Example RISC

S1Bus |
3 DBus
USRI 1 S2Bus ALU :
3 - 5
Decoder Tt " RO (=0)
& TR ‘ 7 R1
: \4
Sequencer ainiaiat-ce) R2
-
v R3
777 v R4
v R5
rr v R6
\% — \
IR | oP | 2 RIEPY)
Data/AddressBus ¢
77% Address Latch \
- =IME Address Data
---->WR
----=0OE

Example RISC

Example Architecture for a 16 bit Processor

¢ Register Register Architecture - 3 Address Architecture

No arithmetic/logic instructions take operands from external memory. Sep-
arate register addresses for each operand and the result are encoded into the
instruction.

e Multi function ALU

ALU is used for data address calculation during a Load/Store instruction or
for branch address calculation during a Control Transfer instruction.

e Variable Instruction Length (16/32 bits)

RISC processors generally support fixed length instructions to simplify pipeline
operation. This RISC processor has no pipeline. The use of an optional second
instruction word (operand) results in simplified instruction decode.

Instruction Operand (optional)
Opcode |FJ rd rs2 simm1l16
Condition Field Addressing mode

1002

Example RISC

Opcode Mnemonics

e Arithmetic/Logic Instructions

ADD ADDX
SUB SUBX
AND OR

XOR SRADD

e Load & Store Instructions

LD ST

e Control Transfer Instructions

Nonel.

IPC is an addressable register (R7) thus we can use Arithmetic/Logic instructions for control
transfer

1003

Example RISC

Assembly Language Syntax and Semantics

e Arithmetic/Logic Instructions

ADD Rs1,Rs2,Rd ADD R1,R2,R3 R3 + R1+ R2

e Load Instruction

LD [Rs1+Rs2],Rd LD [R1+R2],R3 R3' + mem(R1 + R2)

e Store Instruction

ST Rd,[Rs1+Rs2] ST R3, [R1+R2] mem(R1 + R2) < R3

1004

Example RISC

Addressing Modes

The A field in the instruction specifies whether we will use two registers as operands
(A=0) or a register and an immediate value (A=1).

Format for Single Word Instructions
Opcode |F rsliirs2 E

Format for Double Word Instructions

Opcode |F rsl sSimm1l16
T

Condition Field Addressing mode

Since the signed immediate, simm16, is not needed when A=0, the A field is also
used to decide whether the instruction occupies one or two 16 bit words.

Note that the rs2 field within the instruction serves no purpose when A=1, so the
rs2 field will most likely to be set to zero for instructions which use immediates.

1005

Example RISC

Conditional Instructions

All instructions have a conditional variant.
cADD cADDX

cSUB cSUBX
cAND cOR
cXOR cSRADD
cLD cST
Instruction Operand (optional)
Opcode |F rslijrs2 simm1l16
(Tjondition Field Addressing mode

The F field in the instruction specifies whether the instruction is conditional. If
F=0 the instruction is always executed. If F=1 the instruction is executed only if
the carry flag, C?, is 1.

2the C flag will have been set by a previous arithmetic/logic instruction

1006

Example RISC

Thus for each instruction there are four variants dependent on the values of the A
and F fields within the instruction:

Opcode
ADD
ADD
cADD

cADD

Syntax Example
Rs1,Rs2,Rd ADD R1,R2,R3
Rsl,simml16,Rd 2ADD R1,1,R3

Rs1,Rs2,Rd cADD R1,R2,R3

Rsl,simml16,Rd cADD R1,1,R3

1007

Operation
R3' + R1+ R2 add
R3 + R1+1 add

if C =1then R3Y «+— R1 + R2 conditional add

ifC =1then R «— R1+1 conditional add

Syntax and Semantics for other Arithmetic/Logic instructions:

Opcode

ADD
ADDX
SUB
SUBX
AND
OR
XOR
SRADD

ADD
ADDX
SUB
SUBX
AND
OR
XOR
SRADD

Syntax

Rs1,Rs2,Rd
Rs1,Rs2,Rd
Rs1,Rs2,Rd
Rs1,Rs2,Rd
Rs1,Rs2,Rd
Rs1,Rs2,Rd
Rs1,Rs2,Rd
Rs1,Rs2,Rd

Rs1,simm16,Rd
Rs1,simm16,Rd
Rs1,simm16,Rd
Rs1,simm16,Rd
Rs1,simm16,Rd
Rs1,simm16,Rd
Rs1,simm16,Rd
Rs1,simm16,Rd

Example

ADD R3,R2,Rb

ADDX R3,R2,Rb5

SUB R3,R2,Rb

SUBX R3,R2,R5

AND R3,R2,R5
OR R3,R2,R5
XOR R3,R2,R5

SRADD R3,R2,R5

ADD R3,63,R5

ADDX R3,63,R5

SUB R3,63,Rb

SUBX R3,63,R5

AND R3,63,R5
OR R3,63,R5
XOR R3,63,R5
AND R3,63,R5

1008

Operation

RY «— R3 + R2

RY «+ R3+ R2+C

RY + R3 - R2

RY + R3-R2-C

RY «— R3 & R2
RY «— R3 | R2
RS +— R3 "~ R2

RY « R3>>1+ R2

RY + R3 + 63

RY « R3+63+C

RY + R3 - 63

RY + R3-63-C

RY + R3 & 63
R5 + R3 | 63
RY + R3 " 63

RY « R3>>1+63

add

add with carry
subtract

subtract with borrow
bitwise AND

bitwise OR

bitwise XOR

shift right with add

Example RISC

The inclusion of R7 and R0 add important functionality:

Pseudo-
Opcode Example Operation
BA simm16 ADD R7,-35,R7 PC'+ PC-35 branch always

BCS simm16 cADD R7,-35,R7 if C =1then PC' + PC - 35 branch if carry set

MOV Rs,Rd ADD R4,R0,R5 R5 <+ R4 register copy
LDI simml6,Rd ADD RO, 72,R5 RY « 72 load immediate
CLR Rd ADD RO,R0O,R5 RY + 0 clear

NOT Rs,Rd XOR R4,-1,R5 RY «+— R4~ FFFFs = “R4 Dbitwise NOT
NEG Rs,Rd SUB RO, R4,R5 R5 + -R4 negate

SL Rs,Rd ADD R4,R4,R5 RY «— R4+ R4=Ri<<1 shift left

SR Rs,Rd SRADD R4,R0,R5 RE «+ R4>>1 shift right

TST Rs1,Rs2 SUB

R4,R3,R0

test 2s2 > Rsl?

Note — for TST pseudo-instruction the result of the subtraction is discarded. We are interested only

in the side-effect of setting the C flag.

1009

Example RISC

Stack Support
There is no built in support for a stack. Any general purpose register may be used

as the Stack Pointer.
External Memory

Stack T BASE OF STACK
Stack Pointer (€.9.R6) [------ . \(grows downwards)
Stack pointer always contains_th\éx\\ Frame Data ltem gt‘g(r:ﬁ”t
address of the "Top of Stack” item - Frame
Tem e > TOP OF STACK
Push R1:
SUB R6,1,R6 SP' «+ SP -1
ST R1, [R6+R0O] mem(SP) + R1
Pop R1:
LD [R6+RO],R1 PC" <~ mem(SP)
ADD R6,1,R6 SP + SP +1
Load R1 from stack frame:
LD [R6+4]1,R1 PC" <+ mem(SP + 4)

1010

Example RISC

Subroutines

Subroutine support is rather more complex, and requires the use of a temporary
register (in this case R5) for storage of the calculated return address.

Branch to subroutine:

ADD R7,6,R5 TEMP «— PC +6
SUB R6,1,R6 SP «— SP -1
ST R5, [R6+R0] mem(SP) < TEMP

ADD R7,offset,R7 PC" < PC +of fset
Return from subroutine:

ADD R6,1,R6 SP' «+ SP +1
LD [R6-11,R7 PC" +~ mem(SP — 1)

1011

Example RISC

Instruction Timing

The instruction timing is heavily dependent upon the memory cycle required for
the external memory:

Read Operation Write Operation
e . e /
i W W -
EEN @ Am oW @ =

Data - Addlress . Datal; _ Data - Addlress >< Daltta -

Load and store instructions last for 8 clock cycles (1 full memory cycles), while
arithmetic/logic instructions last for only 5 cycles (1 memory cycles plus one extra
clock cycle for result calculation)?.

3All these values will increase by 4 clock cycles (1 memory cycle) for double word instructions
(i.e. where A=1).

1012

DBus activity and registers updated during 8 (+4) cycle load instruction:

Fetch Instruction:

Address Setup DBus=PC

Address Hold DBus=PC

Data Setup DBus=MemData Update IR
Data Hold DBus=PC+1 Update PC
Fetch Operand: (optional)

Address Setup DBus=PC

Address Hold DBus=PC

Data Setup DBus=MemData Update OP
Data Hold DBus=PC+1 Update PC

Execute (Load instruction):

Address Setup DBus=Rs1+(Rs2 or simm16)

Address Hold DBus=Rs1+(Rs2 or simm16)

Data Setup DBus=MemData Update Rd
Data Hold DBus=0

1013

For store and arithmetic/logic instructions, the 4 cycles of the instruction fetch and
(optional) 4 cycles of operand fetch phase are unchanged. Below are listed only the
cycles of the execute phase:

Execute (Store instruction):

Address Setup DBus=Rs1+(Rs2 or simm16)
Address Hold DBus=Rs1+(Rs2 or simm16)
Data Setup DBus=Rd
Data Hold DBus=Rd

Execute (A/L instruction):
Execute DBus=fn{ Rsl, (Rs2 or simm16) } Update Rd

From the activity on the main DBus we can infer the activity on the other two buses
(S1Bus and S2Bus) and the operation of the ALU.

e.g. DBus=PC may be achieved by driving S1Bus=PC and 52Bus=R0 and setting
the ALU to perform addition (addition should probably be the default function for
the ALU).

1014

Example RISC

Limitations

e Power

The instruction set is not very powerful.

i.e. we may need a large number of instructions to perform relatively simple
and common tasks.

e Efficiency
The instructions are not very efficiently coded.

The instructions may take too many clock cycles to execute.

1015

Example RISC

Limitations — Power

e Poor support for Conditional Branches
We have lots of conditional instructions but only one conditional branch (BCS).

Most simple microprocessors support at least the following four status flags:

— C - Indicates overflow for shift or for unsigned arithmetic
— Z — Indicates a zero result
— N - Indicates a negative result

— V —Indicates overflow for signed arithmetic

On the basis of which they support a wide variety of conditional branches:
BCS, BCC, BE, BNE, ... BLEU

e Poor support for Stack and for Subroutines
CISC machines will normally support a dedicated stack pointer.

RISC machines tend to dedicate a register to store the return address. It is up
to the subroutine to stack this value before a nested subroutine call.

1016

Example RISC

Limitations — Efficiency

e The instructions are not very efficiently coded.

Most RISC machines tend to use shorter fixed length instructions making use
of the fact that most immediate values are short. This strategy is supported by
variable instruction fields.

e The instructions may take too many clock cycles to execute.

Adding other functional units and/or modifying the bus architecture may al-
low more efficient use of the valuable DBus cycles.

1017

