
Basic Processor Design

Design Datapath

Design Control Unit

Design Instruction Set

This lecture deals with Instruction Set Design.

1001



Instruction Set Terminology

Instruction Length

Binary Hexadecimal

Immediate Data Field

Opcode Field

Register Address Fields Instruction Fields

SUBI R5, R3, 10

R5

100101 1010011101

Example

R3 − 10

96BA

Semantics (Meaning)

Coding

Rx

SUBI Rx, Ry, imm4

Mnemonic (Instruction Name)

SUBI

Ry − imm4

Syntax (Language Structure)

100101 imm4yx

Machine Code

Register Transfer Language

Assembly Language

The instruction set for a processor is the set of all the instructions supported by that
processor.

1



Basic Processor Design

Start with RISC1 assumptions since we want a simple processor.

• Fixed instruction length

– keeps control simple (very useful for pipelining2)

• Load/store architecture & a large number of general purpose registers

– avoids slow memory access

• Very few addressing modes

– complex addressing modes are seldom used

• No complex instructions

– keep everything simple

1RISC = Reduced Instruction Set Computer
2RISC machines were initially designed to increase performance through pipelining - your pro-

cessor will not use pipelining

1002



Basic Processor Design – RISC

• All instructions are the same length

– typically 1 word (i.e. 16 bits)

• Load/Store Architecture

– All arithmetic and logic instructions deal only with registers and immediate
values3

e.g. ADD R3,R2,R5 R5← R3 + R2
OR R3,13,R5 R5← R3 | 13

– Separate instructions are needed for access to locations in memory.
e.g. LD [R4+13],R7 R7← mem(R4 + 13)

ST R7,[R4+13] mem(R4 + 13)← R7
mem(nnn) is shorthand for the data location in memory with address nnn.

– Instruction set is maximally orthogonal

3an immediate (or literal) value is a data value encoded in the instruction word.

1003



Basic Processor Design – RISC

Q1RISC

How many Register Addresses in an Arithmetic/Logic Instruction?

• Usually 2 or 3 for RISC

2: ADD Rx,Ry Rx← Rx + Ry

3: ADD Rx,Ry,Rz Rz← Rx + Ry

Q2RISC

How many General Purpose Registers?

• Usually 2n − 1 for RISC

This gives 2n addressable registers including the dummy register, R04.

We then need n bits per register address in the instruction.

With a 16 bit instruction length, n = 2 (i.e. 3 registers + R0) or n = 3 (i.e. 7

registers + R0) are sensible values.

4R0 is always zero

1004



Basic Processor Design – RISC

Q3RISC

How many Bits do we use for Short Immediates?
• Used in instructions like

ADD R3,5,R2 R2← R3 + 5
ST R7,[R4+13] mem(R4 + 13)← R7

Sensible values for a 16 bit instruction length are in the range 4 ≤ s ≤ 9

giving 2’s complement values in the range −2s−1 ≤ imm ≤ 2s−1 − 1

Q3ARISC

Do we support All Arithmetic/Logic instructions and All Load/S-
tore instructions in both Register-Register and Register-Immediate
forms?
• Some RISC processors support only Register-Immediate form for Load/Store

instructions.

• Some RISC processors support Register-Register form for all Arithmetic/Logic
instructions and Register-Immediate form for a subset of these instructions.

1005



Basic Processor Design – RISC

Q4RISC

What Instruction Fields do we provide? How are they arranged?

• RISC instruction coding is highly orthogonal - any instruction may use any
registers.

• Requirement for maximum length short immediate makes RISC coding tight.

Assume Q1RISC : 3, Q2RISC : 2n − 1, Q3RISC : s, Q3ARISC : YES
A suitable coding for Arithmetic/Logic and Load/Store instructions is:

unused
Format Specifier

Opcode
0

1

0....0

rd

x n n 1 s

n

x = 15 - 2n - s

imm
rs1

rs2

Example: If n = 2 and s = 7 then x = 4 giving up to 2x (=16) instructions.

1006



Basic Processor Design – RISC

Most RISC processors support an instruction to set the upper bits of a register. The
MIPS processor calls it LUI (load upper immediate) while the SPARC processor
calls it SETHI.
For SPARC, the sequence of instructions required to set upper and lower parts of a
register is:
SETHI 200,Rx Rx← 200 ×210
ADD Rx,5,Rx Rx← Rx + 5

Note that the×210 (i.e. shift left by 10) value comes from the SPARC word length (32) less the length
of the long immediate used for SETHI (22). In our example it will be ×216−l where l is the length of
our long immediate.

To code a SETHI or LUI instruction we need fewer fields:

l = 16 - n - xlnx

immOpcode rd

Example: If n = 2 and x = 4 then l = 10.
Note: s + l ≥ 16 for the SETHI/ADD sequence to produce a 16 bit result.

1007



Basic Processor Design – RISC

Example Coding #3

Assume Q1RISC : 3, Q2RISC : 3 (n = 2), Q3RISC : 7 (s = 7), Q3ARISC : YES
This gives x = 4 and l = 10 with the coding shown below5:

1

0 0 0 0 0 0

rd

rd

rs1

rs1 rs2

rdOpcode simm10

Opcode

Opcode

B

A1

A0

simm7

C Opcode simm10cond

In this case up to 16 opcodes are supported, each of which supports either coding
A (i.e. A0 and A1), coding B or coding C (which supports conditional branch).

This is just one of many possible codings (this one is loosely based on the SPARC
instruction coding).

5note that in this example short and long immediates (simm7 and simm10) are signed numbers

1008



Basic Processor Design – RISC

Q5RISC

What Instructions will we support?6

Type Function Mnemonic Function Mnemonic

Arithmetic Add ADD Subtract SUB
Add with Carry ADDX Subtract with Borrow SUBX

Logic Bitwise AND AND Bitwise OR OR
Bitwise Exclusive OR XOR Logical Shift Right LSR

Data Movement Load LD Store ST
Set High SETHI

• a complete set of common arithmetic and logical functions
(note that multiply is too complex to be included, while shift left is accomplished by adding a
number to itself).

• all arithmetic and logic functions update the condition flags:
Zero (Z) is set if the result is zero and cleared otherwise.

Carry (C) is updated by ADD/ADDX/SUB/SUBX/LSR and is set to zero by other logical
instructions.

6This set has been chosen to match example coding #3

1009



Basic Processor Design – RISC

Q5RISC

What Instructions will we support?
Type Function Mnemonic SubFunction Mnemonic

Control Transfer Branch if equal (Z==1) BEQ Branch if not equal (Z==0) BNE
Branch if carry set (C==1) BCS Branch if carry clear (C==0) BCC
Branch and Link BAL Jump and Link JMPL

• This processor (like the SPARC on which it is based) uses condition code flags
(C,Z) to support conditional branch7.

• Branch instructions are PC relative with a limited range (+511/-512).

• BAL and JMPL support subroutine call by saving the old PC value in a link
register. If R0 (dummy register) is specified as the link register, then BAL can
be used as a simple unconditional PC relative branch while JMPL can be used
for jumping a long way or for returning from a subroutine.

7other RISC processors such as MIPS save some complexity by not supporting condition code
flags

1010



Basic Processor Design – RISC

Q5ARISC Define Assembly Language Syntax8 and Semantics.
Mnemonic Format Syntax Semantics

Arithmetic ADD∗ A ADD Rs1,Op2,Rd Rd← Rs1 + Op2
where Op2 is either Rs2 or simm7

SUB∗ A SUB Rs1,Op2,Rd Rd← Rs1 - Op2
ADDX∗ A ADDX Rs1,Op2,Rd Rd← Rs1 + Op2 + C

SUBX∗ A SUBX Rs1,Op2,Rd Rd← Rs1 - Op2 - C
Logic AND∗ A AND Rs1,Op2,Rd Rd← Rs1 & Op2

OR∗ A OR Rs1,Op2,Rd Rd← Rs1 | Op2
XOR∗ A XOR Rs1,Op2,Rd Rd← Rs1 ˆ Op2
LSR∗ A LSR Rs1,Rd Rd← Rs1 >>1

Data Movement LD A LD [Rs1+Op2],Rd Rd← mem(Rs1 + Op2)
ST A ST Rd,[Rs1+Op2] mem(Rs1 + Op2)← Rd

SETHI B SETHI simm10,Rd Rd← simm10 <<6
Control Transfer BEQ C BEQ simm10 if (Z == 1) then PC ← PC + simm10

BNE C BNE simm10 if (Z == 0) then PC ← PC + simm10
BCS C BCS simm10 if (C == 1) then PC ← PC + simm10
BCC C BCC simm10 if (C == 0) then PC ← PC + simm10
BAL B BAL simm10,Rd Rd← PC; PC ← PC + simm10
JMPL A JMPL Rs1+Op2,Rd Rd← PC; PC ← Rs1 + Op2

8operand order follows SPARC convention *marked commands update the flags (C,Z)

1011



Basic Processor Design – RISC

Q5BRISC

What Opcodes will be Assigned?

BEQ

BCS1
0

0

BCC

BNE

1
Cond[0]

Cond[1]

ADD

LD

SUB

SETHI

ADDX

SUBX

ST

AND

XOR LSR

OR

JMPL

BALB...

−

−

00 01 11 10

00

01

11

10

Format A

Format B/C

Op[1:0]

Op[3:2]

Instructions are grouped so that decoding is simple.

Unfortunately this example processor does not meet your specification...

1012



Basic Processor Design

Consider CISC9 features that might be included in the design.

• Variable instruction length

– allows full 16-bit values to be included in your instructions

• Abilitity to act on data in memory

– gives reduced instruction count

• Registers with specific roles

– e.g. 8 registers but only 2 may act as address registers for load and store -
leads to shorter register address fields

• More addressing modes

– e.g. store with pre-decrement or load with post-increment

• More complex instructions

– e.g. CALL and RETURN instuctions which store and retrieve the return ad-
dress on the stack

9CISC = Complex Instruction Set Computer

1013


