scan flow with OCC controller stitching at the top level

• Bottom-up hierarchical adaptive scan synthesis flow, which represents subblocks with
test models that are OCC controller stitched at the top level

• Hierarchical adaptive scan synthesis (HASS) and Hybrid flows, which stitch the cores at
the top level with integration at the top level

Clock Type Definitions

Note the following clock definitions as they apply to OCC controller clocks in this chapter.
Figure 9-1 shows an example of each clock type.

• Reference clock – The frequency reference to the phase-locked loop (PLL). It must be
maintained as a constantly pulsing and free-running oscillator, or the circuitry will lose
synchronization.

• PLL clock – The output of the PLL. It is also a free-running source that runs at a constant
frequency that might or might not be the same as the reference clock.

• ATE clock – Shifts the scan chain, typically more slowly than a reference clock. This
signal must preexist, or you must manually add this signal (that is, port) when inserting
the OCC. The period for this clock is determined by the test_default_period variable.
Usually the ATE clock is not used as a reference clock, but it must be treated as a
free-running oscillator so that it does not capture predictable data while the OCC
controller generates at-speed clock pulses. The ATE clock is called a dual clock signal
when the same port drives both the ATE clock and the reference clock.

• Internal clock – The OCC controller is responsible for gating and selecting between the
PLL and ATE clocks, thus creating the internal clock signal to satisfy ATPG requirements.

• External clock – A primary clock input of a design that directly clocks flip-flops through
the combinational logic, without the use of a PLL clock. The period for this clock is
determined by the test_default_period variable.
Chapter 9: On-Chip Clocking Support
Supported DFT Flows 9-4

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 9-1 Clock Types Used in the OCC Controller Flow

Capabilities

The following OCC features are available:

• Synthesis of individual or multiple clock controllers and clock chains, using the
DFT-inserted OCC controller

• Support of pre-DFT DRC, scan chain stitching, and post-DFT DRC in documented OCC
support flows

• Support of a PLL-bypass configuration when an external (ATE) clock is used for capture,
thus bypassing the PLL clock(s)

• Generation of STIL procedure files with internal clock control details for use with the
TetraMAX tool

• Support of post-DFT DRC, scan chain shifting, and adaptive scan

• Support of user-defined clock controller logic and clock chains that are already
instantiated in the design

(%%
?�����&�������� %��������

$�� ��&��
���
�&���&
�������

9.*������

�&&
&��
)����)

*2���&
�������

��+/>@�

�)+/>@� �	++/>@�

��+/>@�

��+/>@��#���A
	++/>@��
"�!���
Chapter 9: On-Chip Clocking Support
Capabilities 9-5
Chapter 9: On-Chip Clocking Support
Capabilities 9-5

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
OCC Controller Structure and Operation

OCC controller types and operation is covered in the following sections:

• OCC Controller Types

• OCC Controller Signal Operation

• Logic Representation of an OCC Controller

• Scan-Enable Signal Requirements for OCC Controller Operation

OCC Controller Types
You can use DFT-inserted or user-defined OCC controllers, as described in the following
flows:

• DFT-Inserted OCC Controller Flow

The insert_dft command performs insertion and synthesis of a DFT-inserted OCC
controller and clock chain. The OCC controller design is validated and incorporated into
the resulting test protocol. This flow is shown in Figure 9-2.

Figure 9-2 OCC and Clock Chain Synthesis Insertion Flow

������� 4��

4��

4��

4��

4��

4��

4��

"������
"�����

"�����	

���$�

���$	
���1

(%%

���$

�������
"������
"�����

"�����	

���$�

���$	
���1

(%%

���$

�	�;����)
��
�&&

���
)����)

4��

4��

4��

4��

4��

4��

4��

4��

��
��,�
��
��,�
��
��,!

&���,��6���
��
����

��
����

��
���!

�
����,
+���.?+���

��
���

��
�����
����)���

��
����

��
����

��
���!

%�������"�
Chapter 9: On-Chip Clocking Support
OCC Controller Structure and Operation 9-6

DFT Compiler Scan User Guide Version H-2013.03-SP4
• Existing User-Defined OCC Controller Flow

An existing user-defined OCC controller and clock chain is described to DFT Compiler
using the set_dft_signal command. The OCC controller design is validated and
incorporated into the resulting DFT logic and test protocol. This flow is shown in
Figure 9-3.

Figure 9-3 User-Defined Clock Controller and Clock Chain Flow

OCC Controller Signal Operation
For Figure 9-2 on page 9-6 and Figure 9-3 on page 9-7, note the following:

• The reference clock (refclk1) is always free-running. It is used as a test default
frequency input to the PLL.

�������
"������
"�����

"�����	

���$�

���$	
���1

(%%

���$

���);��2����
�&&

���
)����)

4��

4��

4��

4��

4��

4��

4��

4��

�&�����
�&����

�&����	

��������
�������

�������	

������
"���,�"
��

�������
�����<���
���������

��
����

��
����

��
���!

%�������"�

�������
"������
"�����

"�����	

���$�

���$	
���1

(%%

���$

���);��2����
�&&

���
)����)

4��

4��

4��

4��

4��

4��

4��

4��

�&�����
�&����

�&����	

&���,��6���

������
"���,�"
��

�������
�����<���
���������

&���,��6���
Chapter 9: On-Chip Clocking Support
OCC Controller Structure and Operation 9-7
Chapter 9: On-Chip Clocking Support
OCC Controller Structure and Operation 9-7

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
• The PLL clocks (pllclk1, pllclk2, and pllclk3) are free-running clock outputs from
the on-chip clock generator; they can be divided, shaped, or multiplied. They are used for
the launch and capture of internal scanable elements that become internal clocks.

• The ATE clock (ATEclk) shifts the scan chain per tester specifications. Each PLL might
have its own ATE clock.

See “Waveform and Capture Cycle Example” on page 9-36 for a waveform diagram that
demonstrates the relationship between the various clocks.

• The OCC controller (occ_int) serves as an interface between the on-chip clock generator
and internal scan chains. This logic typically contains clock multiplexing logic that allows
internal clocks to switch from a slow ATE clock during shift to a fast PLL clock during
capture.

• Internal clocks (intclk1, intclk2, and intclk3) are outputs of the PLL control logic
driving the scan cells. Each internal clock is controlled or enabled by the clock chain and
is connected to the sequential elements within the design.

• The OCC Bypass signal (piX) allows connection of the ATE clock signal directly to the
internal clock signals, thus bypassing the PLL clocks.

• The ScanEnable signal (piE) enables switching between the ATE shift clock and output
PLL clock signals. ScanEnable must be inactive during every capture procedure, as
described in “Scan-Enable Signal Requirements for OCC Controller Operation” on
page 9-10. You can use individual ScanEnable signals for each PLL clock signal.

• The TestMode signal (pi1) must be active in order for the circuit to work.

• The OCC Reset (pi2) is used during test setup and initialization.

• The clock chain is a scan chain segment of one or more scan cells. This chain allows for
a per-pattern clock selection mechanism by ATPG. Clock selection values are loaded
into the clock chain as part of the regular scan load process.

Note the following:

❍ The clock chain is clocked by the falling edge of the internal clock.

❍ For standard scan designs, the clock chain can be a dedicated scan chain or a
segment within a scan chain.

❍ For compressed scan designs, the clock chain can be a dedicated uncompressed
scan chain or a segment within a compressed scan chain. For more information, see
the “Scan Compression and OCC Controllers” section in Chapter 2, “Using Adaptive
Scan Technology,” in the DFTMAX Compression User Guide.

DFT Compiler inserts the OCC controller and clock chain and then gates each clock
controller output to a corresponding internal clock.
Chapter 9: On-Chip Clocking Support
OCC Controller Structure and Operation 9-8

DFT Compiler Scan User Guide Version H-2013.03-SP4
In Figure 9-3 on page 9-7, you first need to instantiate any user-defined blocks used as a
clock controller or clock chain in the design. When you do this,

• Ensure that the global and clock signals of the user-defined block are connected to the
rest of the design.

• Confirm that connections exist for the internal and external clocks, the reset and mode
signals of a clock controller, and the clock signals to a clock chain. This enables the block
to be controlled from the top level in the pre-DFT netlist.

Note:
In this design, the clock chains that provide access to clock control bits are embedded
within the clock controller, but they could exist as a separate block also.

You can insert and validate the clock controller cells in the RTL, choose a preferred
synthesis flow, and then run DFT Compiler with a gate-level netlist.

Logic Representation of an OCC Controller
Figure 9-4 shows the logic structure of an OCC controller and clock chain.

Figure 9-4 Logic Representation of an OCC Controller

An OCC controller is designed to deliver up to a user-specified number N of at-speed clock
pulse cycles during capture. A PLL cycle counter generates N successive one-hot enable

+�����,

�
����,

��
���
+���.?+���

��
�����

$&� #���
%���������
��!&���

	
 �

�

	

"����&

+

�
�

+

�������#
�&

�&�����

$�����&�������

Note: This is a logic view, not a functional implementation.
Chapter 9: On-Chip Clocking Support
OCC Controller Structure and Operation 9-9
Chapter 9: On-Chip Clocking Support
OCC Controller Structure and Operation 9-9

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
signals, each of which is gated by the output of a clock chain scan cell. This logic structure
provides ATPG with the flexibility to control which cycles deliver an at-speed clock pulse. For
an OCC controller that handles multiple OCC generators, the clock chain contains a set of
N scan cells for each clock.

Note that the figure shows the conceptual operation of an OCC controller. Implementation
details, such as cleanly switching between the PLL clock and ATE clock, are not shown.

For more information about the logic structure and operation of the DFT-inserted OCC
controller, see SolvNet article 034274, “DFT-inserted OCC Controller Data Sheet”.

Scan-Enable Signal Requirements for OCC Controller Operation
The scan-enable signal switches the OCC controller between the ATE shift clock and output
PLL clock signals. Therefore, for proper operation, the scan-enable signal must be held in
the inactive state in all capture procedures.

If you use the STIL procedure file created by the tool, the protocol already meets this
requirement. The tool constrains all scan-enable signals to the inactive state in the capture
procedures, excluding any scan-enable signals defined with the -usage clock_gating
option of the set_dft_signal command.

If you use a custom STIL procedure file, make sure that all scan-enable signals used by
OCC controllers are constrained to the inactive state in all capture procedures.

Enabling On-Chip Clocking Support

To enable OCC support, use the -clock_controller option of the
set_dft_configuration command, as shown in the following example:

dc_shell> set_dft_configuration \
 -clock_controller enable

OCC Flows

This section covers the following OCC flows in DFT Compiler:

• DFT-Inserted OCC Controller Flow

• Existing User-Defined OCC Controller Flow

• Hierarchical On-Chip Clocking Flow
Chapter 9: On-Chip Clocking Support
Enabling On-Chip Clocking Support 9-10

https://solvnet.synopsys.com/retrieve/034274.html

DFT Compiler Scan User Guide Version H-2013.03-SP4
DFT-Inserted OCC Controller Flow
If you have a design that contains an OCC generator, such as a PLL, but not an OCC
controller and clock chain, DFT Compiler can insert both the OCC controller and clock chain.
Note that this clock controller design supports only one ATE clock per OCC controller. This
section describes the flow associated with this type of implementation.

The PLL clock is expected to already be connected in the design being run through this flow.
DFT Compiler will disconnect this PLL clock at the hookup location and insert the newly
synthesized clock controller at this location.

This section has the following subsections:

• Defining Clocks

• Defining Global Signals

• Configuring the OCC Controller

• Specifying Scan Configuration

• Performing Timing Analysis

• Script Example

Defining Clocks
You need to define the reference, PLL, and ATE clocks by using the set_dft_signal
command. Note that this command does not require you to specify the primary inputs.

This section has the following subsections:

• Reference Clocks

• PLL-Generated Clocks

• ATE Clocks

Reference Clocks

The following example shows how to define a PLL reference clock that has the same period
as the test_default_period variable (assumed to be 100 ns).

dc_shell> set_dft_signal -view existing_dft \
 -type MasterClock -port my_clock \
 -timing [list 45 55]

dc_shell> set_dft_signal -view existing_dft \
 -type refclock -port my_clock \
 -period 100 -timing [list 45 55]
Chapter 9: On-Chip Clocking Support
OCC Flows 9-11
Chapter 9: On-Chip Clocking Support
OCC Flows 9-11

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Note that you only need to define the reference clock with signal type MasterClock when
the reference clock has the same period as the test_default_period variable. Otherwise,
this signal definition is not needed and not accepted.

To define a reference clock that has a period other than the test_default_period, use the
following command:

dc_shell> set_dft_signal -view existing_dft \
 -type refclock -port my_clock \
 -period 10 -timing [list 3 8]

Note:
When the reference clock period differs from the test_default_period, do not define
the signal as any signal type other than refclock.

Also note the following caveats associated with the test_default_period when defining a
reference clock:

• If the reference clock period is an integer divisor of the test_default_period, then
patterns can be written in a variety of formats, including STIL, STIL99, and WGL.

• If the reference clock is not an integer divisor to the test_default_period, the only
format that can be written in a completely correct way is STIL. Other formats, including
STIL99, cannot include the reference clock pulses, and a warning is printed, indicating
that these pulses must be added back to the patterns manually.

• Do not define a reference clock period or timings with resolution finer than 1 picosecond.
The TetraMAX tool cannot work with finer timing resolutions.

PLL-Generated Clocks

For DFT Compiler to correctly insert the OCC, you must define the PLL-generated clocks as
well as the point at which they are generated. The following examples show how to define a
set of launch and capture clocks for internal scannable elements controlled by the OCC
controller:

dc_shell> set_dft_signal
 -type Oscillator \
 -hookup_pin PLL/pllclk1 \
 -view existing_dft

dc_shell> set_dft_signal
 -type Oscillator \
 -hookup_pin PLL/pllclk2 \
 -view existing_dft

dc_shell> set_dft_signal
 -type Oscillator \
 -hookup_pin PLL/pllclk3 \
 -view existing_dft
Chapter 9: On-Chip Clocking Support
OCC Flows 9-12

DFT Compiler Scan User Guide Version H-2013.03-SP4
ATE Clocks

The following examples show how to define the signal behavior of the ATE-provided clock
required for shifting scan elements:

dc_shell> set_dft_signal \
 -type ScanClock \
 -port ATEclk \
 -timing [list 45 55] \
 -view existing_dft

dc_shell> set_dft_signal \
 -type Oscillator \
 -port ATEclk \
 -view existing_dft

If you want to identify a precise hookup pin where the ATE clock signal should be connected,
use the -hookup_pin option of the set_dft_signal command and specify the hierarchical
name of the pin. In this case, the set_dft_signal -type ScanClock command should be
issued separately with the -view spec option, in addition to the two commands with the
-view existing_dft option, because this defines how the signal is to be connected to the
hookup pin.

Note:
You can use the same clock port as both the ATE clock and PLL reference clock.
However, caveats apply. For more information, see SolvNet article 037838, “How Can I
Use the Same Clock Port for the ATE and PLL Reference Clocks?”.

The following example shows how to specify the hookup pin.

dc_shell> set_dft_signal -view spec -type ScanClock \
 -port ATEclk -hookup_pin U2005_ate_clk_2/Z

Note:
ATEclk needs to be defined as -type ScanClock and -type Oscillator.

Defining Global Signals
You must identify the top-level interface signals that control the OCC controller. This includes
the OCC bypass, OCC reset, and ScanEnable signals. You must also define a dedicated
TestMode signal that activates the OCC controller logic. In the OCC controller insertion flow,
these signals are defined with the -view spec option because they will be implemented and
connected by the insert_dft command.

The following examples show how to define a set of OCC controller interface signals for the
design example:

dc_shell> set_dft_signal \
 -type pll_reset \
 -port pi2 \
 -view spec
Chapter 9: On-Chip Clocking Support
OCC Flows 9-13
Chapter 9: On-Chip Clocking Support
OCC Flows 9-13

https://solvnet.synopsys.com/retrieve/037838.html
https://solvnet.synopsys.com/retrieve/037838.html

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
dc_shell> set_dft_signal \
 -type pll_bypass \
 -port piX \
 -view spec

dc_shell> set_dft_signal \
 -type ScanEnable \
 -port piE \
 -view spec

dc_shell> set_dft_signal \
 -type TestMode \
 -port pi1 \
 -view spec

The TestMode signal must be a dedicated signal for the OCC controller. It must be active in
all test modes and inactive in mission mode. It cannot be shared with TestMode signals used
for other purposes, such as AutoFix or multiple test-mode selection.

Note:
You can specify an internal hookup pin for any of these OCC controller interface signals
by using the -hookup_pin option of the set_dft_signal command. You cannot specify
internal hookup pins for ATE clocks or reference clocks.

Configuring the OCC Controller
To configure the OCC controller, use the set_dft_clock_controller command. Note the
following syntax and descriptions:

int set_dft_clock_controller
 [-cell_name cell_name]
 [-design_name design_name]
 [-pllclocks ordered_list]
 [-ateclocks clock_name]
 [-chain_count integer]
 [-cycles_per_clock integer]

Table 9-1 set_dft_clock_controller Command Syntax

Option Description

-cell_name cell_name Specifies the hierarchical name of the clock controller
cell.

-design_name design_name Specifies the OCC controller design name. You must
specify snps_clk_mux.

-pllclocks ordered_list Specifies the ordered list of hierarchical PLL clocks
you want to control.
Chapter 9: On-Chip Clocking Support
OCC Flows 9-14

DFT Compiler Scan User Guide Version H-2013.03-SP4
The following example shows a typical usage of the set_dft_clock_controller
command:

dc_shell> set_dft_clock_controller \
 -cell_name occ_int \
 -design_name snps_clk_mux \
 -pllclocks { pll/pllclk1 pll/pllclk2 \
 pll/pllclk3 } \
 -ateclocks { ATEclk } \
 -cycles_per_clock 2 -chain_count 1

By default, the OCC controller uses an AND/OR-based clock selection structure to
glitchlessly select the clocks. The AND cells gates a clock signal, and the OR cells combine
the gated signals together. To use discrete latch-based clock gating for the gating portion,
set the following variable to true:

set_app_var test_occ_insert_clock_gating_cells true

When using DFTMAX serializers with this variable setting, the test_elpc_unique_fsm
variable must be set to its default of true. For details on this variable, see the section on
using serializers with OCC controllers in Chapter 6, “Adaptive Scan With Serializer,” of the
DFTMAX Compression User Guide.

-ateclocks clock_name Specifies the ATE clock (port) you want to connect to
the OCC controller. Note: You cannot specify multiple
clocks per controller.

-chain_count integer Specifies the number of clock chains. The default
number of clock chains is one.

-cycles_per_clock integer Specifies the maximum number of capture cycles per
clock. You should specify a value of two or greater.

Capture cycles are cycles during capture when
capture clocks are pulsed. Typically, for at-speed
transition testing, there are two capture cycles: one is
used for launching a transition and the other for
capturing the effect of that transition.

-test_mode_port port_name Specifies the test-mode port used to enable the clock
controller. Use this option if you have multiple
test-mode ports and you want to use a specific port to
enable the clock controller. The specified port must
be defined as a TestMode signal using the
set_dft_signalcommand.

Table 9-1 set_dft_clock_controller Command Syntax (Continued)

Option Description
Chapter 9: On-Chip Clocking Support
OCC Flows 9-15
Chapter 9: On-Chip Clocking Support
OCC Flows 9-15

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
To use an integrated clock-gating cell, enable latch-based clock gating using the
test_occ_insert_clock_gating_cells variable. Then, set the desired cell type using the
test_icg_p_ref_for_dft variable. For information about this variable, see the DFTMAX
Compression User Guide. For information on clock gating styles, see the Power Compiler
User Guide.

Specifying Scan Configuration
Specify the set_scan_configuration command to define scan ports, scan chains, and the
global scan configuration.

To specify scan constraints in your design, use the following command:

set_scan_configuration -chain_count <#chains>...

If the current design is to be used as a test model later in a hierarchical flow, it is important
to avoid clock mixing. Such mixing can cause the clock chain of the OCC controller to mix
with flip-flops of opposite polarity on a single scan chain. As a result, this scan chain cannot
be combined with scan chains of other test models and the minimum scan chain count at the
top level is increased. This problem is worsened when multiple OCC controllers are added
to the design or when multiple subdesigns of the top-level design will have OCC controllers.

Performing Timing Analysis
After DFT insertion completes, you must ensure that the OCC controller logic is properly
constrained for timing analysis.

If you are using a MUX-based clock-gating method to select the clocks, you must use the
set_clock_gating_check command to manually specify a clock-gating check at the MUX
gate. This check is needed to check the timing between the fast-clock-enable registers and
the “FastClock” gates (multiplexers between the fast clocks and the slow clocks).
MUX-based clock gating is used when the test_occ_insert_clock_gating_cells
variable is set to its default of false.

For more information on performing timing analysis in a DFT-inserted OCC controller flow,
see SolvNet article 022490, “Static Timing Analysis Constraints for On-Chip Clocking
Support.” Also see the two sections titled “Special Considerations” in SolvNet article
034274, “DFT-Inserted OCC Controller Data Sheet.”

Script Example
Example 9-1 shows DFT Compiler performing prescan DRC, scan chain stitching, and
post-scan DRC. The STIL procedure file generated at the end of the DFT insertion process
contains PLL clock details suitable for the TetraMAX tool.
Chapter 9: On-Chip Clocking Support
OCC Flows 9-16

http://solvnet.synopsys.com/retrieve/022490.html
http://solvnet.synopsys.com/retrieve/022490.html
https://solvnet.synopsys.com/retrieve/034274.html
https://solvnet.synopsys.com/retrieve/034274.html

DFT Compiler Scan User Guide Version H-2013.03-SP4
Example 9-1 Flow Example for DFT-Inserted OCC Controller and Clock Chain

read_verilog mydesign.v
current_design mydesign
link

Define the PLL reference clock
top level free running clock
set_dft_signal -view existing_dft -type refclock \
 -port refclk1 -period 100 -timing [list 45 55]

set_dft_signal -view existing_dft -type MasterClock \
 -port refclk1 -timing [list 45 55]

Define the ATE clock
the ATE-provided clock for shift of scan elements
set_dft_signal -view existing_dft -type ScanClock \
 -port ATEclk -timing [list 45 55]

set_dft_signal -view existing_dft -type Oscillator \
 -port ATEclk

Define the PLL generated clocks --
these are the launch/capture clocks for internal scannable
elements and are controlled by occ controller
set_dft_signal -view existing_dft -type Oscillator \
 -hookup_pin pll/pllclk1

set_dft_signal -view existing_dft -type Oscillator \
 -hookup_pin pll/pllclk2

set_dft_signal -view existing_dft -type Oscillator \
 -hookup_pin pll/pllclk3

Enable PLL capability
set_dft_configuration -clock_controller enable

The following command specifies the OCC controller
design to be instantiated. The DFT Compiler synthesized
clock controller is named snps_clk_mux
set_dft_clock_controller -cell_name snps_pll_controller \
 -design_name snps_clk_mux -pllclocks { pll/pllclk1 \
 pll/pllclk2 pll/pllclk3 } -ateclocks { ATEclk } \
 -cycles_per_clock 2 -chain_count 1

set_scan_configuration -chain_count 30 -clock_mixing no_mix
create_test_protocol
dft_drc
report_dft_clock_controller -view spec
preview_dft -show all
insert_dft
dft_drc
Chapter 9: On-Chip Clocking Support
OCC Flows 9-17
Chapter 9: On-Chip Clocking Support
OCC Flows 9-17

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Run DRC with external clocks enabled during capture
(PLL bypassed)
set_dft_drc_configuration -pll_bypass enable
dft_drc

change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output top.scan.v

Write out combined PLL enabled/bypassed test protocol:
write_test_protocol -output scan_pll.stil

Existing User-Defined OCC Controller Flow
If you have a design that contains an OCC generator and it already instantiates an existing
user-defined OCC controller and clock chain, DFT Compiler can analyze the OCC controller,
validate the functionality, and incorporate it into the test protocol.

This section has the following subsections:

• Defining Clocks

• Defining Global Signals

• Specifying Clock Chains

• Specifying Scan Configuration

• Script Example

Defining Clocks
Use the set_dft_signal command to define the following clock signals for Figure 9-3:

• Reference Clocks

• PLL-Generated Clocks

• ATE Clocks

• Clock Chain Configuration and Control-Per-Pattern Information

Reference Clocks

A reference clock definition is used primarily as an informational device. It provides correct
data for the protocol file to pass TetraMAX DRC. For some special cases, a reference clock
signal might not be needed.
Chapter 9: On-Chip Clocking Support
OCC Flows 9-18

DFT Compiler Scan User Guide Version H-2013.03-SP4
The following example shows how to define a PLL reference clock that has the same period
as the test_default_period variable (assumed to be 100 ns).

dc_shell> set_dft_signal -view existing_dft \
 -type MasterClock -port my_clock \
 -timing [list 45 55]

dc_shell> set_dft_signal -view existing_dft \
 -type refclock -port my_clock \
 -period 100 -timing [list 45 55]

Note that you only need to define the reference clock with signal type MasterClock when
the reference clock has the same period as the test_default_period variable. Otherwise,
this signal definition is not needed and not accepted.

To define a reference clock that has a period other than the test_default_period, use the
following command:

dc_shell> set_dft_signal -view existing_dft \
 -type refclock -port my_clock \
 -period 10 -timing [list 3 8]

Note:
When the reference clock period differs from the test_default_period, do not define
the signal as any signal type other than refclock.

Also note the following caveats associated with the test_default_period when defining a
reference clock:

• If the reference clock period is an integer divisor of the test_default_period, then patterns
can be written in a variety of formats, including STIL, STIL99, and WGL.

• If the reference clock is not an integer divisor of the test_default_period, the only
format that can be written in a completely correct way is STIL. Other formats (including
STIL99) cannot include the reference clock pulses. A warning is printed, indicating that
these pulses must be added back to the patterns manually.

• Do not define a reference clock period or timings with resolution finer than 1 picosecond.
The TetraMAX tool cannot work with finer timing resolutions.

PLL-Generated Clocks

PLL clocks are the output of the PLL. This output is a free-running source that also runs at
a constant frequency, which might not be the same as the reference clock’s. This information
is forwarded to the TetraMAX tool through the protocol file to allow the verification of the
clock controller logic.
Chapter 9: On-Chip Clocking Support
OCC Flows 9-19
Chapter 9: On-Chip Clocking Support
OCC Flows 9-19

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
The following commands show how to define a PLL clock for the design example:

dc_shell> set_dft_signal
 -type Oscillator \
 -hookup_pin PLL/pllclk1 \
 -view existing_dft

dc_shell> set_dft_signal
 -type Oscillator \
 -hookup_pin PLL/pllclk2 \
 -view existing_dft

dc_shell> set_dft_signal
 -type Oscillator \
 -hookup_pin PLL/pllclk3 \
 -view existing_dft

ATE Clocks

An ATE clock signal can be pulsed several times before and after scan shift (scan-enable
signal inactive) to synchronize the clock controller logic in the capture phase and back into
the shift phase.

The following commands show how to define ATE clocks for the design example:

dc_shell> set_dft_signal \
 -type ScanClock \
 -port ATEclk \
 -timing [list 45 55] \
 -view existing_dft

dc_shell> set_dft_signal \
 -type Oscillator \
 -port ATEclk \
 -view existing_dft

Note:
You can use the same clock port as both the ATE clock and PLL reference clock.
However, caveats apply. For more information, see SolvNet article 037838, “How Can I
Use the Same Clock Port for the ATE and PLL Reference Clocks?”.

A user-defined OCC controller can use ATE clock synchronization logic which differs from
the DFT-inserted OCC controller. In these cases, you might need to set the
test_ate_sync_cycles variable to a nondefault value. For more information, see SolvNet
article 035708, “What Does the test_ate_sync_cycles Variable Do?”.

Clock Chain Configuration and Control-Per-Pattern Information

You must specify the correlation between the internal clock signals driven from the clock
controller outputs, the signals driven from the clock generator (PLL) outputs, and the signals
provided by the user-defined clock chain. This information indicates how the clock signal is
Chapter 9: On-Chip Clocking Support
OCC Flows 9-20

https://solvnet.synopsys.com/retrieve/037838.html
https://solvnet.synopsys.com/retrieve/037838.html
https://solvnet.synopsys.com/retrieve/035708.html
https://solvnet.synopsys.com/retrieve/035708.html

DFT Compiler Scan User Guide Version H-2013.03-SP4
enabled by the clock chain control bits in each clock cycle. The correspondence between the
controlled internal clock signals and clock chain control bits is identified in the protocol file
for TetraMAX ATPG to generate patterns.

You must specify

• All user-defined clock controller outputs referencing the internal clocks

• A corresponding set of clock chain control bits, ATE clock, and clock generator output
(PLL) for each clock controller output

See the following example:

dc_shell> set_dft_signal -type Oscillator \
 -hookup_pin occ_int/intclk1 \
 -ate_clock ATEclk \
 -pll_clock PLL/pllclk1 \
 -ctrl_bits [list 0 occ_int/FF_cyc1/Q 1 \
 1 occ_int/FF_cyc2/Q 1 \
 2 occ_int/FF_cyc3/Q 1] \
 -view existing_dft

Note:
The -ctrl_bits option is used to provide a list of triplets that specify the sequence of
bits needed to enable the propagation of the clock generator outputs. The first element
of each triplet is the cycle number (integer) indicating the cycle where the clock signal will
be propagated. The second element is the pin name (a valid design hierarchical pin
name) of the clock chain control bit. The third element is the active state (0 or 1) of the
control bit signal. For more information about this option, see the set_dft_signal man
page.

Note:
The -view existing_dft option is used because connections already exist between
the referenced port and the clock controller.

Defining Global Signals
You must identify the top-level interface signals that control the OCC controller. This includes
the OCC bypass, OCC reset, and ScanEnable signals. You must also define a dedicated
TestMode signal that activates the OCC controller logic. In the user-defined OCC controller
flow, these signals are defined with the -view existing_dft option because they already
exist and must be described to DFT Compiler.

The following examples show how to define a set of OCC controller interface signals for the
design example:

dc_shell> set_dft_signal \
 -type pll_reset \
 -port pi2 \
 -view existing_dft
Chapter 9: On-Chip Clocking Support
OCC Flows 9-21
Chapter 9: On-Chip Clocking Support
OCC Flows 9-21

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
dc_shell> set_dft_signal \
 -type pll_bypass \
 -port piX \
 -view existing_dft

dc_shell> set_dft_signal \
 -type ScanEnable \
 -port piE \
 -view existing_dft

dc_shell> set_dft_signal \
 -type TestMode \
 -port pi1 \
 -view existing_dft

The TestMode signal must be a dedicated signal for the OCC controller. It must be active in
all test modes and inactive in mission mode. It cannot be shared with TestMode signals used
for other purposes, such as AutoFix or multiple test-mode selection.

Note:
You can specify an internal hookup pin for any of these OCC controller interface signals
by using the -hookup_pin option of the set_dft_signal command. You cannot specify
internal hookup pins for ATE clocks or reference clocks.

Specifying Clock Chains
Specify clock chains by using the set_scan_group command. This ensures that the
sequential cells are treated as a group and are logically ordered.

dc_shell> set_scan_group clk_chain \
 -class OCC \
 -include_elements \
 [list occ_int/FF_1 occ_int/FF_2] \
 -access [list ScanDataIn occ_int/si \
 ScanDataOut occ_int/so \
 ScanEnable occ_int/se] \
 -serial_routed true

In this flow, you should insert the clock chain to be clocked by the falling edge of the internal
clock in such a way that it can be placed at the head of a scan chain. When defining the clock
chain, use the set_scan_group -class OCC command to specify the special treatment of
the clock chain, and avoid using the set_scan_path command so that the scan architect
has maximum flexibility in putting the clock chain in the best location on the scan chains. The
-class OCC option allows the clock chain to be recognized if the module is incorporated as
a test model in the integration flow.

In case a separate scan path is required for the clock chain, the set_scan_path -class
OCC command is also available. If you are using adaptive scan, the clock chain does not
need to be a separate scan path, but if you want to define it as such, two set_scan_path
Chapter 9: On-Chip Clocking Support
OCC Flows 9-22

DFT Compiler Scan User Guide Version H-2013.03-SP4
commands are required, one with the -test_mode Internal_scan option and one with the
-test_mode ScanCompression_mode option. The process of combining adaptive scan with
clock controllers results in a multiple test-mode architecture; therefore, both modes must be
specified.

If the current design is to be used later as a test model in a hierarchical flow and your scan
configuration allows clock mixing, you should make sure that the clock chains are kept
separate from other scan chains. Otherwise, the top-level scan architecture might require
too many scan chains because the submodule scan chains are incompatible with each
other. To force the clock chains to be separate, use the set_scan_path command with the
-class occ and -complete true options. For more information, see SolvNet article
018046, “How Can I Control Scan Stitching of OCC Controller Clock Chains?”

Specifying Scan Configuration
Specify the set_scan_configuration command to define scan ports, scan chains, and the
global scan configuration by using the following command:

set_scan_configuration -chain_count num_chains ...

If the current design is to be used later as a test model in a hierarchical flow, it is important
to avoid clock mixing. If you must mix clocks, use the method described in “Specifying Clock
Chains” on page 9-22 to avoid problems integrating the clock chains at the next higher level
of hierarchy.

Script Example
When you run a design that contains a user-defined OCC controller and clock chains, a STIL
procedure file is generated, as shown in Example 9-2.

Example 9-2 Flow Example for Existing OCC Controller and Clock Chain

read_verilog mydesign.v
current_design mydesign
link

Define the PLL reference clock
top level free running clock
set_dft_signal -view existing_dft -type refclock \
 -port refclk1 -period 100 -timing [list 45 55]

set_dft_signal -view existing_dft -type MasterClock \
 -port refclk1 -timing [list 45 55]

Define the ATE clock
the ATE-provided clock for shift of scan elements
set_dft_signal -view existing_dft -type ScanClock \
 -port ATEclk -timing [list 45 55]
Chapter 9: On-Chip Clocking Support
OCC Flows 9-23
Chapter 9: On-Chip Clocking Support
OCC Flows 9-23

http://solvnet.synopsys.com/retrieve/018046.html
http://solvnet.synopsys.com/retrieve/018046.html

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
set_dft_signal -view existing_dft -type Oscillator \
 -port ATEclk

Define the PLL generated clocks
set_dft_signal -view existing_dft -type Oscillator \
 -hookup_pin pll/pllclk1

set_dft_signal -view existing_dft -type Oscillator \
 -hookup_pin pll/pllclk2

set_dft_signal -view existing_dft -type Oscillator \
 -hookup_pin pll/pllclk3

Enable PLL capability
set_dft_configuration -clock_controller enable

Specify clock controller output and control-per-pattern information
set_dft_signal -type Oscillator -hookup_pin occ_int/intclk1 \
 -ate_clock ATEclk -pll_clock PLL/pllclk1 \
 -ctrl_bits [list 0 occ_int/FF_1/Q 1 \
 1 occ_int/FF_2/Q 1] \
 -view existing_dft

Define the existing clock chain segments
set_scan_group clk_chain -class occ\
 -include_elements [list occ_int/FF_1 \
 occ_int/FF_2] \
 -access [list ScanDataIn occ_int/si \
 ScanDataOut occ_int/so
 ScanEnable occ_int/se] \
 -serial_routed true

Specify global controller signals
set_dft_signal -type pll_reset -port pi2 -view existing_dft
set_dft_signal -type pll_bypass -port piX -view existing_dft
set_dft_signal -type ScanEnable -port piE -view existing_dft

Define the TestMode signals
set_dft_signal -type TestMode -port pi1 -view existing_dft

Registers inside the OCC controller must be nonscan or else the
internal clock will not be controlled correctly. However,the
clock chain must be scanned. Use set_scan_element false on the
former but not on the latter.
set_scan_element false occ_int/clock_controller

set_scan_configuration -chain_count 30 -clock_mixing no_mix
create_test_protocol
dft_drc
report_dft_clock_controller -view existing_dft
preview_dft -show all
insert_dft
dft_drc
Chapter 9: On-Chip Clocking Support
OCC Flows 9-24

DFT Compiler Scan User Guide Version H-2013.03-SP4
Run DRC with external clocks enabled during capture
(PLL bypassed)

set_dft_drc_configuration -pll_bypass enable
dft_drc

change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output top.scan.v

Write out combined PLL enabled/bypassed test protocol:
write_test_protocol -output scan_pll.stil

Hierarchical On-Chip Clocking Flow
The integration flow supports test models that include OCC controllers. Either the
DFT-inserted OCC controller flow or the existing user-defined OCC controller flow can be
used for the block containing the OCC controller. The hierarchical integration flow works the
same for either case for the levels above the block with the controller.

Use the set_dft_configuration -clock_controller enable command at all
hierarchical levels above those that contain the OCC controllers. Top-level connections for
the test model’s pll_reset, pll_bypass, ATE clock, and TestMode (for the OCC controller)
signals should be either all preconnected or all left unconnected so that the insert_dft
command can make the connections. The DFT architect cannot recognize partially
connected conditions reliably and might make mistakes if some, but not all, of these signals
are already connected.

When OCC controller insertion is performed on the current design, and the current design
contains test models which have their own OCC controllers, the insert_dft command
must make the top-level connections to the test model OCC control signals. OCC controller
insertion is not supported when test model OCC control signals are already connected.

Top-level integration uses signal types to determine the correct connections to make. Most
DFT signals used by OCC controllers, including the pll_reset and pll_bypass types, can
be preconnected at the top level by the user and specified as -view exist, or they can be
connected by the insert_dft command if preferred.

However, the ATE clock signal has no special signal type in the test model, so user guidance
is required. To give this guidance, use the -connect_to option of the set_dft_signal
command.
Chapter 9: On-Chip Clocking Support
OCC Flows 9-25
Chapter 9: On-Chip Clocking Support
OCC Flows 9-25

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
The following commands define an ATE clock and two submodule connections in an
integration flow where the insert_dft command must make the OCC connections to the
cores containing the OCC controllers:

set_dft_signal -view existing_dft -type ScanClock \
 -port ATEclk -timing [list 45 55] \
 -connect_to [list u1/ATEclk u2/ATEclk]

set_dft_signal -view spec -type ScanClock \
 -port ATEclk \
 -connect_to [list u1/ATEclk u2/ATEclk]

set_dft_signal -view existing_dft -type Oscillator \
 -port ATEclk

This example uses both the -view existing_dft and -view spec options for the
ScanClock signal type because timing can only be attached to an existing clock. The -view
spec option specifies that a change to the design is needed during DFT insertion.

The following commands define an ATE clock and two submodule connections in an
integration flow where the OCC connections to the cores already exist:

set_dft_signal -view existing_dft -type ScanClock \
 -port ATEclk -timing [list 45 55] \
 -connect_to [list u1/ATEclk u2/ATEclk]

set_dft_signal -view existing_dft -type Oscillator \
 -port ATEclk

When the ATE clock signal is already connected to a core containing an OCC controller, only
the -view existing_dft option should be used.

Note that reference clocks, other than ATE clocks, are not connected by the insert_dft
command because they are considered to be functional signals rather than test signals. The
only effect of specifying them is that they are defined in the test protocol.

Script Example for Cores Without Preconnected OCC Signals
Example 9-3 shows a script example that performs hierarchical integration of a DFT-inserted
OCC controller where the insert_dft command must make the OCC connections to the
cores containing the OCC controllers.

Example 9-3 Script Example for Integration Without Preconnected OCC Signals

Read the test models for the OCC-inserted submodules
read_ddc subdesign1.ddc
read_ddc subdesign2.ddc

Read the top level of the design
read_verilog topdesign.v
Chapter 9: On-Chip Clocking Support
OCC Flows 9-26

DFT Compiler Scan User Guide Version H-2013.03-SP4
current_design topdesign
link

Define the PLL reference clock
top level free running clock
The PLL reference clock must always be preconnected
set_dft_signal -view existing_dft -type refclock \
 -port refclk1 -period 100 -timing [list 45 55]

set_dft_signal -view existing_dft -type MasterClock \
 -port refclk1 -timing [list 45 55]

Define the ATE clock
the ATE-provided clock for shift of scan elements
set_dft_signal -view existing_dft -type ScanClock \
 -port ATEclk -timing [list 45 55] \
 -connect_to [list u1/ATEclk u2/ATEclk]

set_dft_signal -view spec -type ScanClock \
 -port ATEclk \
 -connect_to [list u1/ATEclk u2/ATEclk]

set_dft_signal -view existing_dft -type Oscillator \
 -port ATEclk

Enable PLL capability
set_dft_configuration -clock_controller enable

Specify global controller signals, all in spec view
set_dft_signal -type pll_reset -port pi2 -view spec
set_dft_signal -type pll_bypass -port piX -view spec
set_dft_signal -type ScanEnable -port piE -view spec

Define the PLL TestMode signals
set_dft_signal -type TestMode -port pi1 -view spec

create_test_protocol
dft_drc
preview_dft -show all
insert_dft
dft_drc

Run DRC with external clocks enabled during capture
(PLL bypassed)
set_dft_drc_configuration -pll_bypass enable
dft_drc

change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output topmodule.scan.v

Write out combined PLL enabled/bypassed test protocol:
write_test_protocol -output
 topmodule.scan.stil
Chapter 9: On-Chip Clocking Support
OCC Flows 9-27
Chapter 9: On-Chip Clocking Support
OCC Flows 9-27

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Script Example for Cores With Preconnected OCC Signals
Example 9-4 shows a script example that performs hierarchical integration of an existing
OCC controller where the OCC connections to the cores already exist.

Example 9-4 Script Example for Integration With Preconnected OCC Signals

Read the test models for the OCC-inserted submodules
read_ddc subdesign1.ddc
read_ddc subdesign2.ddc

Read the top level of the design
read_verilog topdesign.v
current_design topdesign
link

Define the PLL reference clock
top level free running clock
The PLL reference clock must always be preconnected
set_dft_signal -view existing_dft -type refclock \
 -port refclk1 -period 100 -timing [list 45 55]

set_dft_signal -view existing_dft -type MasterClock \
 -port refclk1 -timing [list 45 55]

Define the ATE clock
the ATE-provided clock for shift of scan elements
set_dft_signal -view existing_dft -type ScanClock \
 -port ATEclk -timing [list 45 55] \
 -connect_to [list u1/ATEclk u2/ATEclk]

set_dft_signal -view existing_dft -type Oscillator \
 -port ATEclk

Enable PLL capability
set_dft_configuration -clock_controller enable

Specify global controller signals, all in existing DFT view
set_dft_signal -type pll_reset -port pi2 -view existing_dft
set_dft_signal -type pll_bypass -port piX -view existing_dft
set_dft_signal -type ScanEnable -port piE -view existing_dft

Also define ScanEnable in spec view so it is used for top-level logic
set_dft_signal -type ScanEnable -port piE -view spec

Define the PLL TestMode signals
set_dft_signal -type TestMode -port pi1 -view existing_dft

create_test_protocol
dft_drc
preview_dft -show all
insert_dft
Chapter 9: On-Chip Clocking Support
OCC Flows 9-28

DFT Compiler Scan User Guide Version H-2013.03-SP4
dft_drc

Run DRC with external clocks enabled during capture
(PLL bypassed)
set_dft_drc_configuration -pll_bypass enable
dft_drc

change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output topmodule.scan.v

Write out combined PLL enabled/bypassed test protocol:
write_test_protocol -output topmodule.scan.stil

Reporting Clock Controller Information

Use the report_dft_clock_controller command to generate reports.

DFT-Inserted OCC Controller Flow
For DFT-inserted OCC controllers and clock chains, use the
report_dft_clock_controller -view spec command to output a report. This report
displays the options that you set for the set_dft_clock_controller command.

Example 9-5 shows a clock controller report for the DFT-inserted OCC controller flow.

Example 9-5 Report Example from the report_dft_clock_controller -view spec Command

**
Report : Clock controller
Design : des_chip
Version: G-2012.06
Date : Fri Sep 7 05:42:06 2012
**

==
TEST MODE: all_dft
VIEW : Specification
==
Cell name: pll_controller_0
Design: snps_clk_mux
Chain count: 1
Cycle count: 2
PLL clock: u_pll/clkgenx2 u_pll/clkgenx3
ATE clock: ateclk
Chapter 9: On-Chip Clocking Support
Reporting Clock Controller Information 9-29
Chapter 9: On-Chip Clocking Support
Reporting Clock Controller Information 9-29

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Existing User-Defined OCC Controller Flow
For existing user-defined OCC controllers and clock chains, after you define the internal
clock signals and the corresponding control-per-pattern information, use the
report_dft_clock_controller -view existing_dft command to report what you have
specified. In Example 9-6, the report shows information about the clock generator signal, the
ATE clock, the OCC controller output, and the clock chain control bits.

Example 9-6 Report Example from the report_dft_clock_controller Command

**
Report : Clock controller
Design : des_chip
Version: G-2012.06
Date : Fri Sep 7 05:18:55 2012
**

Clock controller: ctrl_0
==
 Number of bits per clock: 4
 Controlled clock output pin: duto/clk
 ==
 Clock generator signal: dutp/PLLCLK
 ATE clock signal: i_ateclk
 Control pins:
 cycle 0 duto/snps_clk_chain_0/FF_0/Q 1
 cycle 1 duto/snps_clk_chain_0/FF_1/Q 1
 cycle 2 duto/snps_clk_chain_0/FF_2/Q 1
 cycle 3 duto/snps_clk_chain_0/FF_3/Q 1
 ==
==

DRC Support

D-rules (Category D – DRC Rules) support PLL-related design rule checks. The checked
rule and message text correspond by number to TetraMAX PLL-related C-rules (Category C
– Clock Rules). The rules are as follows:

• D28 – Invalid PLL source for internal clock

• D29 – Undefined PLL source for internal clock

• D30 – Scan PLL conditioning affected by nonscan cells

• D31 – Scan PLL conditioning not stable during capture

• D34 – Unsensitized path between PLL source and internal clock

• D35 – Multiple sensitizations between PLL source and internal clock
Chapter 9: On-Chip Clocking Support
DRC Support 9-30

DFT Compiler Scan User Guide Version H-2013.03-SP4
• D36 – Mistimed sensitizations between PLL source and internal clock

• D37 – Cannot satisfy all internal clocks off for all cycles

• D38 – Bad off conditioning between PLL source and internal clock

Enabling the OCC Controller Bypass Configuration
Use the set_dft_drc_configuration and write_test_protocol commands to enable
the OCC controller bypass configuration for design rule checking. The -pll_bypass option
of the set_dft_drc_configuration command enables post-scan insertion DRC with
constraints that put the OCC clock controller in bypass configuration.

The syntax is as follows:

set_dft_drc_configuration -pll_bypass enable | disable

The default setting is disable.

To perform DRC of both bypass configurations, PLL active and PLL bypassed, use the
following commands:

insert_dft

set_dft_drc_configuration -pll_bypass disable ;# already the default
dft_drc

set_dft_drc_configuration -pll_bypass enable
dft_drc

write_test_protocol my_design.spf

The test protocol written by the write_test_protocol command contains information for
PLL bypass as well as for PLL enabled. In the TetraMAX tool, use the run_drc
-patternexec command to select the operating mode to use.

DFT-Inserted OCC Controller Configurations

This section shows DFT-inserted OCC controller configurations and the associated
configuration commands, as described in the following subsections:

• Single OCC Controller Configurations

• Multiple DFT-Inserted OCC Controller Configurations
Chapter 9: On-Chip Clocking Support
DFT-Inserted OCC Controller Configurations 9-31
Chapter 9: On-Chip Clocking Support
DFT-Inserted OCC Controller Configurations 9-31

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Single OCC Controller Configurations
This section shows the results of using various configurations of the
set_dft_clock_controller command on the design example shown in Figure 9-5.

Figure 9-5 Design Example for Single OCC Controller Insertion

The following configuration examples are applied to this design:

• Example 1 – Controller inserted at the output of UPLL, within the CLKGEN block.

• Example 2 – Controller inserted at the output of the CLKGEN block.

• Example 3 – Controller inserted at the output of the buffer.

Example 1
The first example, shown in Figure 9-6, uses the following configuration:

dc_shell> set_dft_clock_controller \
 -pllclocks {CLKGEN/UPLL/clkout}

In this case, the following occurs:

• The controller is inserted at the output of PLL, within the clkgen1 block.

• The clocks of all flip-flops are controllable.

Figure 9-6 Controller Inserted at Output of PLL Within CLKGEN Block

�(%%

		�

&%'1-� ��/�

		� 		!

��

�(%%

		�

&%'1-� ��/�

		� 		!

��

�&&�
���
)����)
Chapter 9: On-Chip Clocking Support
DFT-Inserted OCC Controller Configurations 9-32

DFT Compiler Scan User Guide Version H-2013.03-SP4
Example 2
The second example, shown in Figure 9-7, uses the following configuration:

dc_shell> set_dft_clock_controller \
 -pllclocks {CLKGEN/clkout}

In this case, the following occurs:

• The controller is inserted at the output of the CLKGEN block.

• The FF1 clock remains uncontrollable.

Figure 9-7 Controller Inserted at Output of CLKGEN Block

Example 3
The third example, shown in Figure 9-8, uses the following configuration:

dc_shell> set_dft_clock_controller \
 -pllclocks {SUB1/U1/Z}

In this case, the following occurs:

• The controller is inserted at the output of buffer U1.

• The FF1 and FF2 clocks remain uncontrollable.

Figure 9-8 Controller Inserted at Output of the Buffer

�(%%

		�

&%'1-� ��/�

		� 		!

��

�&&�
���
)����)

�(%%

		�

&%'1-� ��/�

		� 		!

��

�&&�
���
)����)
Chapter 9: On-Chip Clocking Support
DFT-Inserted OCC Controller Configurations 9-33
Chapter 9: On-Chip Clocking Support
DFT-Inserted OCC Controller Configurations 9-33

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Multiple DFT-Inserted OCC Controller Configurations
This section shows the results of configuring multiple DFT-inserted OCC controllers for the
design example shown in Figure 9-9.

Figure 9-9 Design Example for Multiple OCC Controller Insertion

When multiple PLLs exist in a design, the reference clock input to each PLL cell must be a
free-running clock in test mode. Care must be taken to insure that an OCC controller is not
inserted at a location that would block a free-running clock to a downstream PLL cell.

In this design example, the primary PLL named UPLL1 receives the incoming reference
clock and generates a PLL output clock. This PLL output clock then feeds either a second
PLL or clock divider cell, creating a second cascaded PLL output clock.

The following configuration examples are applied to this design:

• Example 1 – Controller incorrectly inserted, at the output of UPLL1.

• Example 2 – Controller correctly inserted, at the output of a buffer driven by UPLL1.

Example 1
The first example, shown in Figure 9-10, uses the following configuration:

dc_shell> set_dft_clock_controller \
 -pllclocks {UPLL1/clkout}
dc_shell> set_dft_clock_controller \
 -pllclocks {UPLL2/clkout}

In this case, the following occurs:

• The controller is inserted at the output of UPLL1.

• As a result, the free-running clock to UPLL2 is blocked by the first OCC controller,
causing incorrect operation of UPLL2.

�(%%�

�(%%�
�)

����,���3���)

		�

		�
Chapter 9: On-Chip Clocking Support
DFT-Inserted OCC Controller Configurations 9-34

DFT Compiler Scan User Guide Version H-2013.03-SP4
The incorrect operation of UPLL2 might only be detectable during Verilog simulation of the
resulting netlist.

Figure 9-10 Free-Running Clock Blocked to UPLL2

Example 2
The second example, shown in Figure 9-11, uses the following configuration:

dc_shell> set_dft_clock_controller \
 -pllclocks {U1/Z}
dc_shell> set_dft_clock_controller \
 -pllclocks {UPLL2/clkout}

This example uses a buffer to isolate the downstream fanout that the first OCC controller
should drive. In this case, the following occurs:

• The controller is inserted at the output of buffer U1 driven by UPLL1.

• As a result, the free-running clock from UPLL1 propagates to UPLL2, allowing correct
operation of UPLL2.

Figure 9-11 Free-Running Clock Propagates to UPLL2

�(%%�
		�

		�

?�����&�����������
&����&�������� �!&&�&�

�(%%�
�)

����,���3���)

�&&�
���
)����)�A�

�&&�
���
)����)�A�

�(%%�

�(%%�
�)

����,���3���)

		�

		�

�
&
&

�
&
&

��

�&&�
���
)����)�A�

�&&�
���
)����)�A�
Chapter 9: On-Chip Clocking Support
DFT-Inserted OCC Controller Configurations 9-35
Chapter 9: On-Chip Clocking Support
DFT-Inserted OCC Controller Configurations 9-35

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
You must ensure that the isolation buffer is not optimized away by applying a
set_dont_touch command, applying a set_size_only command, or using hierarchy. After
the clock controller is inserted, the resulting test protocol references the specified pin as a
PLL pin.

Waveform and Capture Cycle Example

Figure 9-12 shows an example of the relationship between various clocks when the design
contains an OCC generator and an OCC controller.

Figure 9-12 Desired Clock Launch Waveform Example

For information about pll clock, ATEclk, and intclk, see “Clock Type Definitions” on
page 9-4.

Limitations

Note the following limitations:

• Inferencing internal PLL or any reference clocks is not supported. For prescan DRC, you
must explicitly define your reference clock, ATE clock, and PLL clocks.

• When multiple OCC controllers are used, all controllers must use the same
-cycles_per_clock option value.

pll clock

ATEclk

intclk

Capture load_unload

Launch
clock

Capture
clock

Shift
clock

Shift
clock

scan_enable
Chapter 9: On-Chip Clocking Support
Waveform and Capture Cycle Example 9-36

DFT Compiler Scan User Guide Version H-2013.03-SP4
• You cannot mix the DFT-inserted and user-defined OCC controller types in the same
DFT insertion run. However, this restriction does not apply to cores that already contain
OCC controllers. In integration flows, you can mix OCC controller types across cores and
between cores and the top level.

• The OCC controller generated by DFT Compiler does not test faults across internal clock
domains.

• When inserting new OCC controllers into your design, you must synthesize and insert
multiple clock OCC controllers with a single insert_dft command.

• The only supported scan style is multiplexed flip-flop.

• Post-DFT DRC is not supported in Hierarchical Adaptive Scan Synthesis (HASS) flows.

• Fast-sequential patterns with OCC support cannot measure the primary outputs
between system pulses. The measure primary output is placed before the first system
pulse and measures only Xs. You have to use pre-clock-measure, with the strobe being
placed before the clock.

• External clocks, which have a direct connection to scan flip-flops, cannot serve as ATE
clocks for the OCC controller.

• The set_dft_clock_controller -ateclocks command accepts only one port. The
user can have multiple OCC controllers, but only one port can be specified at the
-ateclocks option per controller.

• Postclock strobe measure (that is, end-of-cycle measure) is not compatible with PLL
reference clocks.

• If you are using a MUX-based clock-gating method to select the clocks, you must use the
set_clock_gating_check command to manually specify a clock-gating check at the
MUX gate. The Design Compiler, IC Compiler, and PrimeTime tools do not infer
clock-gating checks for MUX gates. This check is needed to check the timing between
the fast-clock-enable registers and the “FastClock” gates (multiplexers between the fast
clocks and the slow clocks).

In the DFT-inserted OCC controller flow, MUX-based clock gating is used when the
test_occ_insert_clock_gating_cells variable is set to its default of false. For
more information, see SolvNet article 022490, “Static Timing Analysis Constraints for
On-Chip Clocking Support.”

• When a pipelined scan-enable signal is used with OCC flows, the insert_dft command
fails to make some connections properly. To use these features together, you must check
and correct the connections so that the following requirements are met:

❍ The scan-enable connections to the OCC controller and clock chain must use the
unpipelined scan-enable signal. That is, use the input to the scan-enable pipeline
register instead of its output.
Chapter 9: On-Chip Clocking Support
Limitations 9-37
Chapter 9: On-Chip Clocking Support
Limitations 9-37

http://solvnet.synopsys.com/retrieve/022490.html
http://solvnet.synopsys.com/retrieve/022490.html

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
❍ The clock connection to the scan-enable pipeline register in OCC controller clock
domains must be connected to the internal clock output of the OCC controller block.

❍ In hierarchical OCC controller flows, the OCC controller can be inserted or defined at
the core level, then scan-enable pipeline registers can be inserted during the top-level
integration phase. In this case, the OCC controller is correctly connected at the core
level, but the connections are incorrectly made during top-level integration.

To ensure correct operation, you must design the core to provide multiple
scan-enable signals. Connect the OCC controller to the unpipelined scan-enable
signal, and use the pipelined scan-enable signal for the remaining connections.

To satisfy the requirement that the scan-enable pipeline register must be clocked by
the OCC controller's clock output, you must also pass the OCC internal clock to an
output of the core, then use it for the clock connection of the top-level scan-enable
pipeline register.

• In hierarchical OCC controller flows, if you insert a DFT-inserted OCC controller during
integration, the OCC signals of cores containing OCC controllers must be left dangling to
be completed by DFT insertion; they cannot be preconnected.
Chapter 9: On-Chip Clocking Support
Limitations 9-38

10
Exporting Data to Other Tools 10

This chapter describes how to export output data from DFT Compiler to other tools, such as
TetraMAX ATPG.

This chapter includes the following sections:

• Verifying DFT Inserted Designs for Functionality

• Exporting a Design to TetraMAX ATPG

• SCANDEF-Based Reordering Flow

10-1

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Verifying DFT Inserted Designs for Functionality

After DFT insertion, the resulting scan-inserted design is verified for functional equivalence
with respect to the nonscan design. This is done to ensure that DFT insertion did not
introduce any logic errors. Verification is accomplished by using the Synopsys Formality
tool.

The following subsections describe the verification process:

• Verification Setup File Generation

• Test Information Passed to the Verification Setup File

• Script Example

• Formality Tool Limitations

Verification Setup File Generation
By default, Design Compiler synthesis automatically creates a verification setup file in your
working directory. The automated setup file has the extension .svf and is named default.svf.
This file tracks any design changes that are required for the verification process and assists
the Formality tool in compare-point matching and verification.

The automated setup file is stored in binary format.

Use the set_svf command to generate a Formality setup information file for efficient
compare-point matching in the Formality tool.

The syntax is as follows:

set_svf
 file_name
 [-append]
 [-off]

Argument Definitions

file_name

Specifies the file into which Formality setup information is recorded. You must specify a
file name unless the -off option is specified.

-append

Appends to the specified file. If another Formality setup verification file is already open,
then it will be closed before opening the specified file. If -append is not used, then
set_svf overwrites the named file, if it exists.
Chapter 10: Exporting Data to Other Tools
Verifying DFT Inserted Designs for Functionality 10-2

DFT Compiler Scan User Guide Version H-2013.03-SP4
-off

Stops recording Formality setup information to the currently open file. To resume
recording into the same file, you must reissue the set_svf command with the -append
option.

Test Information Passed to the Verification Setup File
When you run the insert_dft command, the following DFT specific information is
recorded in the verification setup file:

• Scan-enable signals are disabled.

• Test modes are disabled wherever they are used (for example, AutoFix/ adaptive scan).

• Constants are passed to the file.

• Core wrapper shift(wrp_shift) is disabled.

• The TCK, TMS, and TRST ports of BSD Compiler are held at 0 and the TDO port is not
verified.

The setup information is reported in the assumptions summary report.

For more information, see the Formality User Guide.

Script Example
Example 10-1 shows you how to use a verification setup file for functionality checking in the
Formality tool.

Example 10-1 Formality Script Example For Equivalence Checking

#Enable Automatic Setup to Disable Scan/Test
set synopsys_auto_setup true

#Set your verification setup file
set_svf ./my_svf_file

READ LIBRARIES
foreach file $link_library {read_db $lib}

Read Reference Design
create_container pre_dft
read_ddc ./outputs/des_unit.pre_dft.ddc
set_top des_unitset_reference_design pre_dft:/WORK/des_unit

Read Implementation Design
create_container post_dft
Chapter 10: Exporting Data to Other Tools
Verifying DFT Inserted Designs for Functionality 10-3
Chapter 10: Exporting Data to Other Tools
Verifying DFT Inserted Designs for Functionality 10-3

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
read_ddc ./outputs/des_unit.post_dft.ddc
set_top des_unit
set_implementation_design post_dft:/WORK/des_unit
Match compare points and Verify
match
verify

Formality Tool Limitations
The following features are not supported.

• Internal pins support

• DBIST

Exporting a Design to TetraMAX ATPG

This section describes the steps that take a design from DFT Compiler to TetraMAX ATPG,
in which you use the automatic test pattern generation (ATPG) capability to generate test
vectors. It has the following subsections:

• Before Exporting Your Design

• Exporting Your Design to TetraMAX ATPG

Before Exporting Your Design
Before exporting your design to TetraMAX ATPG, be aware of the following:

• You need to make sure all design rule violations have been corrected. Use the dft_drc
command to detect and correct scan design rule violations.

• Designs must have valid scan chains to be recognized by TetraMAX ATPG. Any nonscan
sequential cell or capture violation has the potential to lower fault coverage. Use the
report_scan_path -chain all command to verify that all scan chains are intact before
exporting a design.

• All cells on the scan chain must be controllable and observable. This is because
controllable-only or observable-only chains identified by DFT Compiler are not written to
the STIL procedure file, and TetraMAX ATPG does not recognize them. If you have
problems with the scan chain, you must fix them by using DFT Compiler.
Chapter 10: Exporting Data to Other Tools
Exporting a Design to TetraMAX ATPG 10-4

DFT Compiler Scan User Guide Version H-2013.03-SP4
• TetraMAX ATPG does not accept designs in which the original source was VHDL and
arrays of arrays are used in top-level buses.

• Be aware of dependent slave operation. TetraMAX ATPG reports an S29 warning for
circuits and protocols generated by DFT Compiler if the circuit has scan-out lock-up
latches inserted by DFT Compiler, and these latches are closed at the end of a cycle.
The dft_drc command, which runs DFT Compiler design rule checking, similarly
reports diverging scan chains for such lock-up latches

Before exporting your design to TetraMAX ATPG, you should also be aware of the
differences in which DFT Compiler and TetraMAX ATPG handle your design. These
differences are explained in the following sections:

• Support for DFT Compiler Commands in TetraMAX ATPG

• Creating Generic Capture Procedures

Support for DFT Compiler Commands in TetraMAX ATPG
To export a DFT Compiler flow to the TetraMAX ATPG flow, TetraMAX ATPG must translate
some DFT Compiler commands into TetraMAX ATPG commands. The TetraMAX ATPG flow
supports the following DFT Compiler commands:

• set_dft_signal

• read_test_protocol

The following DFT Compiler command has no impact on the STIL protocol and is therefore
ignored in the DFT Compiler to TetraMAX flow:

• set_test_assume

Creating Generic Capture Procedures
DFT Compiler allows you to write out a protocol file with generic capture procedures to be
used in TetraMAX ATPG.

The generic capture procedures consist of the following procedures:

• multiclock_capture()

• allclock_capture()

• allclock_launch()

• allclock_launch_capture()
Chapter 10: Exporting Data to Other Tools
Exporting a Design to TetraMAX ATPG 10-5
Chapter 10: Exporting Data to Other Tools
Exporting a Design to TetraMAX ATPG 10-5

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Advantages of Generic Capture Procedures

This is the preferred format for the protocol file to be given to TetraMAX ATPG due to the
following advantages:

• The single cycle capture procedure is efficient.

• It matches the event ordering (force PI, measure PO, pulse clock) in the TetraMAX tool
without any manual modifications.

• Stuck-at and at-speed ATPG can use a single common protocol file.

• The stuck-at _default_WFT_ WaveformTable is used as a template for modifying the
timing of the at-speed WaveformTables.

Writing a Protocol File With Generic Capture Procedures

The criteria for writing out a protocol file with generic capture procedures are as follows:

• To write out protocol files, use the create_test_protocol command.

create_test_protocol -capture_procedure [single_clock | multi_clock]

Choose multi_clock to create a protocol file that uses one generic capture procedure
for all capture clocks. The default is multi_clock.

• You must use preclock strobe timing to write out a single vector generic capture
procedure. Otherwise, the capture procedures will have three-vectors.

The following variables are set to their defaults to define the timing in the protocol file.

❍ $test_default_delay 0

❍ $test_default_bidir_delay 0

❍ $test_default_strobe 40

❍ $test_default_period 100

To use preclock strobe timing, the value of $test_default_strobe must be set to be before
the time of the leading edge of any of the test clocks that you have defined.

WaveformTables

The STIL procedure file, written out, using the generic capture procedures, has several
different WaveformTables:

• _default_WFT_

• _multiclock_capture_WFT_

• _allclock_capture_WFT_
Chapter 10: Exporting Data to Other Tools
Exporting a Design to TetraMAX ATPG 10-6

DFT Compiler Scan User Guide Version H-2013.03-SP4
• _allclock_launch_WFT_

• _allclock_launch_capture_WFT_

The timings of these different WaveformTables are identical when they are written out by
DFT Compiler.

The WaveformTables are suitable for the following procedures:

• The test_setup macro and load_unload procedures, which use _default_WFT_

• The capture procedures that neither launch nor capture transition fault effects and use
_multiclock_capture_WFT_. Generic capture procedures, using the internal clocks also
use _multiclock_capture_WFT_ because the PLL pulse trains are generated internally
and independently of the external timing.

Observe the following criteria when using the protocol file for at-speed testing:

• The timings in the _allclock_ WaveformTables should be changed to get at-speed
transition fault testing on the external clocks. Ensure that you do not change the period
or the timings of the reference clocks, or else the PLLs might lose lock. You should
change only the rise and fall times of the external clocks.

• Each two-clock transition fault test consists of a launch cycle using
_allclock_launch_WFT_ followed by a capture cycle using _allclock_capture_WFT_. The
active clock edges of these two cycles should be close to each other. Make sure that the
clock leading-edge comes after the all_outputs strobe time, and adjust the time for all
values (L, H, T and X) in the _allclock_capture_WFT_ if necessary.

• The _allclock_launch_capture_WFT is used only when launch and capture are caused
by opposite edges of the same clock. Note the timing is from the leading edge of the
clock to the same clock’s trailing edge. However, this timing only occurs in full sequential
ATPG and can be ignored in most cases.

Writing a Protocol File With a Multiclock Capture Procedure

You can control multiple clock capture by specifying a single generic capture procedure,
called multiclock_capture, in an SPF file. This procedure, which enables you to map all
capture behaviors irrespective of the number of clocks present, is the default procedure.

In addition to supporting capture operations that contain multiple clocks, this procedure also
eliminates the need to manually define a full set of clock-specific capture procedures. The
multiclock_capture is used for stuck-at ATPG but can be used for transition delay and
path delay ATPG if the allclock procedures are not present in the protocol file.

Example 10-2 shows a multiclock_capture procedure.
Chapter 10: Exporting Data to Other Tools
Exporting a Design to TetraMAX ATPG 10-7
Chapter 10: Exporting Data to Other Tools
Exporting a Design to TetraMAX ATPG 10-7

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Example 10-2 Example of a multiclock Capture Procedure

Procedures {
 "multiclock_capture" {
 W "_multiclock_capture_WFT_";
 C {
 "all_inputs" = 00 \r91 N 111 \r14 0 \r33 N 1 \r32 N;
 "all_outputs" = \r165 X;
 "all_bidirectionals" = ZZZ;
 }
 F {
 "i_scan_block_sel[0]" = 1;
 "i_scan_block_sel[1]" = 1;
 "i_scan_compress_mode" = 0;
 "i_scan_testmode" = 1;
 }
 V {
 "_po" = \r168 #;
 "_pi" = \r179 #;
 }
 }
}

As is the case with all capture procedures, the single-vector form of multiclock_capture
requires the timing in the WaveformTable to follow the TetraMAX event order for captures
(preclock strobe timing). This means that all input transitions must occur first, all output
measures must occur next, and all clock pulses must be defined as the last event.

Example 10-3 shows a multiclock_capture WaveformTable.

Example 10-3 Example of a multiclock_capture WaveformTable

WaveformTable "_multiclock_capture_WFT_" {
 Period '100ns';
 Waveforms {
 "all_inputs" {
 0 {
 '0ns' D;
 }
 }
 "all_inputs" {
 1 {
 '0ns' U;
 }
 }
 "all_inputs" {
 Z {
 '0ns' Z;
 }
 }
 "all_bidirectionals"{
 T {
Chapter 10: Exporting Data to Other Tools
Exporting a Design to TetraMAX ATPG 10-8

DFT Compiler Scan User Guide Version H-2013.03-SP4
 '0ns' Z;
 '40ns' T;
 }
 }
 "all_bidirectionals" {
 L {
 '0ns' Z;
 '40ns' L;
 }
 }
 "all_outputs" {
 X {
 '0ns' X;
 '40ns' X;
 }
 }
 "all_outputs" {
 H {
 '0ns' X;
 '40ns' H;
 }
 }
 "all_outputs" {
 T {
 '0ns' X;
 '40ns' T;
 }
 }
 "all_outputs" {
 L {
 '0ns' X;
 '40ns' L;
 }
 }
 "i_scan_clk_sclk2_in" {
 P {
 '0ns' D;
 '45ns' U;
 '55ns' D;
 }
 }
 "i_scan_clk_sclkd" {
 P {
 '0ns' D;
 '45ns' U;
 '55ns' D;
 }
 }
 "i_resetin" {
 P {
 '0ns' U;
 '45ns' D;
 '55ns' U;
Chapter 10: Exporting Data to Other Tools
Exporting a Design to TetraMAX ATPG 10-9
Chapter 10: Exporting Data to Other Tools
Exporting a Design to TetraMAX ATPG 10-9

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
 }
 }
 }
}

Writing a Protocol File With a Single Clock Capture Procedure

You can write out a protocol file that uses a single clock capture procedure for all clocks (also
known as the legacy three-vector capture procedure) by specifying the
-capture_procedure single_clock option-argument of the create_test_protocol
command. Example 10-4 shows a single_clock procedure.

Example 10-4 Example of a single_clock Capture Procedure

Procedures {
 "capture_clk_st"{
 W "_default_WFT_";
 C {"all_inputs" = 0\r59 N 0;
 "all_outputs" = \r46 X;}
 F {"test_mode" = 0;}
 "forcePI": V {"_pi" = \r61 #;}
 "measurePO": V {"_po" = \r46 #;}
 "pulse": V {"clk_st" = P;}
 }
 "capture_pclk"{
 W "_default_WFT_";
 C {"all_inputs" = 0\r59 N 0;
 "all_outputs" = \r46 X;}
 F {"test_mode" = 0;}
 "forcePI": V {"_pi" = \r61 #;}
 "measurePO": V {"_po" = \r46 #;}
 "pulse": V { "pclk" = P;}
 }
 "capture_rstn"{
 W "_default_WFT_";
 C {"all_inputs" = 0\r59 N 0;
 "all_outputs" = \r46 X; }
 F {"test_mode" = 0;}
 "forcePI": V {"_pi" = \r61 #;}
 "measurePO": V {"_po" = \r46 #;}
 "pulse": V {"rstn" = P;}
 }
 }

Using Allclock Capture Procedures

The allclock procedures are used for transition delay and path delay ATPG. One set of
generic allclock procedures can replace clock specific at-speed capture-launch procedures.
DFT Compiler copies the _default_WFT_ WaveformTable to each of the WaveformTables of
Chapter 10: Exporting Data to Other Tools
Exporting a Design to TetraMAX ATPG 10-10

DFT Compiler Scan User Guide Version H-2013.03-SP4
the allclock procedure. You need to modify the timing information in the allclock
WaveformTables to synchronize with the timing that will be used for the at-speed testing in
TetraMAX ATPG.

By default, an allclock procedure applies to a single vector, although it doesn’t have to carry
the redundant clock parameter. An allclock procedure may reference any WaveformTable for
each operation.

For examples of allclock procedures, see Example 10-5, Example 10-6, and Example 10-7.

Example 10-5 Example of Allclock Procedures

 "allclock_capture" {
 W "_allclock_capture_WFT_";
 C {
 "all_inputs" = 00 \r91 N 111 \r14 0 \r33 N 1 \r32 N;
 "all_outputs" = \r165 X;
 "all_bidirectionals" = ZZZ;
 }
 F {
 "i_scan_block_sel[0]" = 1;
 "i_scan_block_sel[1]" = 1;
 "i_scan_compress_mode" = 0;
 "i_scan_testmode" = 1;
 }
 V {
 "_po" = \r168 #;
 "_pi" = \r179 #;
 }
 }
 "allclock_launch" {
 W "_allclock_launch_WFT_";
 C {
 "all_inputs" = 00 \r91 N 111 \r14 0 \r33 N 1 \r32 N;
 "all_outputs" = \r165 X;
 "all_bidirectionals" = ZZZ;
 }
...

 F {
...
 }
 V {
 "_po" = \r168 #;
 "_pi" = \r179 #;
 }
 }
 "allclock_launch_capture" {
 W "_allclock_launch_capture_WFT_";
 C {
 "all_inputs" = 00 \r91 N 111 \r14 0 \r33 N 1 \r32 N;
 "all_outputs" = \r165 X;
 "all_bidirectionals" = ZZZ;
Chapter 10: Exporting Data to Other Tools
Exporting a Design to TetraMAX ATPG 10-11
Chapter 10: Exporting Data to Other Tools
Exporting a Design to TetraMAX ATPG 10-11

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
 }
 F {
 "i_scan_block_sel[0]" = 1;
 "i_scan_block_sel[1]" = 1;
 "i_scan_compress_mode" = 0;
 "i_scan_testmode" = 1;
 }
 V {
 "_po" = \r168 #;
 "_pi" = \r179 #;
 }
 }

In Example 10-6, a _default _WFT timing is copied to an allclock _capture procedure.

Example 10-6 allclock_capture WaveformTable With Default Timing

WaveformTable "_allclock_capture_WFT_" {
 Period '100ns';
 Waveforms {
 "all_inputs" {
 0 {
 '0ns' D;
 }
 }
...
"all_bidirectionals" {
 L {
 '0ns' Z;
 '40ns' L;
 }
 }
...
"all_outputs" {
 L {
 '0ns' X;
 '40ns' L;
 }
 }
 "i_HEAD_PIPE_REG_CLK" {
 P {
 '0ns' D;
 '45ns' U;
 '55ns' D;
 }
 }
...

Example 10-7 shows an updated WaveformTable timing copied to an allclock_capture
procedure.

Example 10-7 allclock_capture Procedure WaveformTable With Updated Timing

WaveformTable "_allclock_capture_WFT_" {
Chapter 10: Exporting Data to Other Tools
Exporting a Design to TetraMAX ATPG 10-12

DFT Compiler Scan User Guide Version H-2013.03-SP4
 Period '10ns';
 Waveforms {
 "all_inputs" {
 0 {
 '0ns' D;
 }
 }
...
"all_bidirectionals" {
 L {
 '0ns' Z;
 '4ns' L;
 }
 }
...
"all_outputs" {
 L {
 '0ns' X;
 '4ns' L;
 }
 }
 "i_HEAD_PIPE_REG_CLK" {
 P {
 '0ns' D;
 '5ns' U;
 ‘6ns' D;
 }
 }
...

Limitation in the Generic Capture Procedures

A limitation associated with the capture procedures is the following:

• The _default_WFT timing is copied to the allclock WaveformTables (launch_WFT,
capture_WFT, launch_capture_WFT). You need to modify these WaveformTables with
the correct timing before running at-speed ATPG (transition delay, path delay).

For more information on generic capture procedures, see the “STIL Procedure Files” topic
in the TetraMAX Online Help.

Exporting Your Design to TetraMAX ATPG
The following steps work only if your design is completely chain-routed and you have
successfully validated the scan chains by inspecting the outputs generated by the dft_drc
and report_scan_path -chain all commands.
Chapter 10: Exporting Data to Other Tools
Exporting a Design to TetraMAX ATPG 10-13
Chapter 10: Exporting Data to Other Tools
Exporting a Design to TetraMAX ATPG 10-13

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
To export your design to TetraMAX ATPG, do the following:

1. Before starting any work with DFT Compiler, including scan insertion, set the test timing
variables to the values specified by your ASIC vendor. If your ASIC vendor does not have
specific requirements, the following defaults achieve the best results from TetraMAX
ATPG:

dc_shell> set_app_var test_default_delay 0
dc_shell> set_app_var test_default_bidir_delay 0
dc_shell> set_app_var test_default_strobe 40
dc_shell> set_app_var test_default_period 100

These are the default settings; you do not need to add them to your script.

2. Identify the netlist format that you are exporting to TetraMAX ATPG, using the
test_stil_netlist_format environment variable. The syntax is

set_app_var test_stil_netlist_format db |verilog | vhdl

It is important that you identify the netlist format because TetraMAX ATPG handles
difficult names, such as those for buses and escaped characters in Verilog, according to
the language used in the netlist.

3. Guide netlist formatting by setting the environment variables that affect how designs are
written out.

Note:
Set the environment variables before you write out the netlist or STIL procedure file.

For example, if you want vectored ports in your Verilog design to be bit-blasted, set the
verilogout_single_bit variable to true. For more information about environment
variables that affect how designs are written out, see the HDL Compiler for Verilog User
Guide or the HDL Compiler for VHDL User Guide.

4. Check for design rule violations by entering the dft_drc command:

dc_shell> dft_drc

For information on these commands, see Chapter 5, “Pre-Scan Test Design Rule
Checking.”

Fix any design rule violations. Repeat the dft_drc command until no design rule
violations are found.

5. Write out the netlist. For example, to write out a Verilog netlist, use the following
command:

dc_shell> write -format verilog -hierarchy \
 -output filename.v

6. Write out the test protocol file, using the STIL protocol. Enter the following command:

dc_shell> write_test_protocol -output protocol.spf
Chapter 10: Exporting Data to Other Tools
Exporting a Design to TetraMAX ATPG 10-14

DFT Compiler Scan User Guide Version H-2013.03-SP4
All of the information that TetraMAX ATPG requires to create ATPG vectors, such as scan
pins and constrained signals, is found in the STIL procedure file.

SCANDEF-Based Reordering Flow

DFT Compiler can generate SCANDEF information that describes scan chain ordering
requirements. You can use this SCANDEF information in the IC Compiler tool to perform
scan chain reordering and to fix timing violations based on physical information, or you can
perform scan chain reordering using other place-and-route tools.

This section has the following subsections:

• Overview

• Generation of SCANDEF Information

• Generating SCANDEF Information for Typical Flows

• Generating SCANDEF Information for Hierarchical Flows

• Hierarchical SCANDEF Flow Support

• Impact of DFT Configuration Specification on SCANDEF Generation

• Support for Other DFT Features

• Limitations With SCANDEF Generation

Overview
Additional routing is required when you add scan chains to designs. To meet die size and
timing requirements, you need to reduce the amount of routing as much as possible. One
way to do this is to reorder scan chains.

The physical scan chain implementation in the IC Compiler tool consists of the ability, first,
to read and check the integrity of the SCANDEF information and, second, to perform
physical scan chain optimization.

Reordering of scan chains in place-and-route tools requires information about the scan
chains that exist in the design. This is because there can be aspects of the scan chains,
such as lock-up latches, clock-mixing, or user-defined scan paths or scan segments, that
must be considered during reordering. This information can be generated from DFT
Compiler in SCANDEF form. The SCANDEF information specifies a list of “stub” chains that
can be reordered by another tool. The boundaries of these stub chains can be I/O ports,
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-15
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-15

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
lock-up latches, or multiplexers. Therefore, the stub chains are not usually identical to scan
chains, so the number of scan chains (stubs) defined in the SCANDEF information does not
necessarily match the chain count specified during scan chain architecting.

Generation of SCANDEF Information
The tasks you must perform to generate SCANDEF information are described in the
following sections:

• Reading and Compiling the Design

• Specifying the Scan Configuration

• Writing Out the SCANDEF Information

Reading and Compiling the Design
You must first read your design into dc_shell. If your design is an HDL source file, you must
compile it, using either the compile or the compile -scan command. For more information,
see the Design Compiler documentation and Chapter 5, “Pre-Scan Test Design Rule
Checking.”

Specifying the Scan Configuration
Make sure you properly set up the intended scan design by using the
set_scan_configuration command. With this command, you describe such items as
clock mixing, scan style, and the number of scan chains.

For more information on the set_scan_configuration command, see Chapter 6,
“Architecting Your Test Design.”

Writing Out the SCANDEF Information
In the step before place and route, the insert_dft command generates SCANDEF
information for the place-and-route tools. To generate the SCANDEF information,

1. Execute the insert_dft command.

2. If you are using Design Compiler topographical mode, perform an incremental compile
with the compile_ultra -incremental -scan command.

3. Execute the change_names command with the necessary name rules.

4. Generate the SCANDEF information with the write_scan_def command:

dc_shell> write_scan_def -output filename.scandef
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-16

DFT Compiler Scan User Guide Version H-2013.03-SP4
This command writes out the SCANDEF information to the specified file name. It also
annotates the current design in memory with the SCANDEF information.

5. Write out the required output files, depending on your layout flow:

❍ If you are using the IC Compiler tool, write out the design with the write -format
ddc command. The resulting .ddc file contains the SCANDEF information. the
IC Compiler tool does not need the SCANDEF file from the previous step, but you can
use the file for reference.

❍ If you are using a layout tool other than the IC Compiler tool, write out the design with
the write -format verilog command. The layout tool also needs the SCANDEF
file from the previous step.

Note:
You must execute the write_scan_def command to annotate the scan ordering
information onto the current design, even when using the .ddc flow.

Next, run your place-and-route tools to generate a new scan chain routing order.

Generating SCANDEF Information for Typical Flows
The complete flow capturing the generation of SCANDEF information is as follows:

read_file -format ddc top.ddc
current_design top
set_scan_configuration -style multiplexed_flip_flop
set_dft_signal -view existing_dft -type ScanClock \
 -port clock -timing [list 45 55]
create_test_protocol
dft_drc
preview_dft
insert_dft
change_names ...
write_scan_def -output my_def.scandef
write_test_protocol -output test_mode.spf
write -format verilog -hierarchy -output top.v
write -format ddc -hierarchy -output top.ddc

Generating SCANDEF Information for Hierarchical Flows
The following flow is used at the top level to generate SCANDEF information in hierarchical
flows:

Reading top-level design
read_verilog top.v
Reading test-models
read_test_model -format ddcblock.ctlddc
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-17
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-17

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
current_design top
link
set_scan_configuration -style multiplexed_flip_flop
set_dft_signal -view existing_dft -type ScanClock \
 -port clock -timing [list 45 55]
create_test_protocol
dft_drc
preview_dft
insert_dft
change_names ...
write_scan_def -output my_def.scandef
write_test_protocol -output test_mode.spf
Removing the test-model blocks so that Design Compiler
does not write empty modules for the blocks
remove_design block
write -format verilog -hierarchy -output top.v
write -format ddc -hierarchy -output top.ddc

Hierarchical SCANDEF Flow Support
Hierarchical Scan Synthesis flows represent a DFT-inserted core by a core test language
model (CTL model). You can use CTL models instead of the netlist representation of the
subblocks during chip-level scan integration. In such cases, the SCANDEF information
represents the scan segments within these subblocks as black-box segments. This
representation permits repartitioning of the segment as a whole but does not permit the
reordering of cells within the segments. This feature allows DFT Compiler to write the scan
cells of the subblocks, so the tool can reorder the subblock scan cells along with the
chip-level scan cells.

DFT Commands
Use the write_scan_def command with the -expand_elements option at the chip level to
write SCANDEF information that includes the scan cells inside cores.

dc_shell> write_scan_def -expand_elements list_of_instances

The -expand_elements option is used to specify a list of instances abstracted into CTL
models. The scan segments of these models must be treated as “flat,” fully visible segments
when generating the chip-level SCANDEF information.

The default behavior is to treat all instances abstracted into CTL models as black boxes. This
means that they are represented in the SCANDEF information by the BITS construct.

Hierarchical SCANDEF Flows
Figure 10-1 shows the hierarchical SCANDEF flow.
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-18

DFT Compiler Scan User Guide Version H-2013.03-SP4
Figure 10-1 Hierarchical SCANDEF Flow

In this flow, the block is logically optimized and DFT-complete before chip-level integration.
Test information of the block is abstracted in CTL models. (You can also choose to abstract

FP/PNR/reordering

compile_ultra -scan

insert_dft

compile_ultra -scan -incr

Finish

compile_ultra -scan

insert_dft

compile_ultra -scan -incr

Design Compiler/Design Compiler Topographical

Block Level

Chip Level

IC Compiler

Netlist
(block .ddc)

ILM
(block .ddc)

Netlist
(top .ddc)

RTL

CTLCTL

SCANDEF
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-19
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-19

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
the block into an ILM representation.) During chip integration, you can choose to use the full
netlist or the ILM representation of the block to perform optimizations.

The block CTL model can be used to insert chip-level DFT without disturbing the block-level
DFT structures in a hierarchical scan synthesis flow. Using the block-level CTL model or the
complete netlist, the chip-level SCANDEF information can be generated by treating the
block-level scan segments either as black-box segments or as flat, fully visible segments.
The IC Compiler tool uses the full netlist representation of the block to perform global
physical optimizations. You can choose which blocks are flattened at the chip-level
SCANDEF generation by using the -expand_elements option of the write_scan_def
command.

The following hierarchical SCANDEF flows are supported:

• Flow 1 – The block-level CTL models are used for DFT insertion at the chip level.

• Flow 2 – The complete block-level netlists (.ddc files) along with the block-level
SCANDEF information are used for DFT insertion at the chip level.

• Flow 3 – The complete block-level netlists (.ddc files) are used for DFT insertion at the
chip level.

Flow 1

Block level

read_ddc sub1_test_ready.ddc
current_design sub1
set_scan_configuration -chain_count 10
set_dft_signal -port clock -type Scanclock -view existing_dft \
 -timing [list 45 55]
create_test_protocol
dft_drc
preview_dft
insert_dft
compile_ultra -incremental -scan
dft_drc
change_names -rules verilog -hierarchy
write_scan_def -output sub1.scandef
write_test_model -output sub1.ctlddc -format ddc
write -f verilog -hierarchy -output sub1.v
write_test_protocol -output sub1_scan.spf

Chip level

read_verilog ./top.v
read_ddc sub1.ctlddc
read_ddc sub2.ctlddc
current_design TOP
link
set_scan_configuration -chain_count 10
set_dft_signal -port clock -type Scanclock -view existing_dft \
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-20

DFT Compiler Scan User Guide Version H-2013.03-SP4
 -timing [list 45 55]
create_test_protocol
dft_drc
preview_dft
insert_dft
write_scan_def -output top.scandef \
 -expand_elements [list inst_sub1 inst_sub2]

Note that inst_sub1 and inst_sub2 are the instance names of modules sub1 and sub2,
respectively.

Flow 2

Block level

read_ddc sub1_test_ready.ddc
current_design sub1
set_scan_configuration -chain_count 10
set_dft_signal -port clock -type Scanclock -view existing_dft \
 -timing [list 45 55]
create_test_protocol
dft_drc
preview_dft
insert_dft
compile_ultra -incremental -scan
dft_drc
change_names -rules verilog -hierarchy
write_scan_def -output ./sub1.scandef
write -format ddc -output ./sub1.ddc -hierarchy

Chip level

read_verilog ./top.v
read_ddc sub1.ddc
read_ddc sub2.ddc
current_design TOP
link
set_scan_configuration -chain_count 10
set_dft_signal -port clock -type Scanclock -view existing_dft \
 -timing [list 45 55]
create_test_protocol
dft_drc
preview_dft
insert_dft
write_scan_def -output top.scandef \
 -expand_elements [list inst_sub1 inst_sub2]

Note that inst_sub1 and inst_sub2 are the instance names of modules sub1 and sub2,
respectively.
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-21
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-21

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Flow 3

Block level

read_ddc sub1_test_ready.ddc
current_design sub1
set_scan_configuration -chain_count 10
set_dft_signal -port clock -type Scanclock -view existing_dft \
 -timing [list 45 55]
create_test_protocol
dft_drc
preview_dft
insert_dft
compile_ultra -incremental -scan
dft_drc
change_names -rules verilog -hierarchy
write -format ddc -output ./sub1.ddc -hierarchy

Chip level

read_verilog ./top.v
read_ddc sub1.ddc
read_ddc sub2.ddc
current_design TOP
link
set_scan_configuration -chain_count 10
set_dft_signal -port clock -type Scanclock -view existing_dft \
 -timing [list 45 55]
create_test_protocol
dft_drc
preview_dft
insert_dft
write_scan_def -output top.scandef\
 -expand_elements [list inst_sub1 inst_sub2]

Note that inst_sub1 and inst_sub2 are the instance names of modules sub1 and sub2,
respectively.

Limitations

Note the following limitations of hierarchical SCANDEF flows:

• The expanded hierarchical SCANDEF is based solely on the unexpanded hierarchical
SCANDEF; that is, the expanded SCANDEF can only include cells that are represented
by the BITS construct in the unexpanded version.

• In Flow 1, where you use block-level test models for chip-level DFT insertion, you need
to write SCANDEF information at the block level before writing out a CTL model.

• In Flow 3, where you use the block-level netlists for chip-level DFT insertion and do not
write SCANDEF information before writing the netlist, the block-level scan constraints,
such as scan_path or scan_group, are not considered when expanding.
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-22

DFT Compiler Scan User Guide Version H-2013.03-SP4
Impact of DFT Configuration Specification on SCANDEF
Generation
The impact of the specified DFT configuration on the final SCANDEF information is shown
in the following test cases.

Consider a design with a set of scan flip-flops, f1, f2, f3, f4.

Case 1
set_scan_path chain1 -exact_length 2

The scan elements in this scan chain can be swapped with those of other scan chains. The
SCANDEF information is as follows:

- CHAIN1
+ START PIN test_si
+ FLOATING f1 (IN SDI) (OUT Q)
 f2 (IN SDI) (OUT Q)
+ STOP PIN test_so ;
+ PARTITION CLOCK1_45_55

Case 2
set_scan_path chain1 \
 -head_elements {f1} -tail_elements {f3} -include_elements {f4}

The SCANDEF information is as follows:

- CHAIN1
+ START f1 Q
+ FLOATING f4 (IN SDI) (OUT Q)
+ STOP f3 SD1 ;

In this case, because we have some include elements, the “def” scan chain does not have
the PARTITION attribute.

Case 3
set_scan_path chain1 -include_elements {f4} -exact_length 2

This case is a combination of case 1 and case 2. The element f4 must belong to the scan
chain and cannot be used for partitioning. Elements that are added are swapped with other
scan chains. However, due to the DEF format limitation, consider all the elements as
INCLUDE constructs. Therefore, if f2 is the added element, the SCANDEF is as follows:

- CHAIN1
+ START PIN test_si
+ FLOATING f4 (IN SDI) (OUT Q)
 f2 (IN SDI) (OUT Q)
+ STOP PIN test_so ;
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-23
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-23

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Case 4
set_scan_path chain1 -ordered_elements {f2 f3}

The SCANDEF information is as follows:

- CHAIN1
+ START PIN test_si
+ FLOATING f1 (IN SDI) (OUT Q)
 f4 (IN SDI) (OUT Q)
+ ORDERED f2 (IN SDI) (OUT Q)
 f3 (IN SDI) (OUT Q)
+ PARTITION CLOCK1_45_55
+ STOP PIN test_so ;

Within a stub chain, all FLOATING elements are listed first, followed by all ORDERED
elements.

Case 5
set_scan_path chain1 -include_elements {f1 f2} -complete

In this case, the scan chain is not modified. The SCANDEF information is as follows:

- CHAIN1
+ START PIN test_si
+ ORDERED f1 (IN SDI) (OUT Q)
 f2 (IN SDI) (OUT Q)
+ STOP PIN test_so ;

Case 6
set_scan_group group1 -include_elements {f1 f2} -serial_routed true
set_scan_path chain1 -include_elements {group1 f3 f4}

The SCANDEF is as follows:

- CHAIN1
+ START PIN test_si
+ ORDERED f1 (IN SDI) (OUT Q)
 f2 (IN SDI) (OUT Q)
+ FLOATING f3 (IN SDI) (OUT Q)
 f4 (IN SDI) (OUT Q)
+ STOP PIN test_so

Case 7
set_scan_group group1 -include_elements {f1 f2} -serial_routed false
set_scan_path chain1 -include_elements {group1 f3 f4 f5 f6}
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-24

DFT Compiler Scan User Guide Version H-2013.03-SP4
Consider that test_si and test_so signify the scan-in and the scan-out ports of the scan
chain, chain1. Then, two subchains are considered and the SCANDEF information is as
follows:

- SUB_GP1
+ START PIN test_si
+ FLOATING f1 (IN SDI) (OUT Q)
 f2 (IN SDI) (OUT Q)
+ STOP f3 SDI ;

-SUB_GP2
+ START f3 q ;
+ FLOATING f4 (IN SDI) (OUT Q)
 f5 (IN SDI) (OUT Q)
 f6 (IN SDI) (OUT Q)
+ STOP PIN test_so;

Case 8

Consider a top-level design with some flip-flops and a test model for a block—block1 with
scan ports test_si1 and test_so1 and a scan chain of length 20. The SCANDEF is as
follows:

- SUB_GP1
+ START PIN test_si
+ FLOATING f1 (IN SDI) (OUT Q)
 f2 (IN SDI) (OUT Q)
 block1 (IN test_si1) (OUT test_so1) (BITS 20)
+ PARTITION pll_clk3_clk_45_45
+ STOP f3 SDI ;

The value of the BITS parameter indicates the length of the scan chain in the CTL model.
This length is maintained during partitioning.

Case 9

Consider a design in which the scan chain begins with a scan port test_si and ends at
scan port test_so. When you run insert_level_shifters, consider the level shifters to
be inserted at the test ports. The SCANDEF information is as follows:

- SUB_GP1
+ START LS_test_si Y
+ FLOATING f1 (IN SDI) (OUT Q)
 f2 (IN SDI) (OUT Q)
+ PARTITION pll_clk3_clk_45_45
+ STOP LS_test_so A;

Here, LS_test_si and LS_test_so are the inserted level shifters. So, the chain begins at
the output of the LS_test_si level shifter and ends at the input of the LS_test_so level
shifter.
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-25
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-25

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
Case 10

Consider a design in which the registers f1, f2, and f3 have been inferred as a shift register.
The SCANDEF information is as follows:

- CHAIN1
+ START PIN test_si
+ ORDERED f1 (IN SDI) (OUT Q)
 f2 (IN D) (OUT Q)
 f3 (IN D) (OUT Q)
+ FLOATING f4 (IN SDI) (OUT Q)
+ STOP PIN test_so

The shift register is written using an ORDERED construct.

PARTITION Label Naming Convention

In a SCANDEF file, the PARTITION keyword specifies the partition name for a stub chain.
Partition names describe how scan cells can be moved between different stub chains. Scan
cells can be moved between partitions that share the same name. If a stub chain does not
have a PARTITION keyword, its scan cells cannot be moved into other chains.

The partition naming convention for the different scenarios is as follows:

• MUX-D style without multivoltage

<clock_name>_<capture_time_of_first_state_of_first_segment_of_chain>_
<launch_time_of_last_state_of_last_segment_of_chain>

• MUX-D style with multivoltage

<clock_name>_<capture_time_of_first_state_of_first_segment_of_chain>_
<launch_time_of_last_state_of_last_segment_of_chain>_
<voltage_domain>_<power_domain>

• LSSD style when test_lssd_no_mix is FALSE

SNPS_LSSD_<clock_name>_<master_clock_name>_<slave_clock_name>_
<voltage_domain>_<power_domain>

• LSSD style when test_lssd_no_mix is TRUE

SNPS_LSSD_<clock_name>_<chain_system_clock_name>_<master_clock_name>_
<slave_clock_name>_<voltage_domain>_<power_domain>

• LSSD style with X-chains

LSSD_X_<clock_name>_<master_clock_name>_<slave_clock_name>_
<voltage_domain>_<power_domain>
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-26

DFT Compiler Scan User Guide Version H-2013.03-SP4
• Scan-enabled LSSD style without multivoltage

<clock_name>_<capture_time_of_first_state_of_first_segment_of_chain>_
<launch_time_of_last_state_of_last_segment_of_chain>

• Scan-enabled LSSD style with multivoltage

<clock_name>_<capture_time_of_first_state_of_first_segment_of_chain>_
<launch_time_of_last_state_of_last_segment_of_chain>_
<voltage_domain>_<power_domain>

• Multiple test-mode SCANDEF generation

<clock_name>_<capture_time_of_first_state_of_first_segment_of_chain>_
<launch_time_of_last_state_of_last_segment_of_chain>_
M1[_M2_...additional_modes]

• Multiple test-mode SCANDEF generation when test_enable_multi_mode_scan_def
is true

<clock_name>_<capture_time_of_first_state_of_first_segment_of_chain>_
<launch_time_of_last_state_of_last_segment_of_chain>_<voltage_domain>_
<power_domain>_M1[_M2_...additional_modes]

For wrapper chains, WRPSI_, WRPSO_ and WRPS_ are the corresponding keywords used
to represent the different wrapper chains.

If you specify the -include_elements option in a set_scan_path command for a scan
chain, that chain in the SCANDEF information does not have the PARTITION label because
scan chain membership has higher precedence than repartitioning.

Support for Other DFT Features
The following DFT features are supported:

• Standard scan and compressed scan

• Multiple test-mode scan

• Internal pins

• Memories with test models

• Multivoltage support

• Hierarchical flows (with test models)

• PLL flows
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-27
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-27

DFT Compiler Scan User Guide H-2013.03-SP4DFT Compiler Scan User Guide Version H-2013.03-SP4
• Core wrapping

• Shift registers

Limitations With SCANDEF Generation
SCANDEF is not supported for the following:

• BSD Compiler

• Scan extraction flows that have combinational logic between two adjacent scan flip-flops
Chapter 10: Exporting Data to Other Tools
SCANDEF-Based Reordering Flow 10-28

	Preface
	Key Design-for-Test Flows and Methodologies
	Design-for-Test Flows in the Logic Domain
	Unmapped Design Flow
	Synthesizing Your Design
	Postprocessing Your Design
	Building Scan Chains

	Mapped Design Flow
	Reading In Your Design
	Performing Scan Replacement and Building Scan Chains

	Mapped Designs With Existing Scan Flow
	Reading In Your Design
	Checking Test Design Rules

	Designing Block by Block
	Controlling Scan Replacement During Scan Insertion

	Hierarchical Scan Synthesis Flow
	Introduction to Test Models
	Linking Test Models to Library Cells
	Checking Library Cells for CTL Model Information
	Scan Assembly Using Test Models
	Saving Test Models for Subdesigns
	Using Test Models
	Reading Designs Into TetraMAX
	Managing Test Models
	Top-Level Integration
	Hierarchical ScanEnable Integration

	DFT Flows in Design Compiler Topographical Mode
	Supported DFT Features
	DFT Insertion in Design Compiler Topographical Mode
	Hierarchical Support in Design Compiler Topographical Mode
	Top-Level Design Stitching Flow
	Performing a Bottom-up or Hierarchical Compile

	Scan Insertion Methodologies
	Bottom-Up Scan Insertion
	Top-Down Scan Insertion

	DFT Compiler Default Scan Synthesis Approach
	Scan Replacement
	Scan Element Allocation
	Test Signals
	Pad Cells
	Area and Timing Optimization

	Getting the Best Results With Scan Design
	DFT Compiler and Power Compiler Interoperability
	Improving Testability in Clock Gating
	Inserting Control Points in Control Clock Gating
	Scan-Enable Signal Versus Test-Mode Signal
	Inserting Observation Points to Control Clock Gating
	Choosing a Depth for Observability Logic

	Power Compiler/DFT Compiler Interoperability Flows
	Using Test-Mode Signals With Power Compiler
	Using Scan-Enable Signals With Power Compiler

	Connecting Test Pins to Clock-Gating Cells Using the insert_dft Command
	Design Requirements
	Hookup Testport Connections
	Design Rule Checking Changes

	Specifying Signals for Automatic Clock-Gating Cell Test Pin Connections
	Limitations

	Running RTL Test Design Rule Checking
	Understanding the Flow
	Specifying Setup Variables
	Generating a Test Protocol
	Defining a Test Protocol
	Reading in an Initialization Protocol in STIL Format

	Setting the Scan Style
	Design Examples
	Test Protocol Example 1
	Test Protocol Example 2

	Running RTL Test DRC
	Understanding the Violations
	Violations That Prevent Scan Insertion
	Uncontrollable Clocks
	Asynchronous Control Pins in Active State

	Violations That Prevent Data Capture
	Clock Used As Data
	Black Box Feeds Into Clock or Asynchronous Control
	Source Register Launch Before Destination Register Capture
	Registered Clock-Gating Circuitry
	Three-State Contention
	Clock Feeding Multiple Register Inputs

	Violations That Reduce Fault Coverage
	Combinational Feedback Loops
	Clocks That Interact With Register Input
	Multiple Clocks That Feed Into Latches and Flip-Flops
	Black Boxes

	Limitations

	Running the Test DRC Debugger
	Starting and Exiting the Graphical User Interface
	Exploring the Graphical User Interface
	Logic Hierarchy View
	Console
	Command Line
	Viewing Man Pages
	Menus
	Checking Scan Test Design Rules
	Examining DRC Violations
	Viewing Test Protocols

	Viewing Design Violations
	Examining DRC Violations
	Inspecting DRC Violations
	Inspecting Static DRC Violations
	Inspecting Dynamic DRC Violations

	Commands Specific to the DFT Tools in the GUI
	gui_inspect_violations
	gui_wave_add_signal
	gui_violation_schematic_add_objects

	Performing Scan Replacement
	Scan Replacement Flow
	Preparing for Scan Replacement
	Selecting a Scan Replacement Strategy
	Identifying Barriers to Scan Replacement
	Logic Library Does Not Contain Appropriate Scan Cells
	Support for Different Types of Sequential Cells and Violations
	Attributes That Can Prevent Scan Replacement
	Invalid Clock Nets
	Invalid Asynchronous Pins

	Preventing Scan Replacement

	Specifying a Scan Style
	Types of Scan Styles
	Multiplexed Flip-Flop Scan Style
	Clocked Scan Style
	LSSD Scan Style
	Scan-Enabled LSSD Scan Style

	Scan Style Considerations
	Setting the Scan Style

	Verifying Scan Equivalents in the Logic Library
	Checking the Logic Library for Scan Cells
	Checking for Scan Equivalents

	Scan Cell Replacement Strategies
	Specifying Scan Cells
	Restricting the List of Available Scan Cells
	Scan Cell Replacement Strategies
	Mapping Sequential Gates in Scan Replacement

	Multibit Components
	What Are Multibit Components?
	How DFT Compiler Assimilates Multibit Components
	Controlling Multibit Test Synthesis
	Performing Multibit Component Scan Replacement
	Disabling Multibit Component Support

	Test-Ready Compilation
	What Is Test-Ready Compile?
	The Test-Ready Compile Flow

	Preparing for Test-Ready Compile
	Performing Test-Ready Compile in the Logic Domain

	Controlling Test-Ready Compile
	Comparing Default Compile and Test-Ready Compile
	Complex Compile Strategies

	Validating Your Netlist
	Running the link Command
	Running the check_design Command

	Performing Constraint-Optimized Scan Insertion
	Supported Scan States
	Locating Scan Equivalents
	Preparing for Constraint-Optimized Scan Insertion
	Scan Insertion
	Specification Phase
	Preview
	Synthesis

	Pre-Scan Test Design Rule Checking
	Test DRC Basics
	Test DRC Flow
	Preparing Your Design
	Creating the Test Protocol
	Assigning a Known Logic State
	Performing Test Design Rule Checking
	Reporting All Violating Instances
	Analyzing and Debugging Violations
	Summary of Violations
	Enhanced Reporting Capability

	Test Design Rule Checking Messages
	Understanding Test Design Rule Checking Messages

	Effects of Violations on Scan Replacement
	Viewing the Sequential Cell Summary

	Classifying Sequential Cells
	Sequential Cells With Violations
	Cells With Scan Shift Violations
	Black-Box Cells
	Constant Value Cells

	Sequential Cells Without Violations

	Checking for Modeling Violations
	Black-Box Cells
	Correcting Black-Box Cells

	Unsupported Cells
	Generic Cells
	Scan Cell Equivalents
	Scan Cell Equivalents and the dont_touch Attribute

	Latches
	Nonscan Latches

	Setting Test Timing Variables
	Protocols for Common Design Timing Requirements
	Strobe-Before-Clock Protocol
	Strobe-After-Clock Protocol

	Setting Timing Variables
	test_default_period Variable
	test_default_delay Variable
	test_default_bidir_delay Variable
	test_default_strobe Variable
	test_default_strobe_width Variable
	The Effect of Timing Variables on Vector Formatting

	Creating Test Protocols
	Design Characteristics for Test Protocols
	Scan Style
	New DFT Signals
	Existing Clock Ports
	Existing Asynchronous Control Ports
	Bidirectional Ports

	STIL Test Protocol File Syntax
	Defining the test_setup Macro
	Defining Basic Signal Timing
	Defining the load_unload Procedure
	Defining the Shift Procedure

	Defining an Initialization Protocol
	Scan Shift and Parallel Measure Cycles
	Multiplexed Flip-Flop Scan Style
	Clocked-Scan Scan Style
	LSSD Scan Style
	Scan-Enabled LSSD Scan Style

	Examining a Test Protocol File
	Updating a Protocol in a Scan Chain Inference Flow

	Masking Capture DRC Violations
	Configuring Capture DRC Violation Masking
	Reporting Capture DRC Violation Masking
	Resetting Capture DRC Violation Masking

	Architecting Your Test Design
	Configuring Your DFT Architecture
	Defining Your Scan Architecture
	Setting Design Constraints
	Defining Constant Input Ports During Scan
	Specifying Test Ports

	Specifying Individual Scan Paths
	Previewing Your Scan Design

	Architecting Scan Chains
	Controlling the Scan Chain Length
	Specifying the Global Scan Chain Length Limit
	Specifying the Global Scan Chain Exact Length

	Determining the Scan Chain Count
	Defining Individual Scan Chain Characteristics
	Balancing Scan Chains
	Multiple Clock Domains
	Multibit Components and Scan Chains

	Controlling the Routing Order
	Preventing Half-Cycle Paths Between Hierarchical Scan Chains
	Routing Scan Chains and Global Signals
	Rerouting Scan Chains
	Stitching Scan Chains Without Optimization
	Specifying a Stitch-Only Design
	Mapping the Replacement of Nonscan Cells to Scan Cells
	Criteria for Conversion Between Nonscan and Scan Cells

	Using Existing Subdesign Scan Chains
	Uniquifying Your Design
	Reporting Scan Path Information on the Current Design

	Architecting Scan Signals
	Specifying Scan Signals for the Current Design
	Selecting Test Ports
	Defining Existing Unconnected Ports as Scan Ports
	Sharing a Scan Input With a Functional Port
	Sharing a Scan Output With a Functional Port
	Controlling Subdesign Scan Output Ports

	Controlling Scan-Enable Connections to DFT Logic
	Associating Scan-Enable Ports With Specific Scan Chains
	Defining Dedicated Scan-Enable Signals for Scan Cells
	Connecting the Scan-Enable Signal in Hierarchical Flows
	Preserving Existing Scan-Enable Pin Connections

	Suppressing Replacement of Sequential Cells
	In Logic Scan Synthesis

	Changing the Scan State of a Design
	Removing Scan Configurations
	Keeping Specifications Consistent
	Synthesizing Three-State Disabling Logic
	Configuring Three-State Buses
	Configuring External Three-State Buses
	Configuring Internal Three-State Buses
	Overriding Global Three-State Bus Configuration Settings
	Disabling Three-State Buses and Bidirectional Ports

	Handling Bidirectional Ports
	Setting Individual Bidirectional Port Behavior
	Fixed Direction Bidirectional Ports

	Assigning Test Port Attributes

	Architecting Test Clocks
	Defining Test Clocks
	Specifying a Hookup Pin for DFT-Inserted Clock Connections
	Requirements for Valid Scan Chain Ordering
	Adding Lock-Up Latches Between Clock Domains
	Adding Lock-Up Latches Within Clock Domains
	Assigning Scan Chains to Specific Clocks
	Handling Multiple Clocks in LSSD Scan Styles
	Using Multiple Master Clocks
	Dedicated Test Clocks for Each Clock Domain
	Controlling LSSD Slave Clock Routing

	Modifying Your Scan Architecture
	Post-Scan Test Design Rule Checking
	Preparing for Test Design Rule Checking After Scan Insertion
	Checking for Topological Violations
	Checking for Scan Connectivity Violations
	Scan Chain Extraction

	Causes of Common Violations
	Ability to Load Data Into Scan Cells
	Incomplete Test Configuration
	Invalid Clock Logic
	Incorrect Clock Timing Relationship
	Nonscan Sequential Cells

	Ability to Capture Data Into Scan Cells
	Clock Driving Data
	Untestable Functional Path
	Uncontrollable Asynchronous Pins

	Advanced DFT Architecture Methodologies
	Performing Scan Extraction
	Inserting Test Points
	Test Point Types
	Force Test Points
	Control Test Points
	Observe Test Points

	Test Point Signals
	Sharing Test Point Scan Cells
	Automatically Inserting Test Points
	Enabling Automatic Test Point Insertion
	Configuring Pattern Reduction and Testability Test Point Insertion
	Previewing the Test Point Logic
	Inserting the Test Point Logic
	Script Example

	Inserting User-Defined Test Points
	Defining User-Defined Test Points
	Previewing the Test Point Logic
	Inserting the Test Point Logic
	User-Defined Test Points Example

	Using AutoFix
	When to Use AutoFix
	Uncontrollable Clock Signals
	Uncontrollable Asynchronous Set and Reset Signals
	Uncontrollable Three-State Bus Enable Signals
	Uncontrollable Bidirectional Enable Signals

	The AutoFix Flow
	Using AutoFix
	Enabling AutoFix Capabilities
	Configuring Clock AutoFixing
	Configuring Set and Reset AutoFixing
	Configuring Three-State Bus AutoFixing
	Configuring Bidirectional AutoFixing
	Applying Hierarchical AutoFix Specifications
	Previewing the AutoFix Implementation

	AutoFix Script Example

	Pipelined Scan-Enable Architecture
	Pipelined Scan-Enable Signals in Hierarchical Flows
	Limitations

	Multiple Test Modes
	Introduction to Multiple Test Modes
	Defining Test Modes
	Defining the Usage of a Test Mode
	Defining the Encoding of a Test Mode

	Applying Test Specifications to a Test Mode
	Using Multiple Test Modes in Hierarchical Flows
	Supported Test Specification Commands for Test Modes
	set_dft_signal
	set_scan_configuration
	set_scan_path

	Multiple Test-Mode Scan Insertion Script Examples

	Multivoltage Support
	Configuring Scan Insertion for Multivoltage Designs
	Configuring Scan Insertion for Multiple Power Domains
	Mixture of Multivoltage and Multiple Power Domain Specifications
	Reusing Multivoltage Cells
	Reusing Level Shifters in Scan Paths
	Reusing Isolation Cells in Scan Paths

	Scan Path Routing and Isolation Strategy Requirements
	Using Domain-Based Strategies for DFT Insertion
	DFT Considerations for Low-Power Design Flows
	Previewing a Multivoltage Scan Chain
	Scan Extraction Flows in the Presence of Isolation Cells
	Limitations

	Controlling Power Modes During Test
	Inserting Power Controller Override Logic
	Limitations

	Power-Aware Functional Output Gating
	Controlling Clock-Gating Cell Test Pin Connections
	Connecting User-Instantiated Clock-Gating Cells
	Script Example
	Limitations

	Excluding Clock-Gating Cells From Test-Pin Connection
	Connecting Clock-Gating Cell Test Pins Without Scan Stitching

	Internal Pins Flow
	Understanding the Architecture
	DFT Commands
	Enabling the Internal Pins Flow
	Specifying Hookup Pins

	Scan Insertion Flow
	Mixing Ports and Internal Pins
	Specifying Equivalency Between External Clock Ports and Internal Pins
	Limitations to the Internal Pins Flow

	Creating Scan Groups
	Configuring Scan Grouping
	Creating Scan Groups
	Removing Scan Groups
	Integrating an Existing Scan Chain Into a Scan Group
	Reporting Scan Groups

	Scan Group Flows
	Known Limitations

	Identification of Shift Registers
	Shift Register Identification in an ASCII Netlist Flow

	Wrapping Cores
	Wrapper Chain Concepts
	Wrapper Cells
	Safe-State Wrapper Cells
	Shared-Register Wrapper Cells

	Wrapper Operation Modes
	Core Wrapping Test Modes

	Core Wrapping Flows
	Simple Core Wrapping Flow
	Reporting the Wrapper Cells
	Wrapper Signal Behavior
	Separating Input and Output Wrapper Cells
	Wrapping Three-State and Bidirectional Ports
	Controlling Wrapper Chain Count and Length
	Using the set_scan_path Command With Wrapper Chains
	Creating User-Defined Wrapper Modes
	DRC Rule Checks
	Multiple Voltage Domains
	SCANDEF Generation

	Maximized Reuse Core Wrapping Flow
	Computing Reuse Threshold Values
	Overriding the Reuse Threshold
	Applying a Combinational Depth Threshold
	Using Dedicated Wrapper Cells
	Previewing Shared Wrapper Cells
	Wrapper Signal Behavior
	Using the Pipelined Scan-Enable Feature
	Low-Power Features
	Hierarchical Core Wrapping
	Limitations of the Maximized Reuse Flow

	Delay Test Core Wrapping Flow
	Wrapper Signal Behavior

	Creating User-Defined Core Wrapping Test Modes
	Wrapping Cores With Existing Scan Chains
	Core Wrapping Scripts
	Core Wrapping With A Dedicated Wrapper
	Core Wrapping With A Shared Wrapper
	Core Wrapping With A Delay Test Wrapper
	Core Wrapping With Shared Delay Wrapper

	On-Chip Clocking Support
	Background
	Supported DFT Flows
	Clock Type Definitions
	Capabilities
	OCC Controller Structure and Operation
	OCC Controller Types
	OCC Controller Signal Operation
	Logic Representation of an OCC Controller
	Scan-Enable Signal Requirements for OCC Controller Operation

	Enabling On-Chip Clocking Support
	OCC Flows
	DFT-Inserted OCC Controller Flow
	Defining Clocks
	Defining Global Signals
	Configuring the OCC Controller
	Specifying Scan Configuration
	Performing Timing Analysis
	Script Example

	Existing User-Defined OCC Controller Flow
	Defining Clocks
	Defining Global Signals
	Specifying Clock Chains
	Specifying Scan Configuration
	Script Example

	Hierarchical On-Chip Clocking Flow
	Script Example for Cores Without Preconnected OCC Signals
	Script Example for Cores With Preconnected OCC Signals

	Reporting Clock Controller Information
	DFT-Inserted OCC Controller Flow
	Existing User-Defined OCC Controller Flow

	DRC Support
	Enabling the OCC Controller Bypass Configuration

	DFT-Inserted OCC Controller Configurations
	Single OCC Controller Configurations
	Example 1
	Example 2
	Example 3

	Multiple DFT-Inserted OCC Controller Configurations
	Example 1
	Example 2

	Waveform and Capture Cycle Example
	Limitations

	Exporting Data to Other Tools
	Verifying DFT Inserted Designs for Functionality
	Verification Setup File Generation
	Test Information Passed to the Verification Setup File
	Script Example
	Formality Tool Limitations

	Exporting a Design to TetraMAX ATPG
	Before Exporting Your Design
	Support for DFT Compiler Commands in TetraMAX ATPG
	Creating Generic Capture Procedures

	Exporting Your Design to TetraMAX ATPG

	SCANDEF-Based Reordering Flow
	Overview
	Generation of SCANDEF Information
	Reading and Compiling the Design
	Specifying the Scan Configuration
	Writing Out the SCANDEF Information

	Generating SCANDEF Information for Typical Flows
	Generating SCANDEF Information for Hierarchical Flows
	Hierarchical SCANDEF Flow Support
	DFT Commands
	Hierarchical SCANDEF Flows

	Impact of DFT Configuration Specification on SCANDEF Generation
	Support for Other DFT Features
	Limitations With SCANDEF Generation

