Basic Processor Design — CISC

o Instruction Length is Variable

— instructions with implied operands will typically be 1 word (i.e. 16 bits)

— instructions with an explicit operand will be 2 words

Single Word Instruction

Instruction

Double Word Instruction

Instruction Data

16 16

The data word contains either the operand itself (immediate addressing mode)
or a value which will be used to calculate the operand address in memory.

Basic Processor Design — CISC

o Register-Memory Architecture

A typical arithmetic or logic instruction will take one operand from a register
and one from memory. It will return the result to a register.

e.g. ADDA 203 A < A + mem(203)
A is the implied operand while 203 is the address of the explicit operand.

o A single instruction may give rise to a complex sequence of events
e.g. JSR +137 SP+ SP -1
mem(SP) < PC
PC + PC + 137

The old value of the program counter is stored on a stack in memory during a jump to subrou-

tine instruction.

Basic Processor Design — CISC

Qleise
How many Data Registers and Address Registers?

The minimum system for this exercise will have just one data register (Accumula-
tor: A) and one address register (Stack Pointer: SP).

e Extra Address Registers.

Having another address register (e.g. Index Register: X) should help to reduce
the number of memory accesses to speed up the processor. It should also help
to simplify the programming.

e Extra Data Registers.
Having another data register (e.g. Accumulator: B) is likely to have less effect
unless you add support for Register-Register arithmetic/logic instructions.

e Multi-Purpose Registers.

For this exercise it may be beneficial to allow any register to be used as either a
data register or an address register, with just one of the registers acting also as
the stack pointer.

Basic Processor Design — CISC

Q2¢rs¢
What Addressing Modes should we support for Arithmetic/Logic/Load

& Store?
Basic addressing modes':

Addressing Mode | Assembly Language Syntax | Semantics
Immediate ADDA #imm A+ A+ imm
Direct ADDA addr A +— A+ mem(addr)
STA addr mem(addr) < A
Indexed with X | ADDA X,offset A+ A+mem(X +of fset)
STA X,offset mem(X +of fset) + A
Indexed with SP | ADDA SP,offset A<+ A+mem(SP +of fset)
STA SP,offset mem(SP +of fset) < A
Stack (pop) ADDA SP++ A+ A+mem(SP); SP+ SP —1
(push) |STA --SP SP + SP —1;mem(SP) + A

1Tt is not necessary to implement all of these modes

4

Basic Processor Design — CISC

Assembly language conventions used here:

#nnn The literal value nnn is the operand

nnn nnn is the address of the operand

Reg,nnn Reg + nnn is the address of the operand
(nnn) nnn is the address of a pointer to the operand

--Reg Reg is pre-decremented before the address is calculated
Reg++ Reyg is post-incremented after the address is calculated

Less useful addressing modes:

Addressing Mode Assembly Language Syntax | Semantics

Indirect ADDA (point_addr) A+ A + mem(mem(point_addr))
(Pre-)Indexed Indirect | ADDA (X, offset) A+ A+ mem(mem(X +of fset))
Indirect (Post-)Indexed | ADDA X, (point_addr) | A < A + mem(X + mem(point_addr))

These modes all use multiple memory accesses to reach data in complex data structures. Since
such data structures are unlikely to be required for this processor, the extra complexity involved in
implementing them is not justified by the benefit gained.

5

Basic Processor Design — CISC

Q3c1sc

What Instructions will we support?

Because we do not need to include an immediate field in the 16 bit instruction

word, we can have more instructions

This is one possible set based on the CISC example processor model in Verilog:

Type Function Mnemonic Function Mnemonic
Arithmetic Add ADDA Subtract SUBA
Add with Carry ADCA Subtract with Borrow SBCA
Logic Bitwise NOT COMA Bitwise AND ANDA
Bitwise OR ORA Bitwise Exclusive OR XORA
Logical Shift Right LSRA Logical Shift Left LSLA
Data Movement | Load LDA,LDX,LDS || Store STA,STX,STS
Control Transfer | Branch Always BA
Branch if Equal BEQ Branch if Not Equal BNE
Branch to Subroutine BSR Return from Subroutine RTS

“this lack of constraint is all the more reason to choose the instruction set carefully

6

Basic Processor Design — CISC

Qdcrse
Which Addressing Modes are Supported for each Instruction?

e Inherent

For certain instructions (LSRA, LSLA, COMA, RTS) the addressing mode is
implied/inherent in the instruction. These are always single word instruc-
tions.

e PC Relative

For Branch instructions the addressing mode is PC-relative (some processors
use PC-absolute instead). The branch destination is calculated by adding the
branch offset to the current program counter (PC).

e Other Instructions

The remaining instructions can support any of the addressing modes described
in Q2¢75¢°.

Swith the exception that a store instruction in immediate mode is meaningless

7

Basic Processor Design — CISC

Q5¢rsc
How is the Instruction Coded?

Normally CISC instructions are compactly coded leading to complex decode logic.
The most one might expect is an instruction field that specifies the addressing mode.

With a word length of 16 bits and no immediate to include we can produce an
orthogonal coding with many sub-fields for easy decoding (and potentially more
power).

Opcode Addressing Mode
L Load Extra Word
Specify Data Register ——— Specify Index Register
Branch Condition Pre-decrement Stack Pointer
ALU Function Post-increment Stack Pointer

Note: just a few of the potential sub-fields are shown here.

