Basic Processor Design

{ Design Instruction Set J

- J

{ Design Datapath

{ Design Control Unit }

This lecture deals with Instruction Set Design.

1001

Instruction Set Terminology

Mnemonic (Instruction Name)
SUBI

Syntax (Language Structure) Assembly Language

SUBI Rx, Ry, inmm4 SuUBI R5, R1, 10

Semantics (Meaning) Register Transfer Language
Rx <— Ry -imm4 R5<—R1-10
Coding Machine Code Binary Hexadecimal

1100101 | x | y | imm4 | 1100101 | 101|011 | 1010 | 96BA

Instruction Length

Immediate Data Field
Register Address Fields Instruction Fields
Opcode Field

The instruction set for a processor is the set of all the instructions supported by that
processor.

Basic Processor Design

First Decision:

RISC or CISC

RISC: Reduced Instruction Set Computer

CISC: Complex Instruction Set Computer!

: RISC _ ., CISC .
Hybrid: Based on CISC with RISC attributes

Note that whichever philosophy you follow, you will be designing a
simple machine. Choosing the CISC philosophy will not necessarily
result in a more complex design.

lactually CISC is used to describe all none RISC machines regardless of complexity

1002

Basic Processor Design — RISC

o All instructions are the same length
— typically 1 word (i.e. 16 bits)
o Load/Store Architecture

— All arithmetic and logic instructions deal only with registers and immedi-
ate values?

e.g. ADD R3,R2,R5 R5 <+ R3 +R2
OR R3,13,R5 R5+R3 113

— Separate instructions are needed for access to locations in memory.
e.g. LD [R4+13],R7 R7 < mem(R4 + 13)
ST R7, [R4+13] mem(R4 + 13) «+ R7

mem(nnn) is shorthand for the data location in memory with address nnn.

— Instruction set is maximally orthogonal

2an immediate (or literal) value is a data value encoded in the instruction word.

1003

Basic Processor Design — RISC

Qlgrsc
How many Register Addresses in an Arithmetic/Logic Instruction?

e Usually 2 or 3 for RISC

2: ADD Rx,Ry Rx <~ Rx + Ry
3: ADD Rx,Ry,Rz Rz < Rx + Ry
Q2prsc

How many General Purpose Registers?

e Usually 2" — 1 for RISC
This gives 2" addressable registers including the dummy register, R0>.
We then need n bits per register address in the instruction.

With a 16 bit instruction length, » = 2 (i.e. 3 registers + R0) or n = 3 (i.e. 7
registers + R0) are sensible values.

3RO is always zero

1004

Basic Processor Design — RISC

Q3r1sc
How many Bits do we use for Short Immediates?

e Used in instructions like

ADD R3,5,R2 R2+ R3+5
ST R7, [R4+13] mem(R4 + 13) +— R7

Sensible values for a 16 bit instruction length are in the range 4 < s < 9
giving 2’s complement values in therange —2"! <imm < 25! -1

Q3Agsc
Do we support All Arithmetic/Logic instructions and All Load /Store

instructions in both Register-Register and Register-Immediate forms?

¢ Some RISC processors support only Register-Immediate form for Load /Store
instructions.

e Some RISC processors support Register-Register form for all Arithmetic/Logic
instructions and Register-Immediate form for a subset of these instructions.

1005

Basic Processor Design — RISC

Q4 rrsc
What Instruction Fields do we provide? How are they arranged?

e RISC instruction coding is highly orthogonal - any instruction may use any
registers.

e Requirement for maximum length short immediate makes RISC coding tight.

Assume Qlgrsc: 3, Q2prsc:2" =1, Q3prsc: s, Q3Agrsc: YES
A suitable coding for Arithmetic/Logic and Load/Store instructions is:
Format Specifier

unused
n
| ¢
Olf rs2 0....0
Opcode —
1 Imm
x=15-2n-s
X n n 1 S

Example: If n = 2 and s = 7 then = = 4 giving up to 2 (=16) instructions.

1006

Basic Processor Design — RISC

Most RISC processors support an instruction to set the upper bits of a register. The
MIPS processor calls it LUI (load upper immediate) while the SPARC processor
calls it SETHI.
For SPARC, the sequence of instructions required to set upper and lower parts of a
register is:

SETHI 200,Rx Rx + 200 x 2"

ADD Rx,5,Rx Rx < Rx+5
Note that the x21° (i.e. shift left by 10) value comes from the SPARC word length (32) less the length
of the long immediate used for SETHI (22). In our example it will be x2!%~! where is the length of

our long immediate.

To code a SETHI or LUI instruction we need fewer fields:

Opcode imm
X n | I = 16' n-X

Example: If » = 2and z = 4 then [= 10.
Note: s + [> 16 for the SETHI/ADD sequence to produce a 16 bit result.

1007

Basic Processor Design — RISC

Example Coding #1

Assume Qlgiseo: 3, Q2pisc:3(n=2), Q3pisc:7(s=7), QB3Agisc: YES
This gives » = 4 and [= 10 with the coding shown below*:

A0 | opcode N rdMirsillofs2llo/0/0/0]0
1 [ovioce [N 1 O Simi
B | Opcode [rdW | | simml0., .

In this case up to 16 instructions are supported, each of which supports either cod-
ing A (i.e. A0 and Al) or coding B.

This is just one of many possible codings (this one is loosely based on the SPARC
instruction coding).

“note that in this example short and long immediates (s imm7 and simm10) are signed numbers

1008

Basic Processor Design — RISC

Alternative Example Coding #2

An alternative solution is based on the following assumptions:
Qlzrsc: 3 (or 2 for register-immediate instructions), Q2pz;g0: 7 (n = 3),
Q3R[5(j: 8 (8 =8and ! = 8), Q3AR[5(]I NO

o]0 ICTIMGTIMGZ oveoien
o/ 1 I veoded [T iming
o o e

OpcodeA allows for up to 32 Register-Register Arithmetic/Logic instructions.
OpcodeB allows for up to 8 Register-Immediate Arithmetic/Logic instructions.

OpcodeC allows for up to 2 Register-Immediate Load /Store instructions®.

5in this case we know that one of the two will be load and the other will be store

1009

Basic Processor Design — RISC

QSr1sc
What Instructions will we support?
Type Function Mnemonic | Function Mnemonic
Arithmetic Add ADD | Subtract SUB
Add with Carry ADDX | Subtract with Borrow | SUBX
Logic Bitwise AND AND | Bitwise OR OR
Bitwise Exclusive OR| XOR | Logical Shift Right LSR
Data Movement | Load LD Store ST
Set High SETHI
Control Transfer | Branch if Zero BZ Branch to Subroutine | BSR
Jump and Link JMPL

This set has been chosen based on a maximum of 16 instructions (to match example coding #1),
with support for a complete set of common arithmetic and logical functions (note that multiply is

too complex to be included, while shift left is accomplished by adding a number to itself).

The control transfer functions are a minimum set to support subroutines. BZ provides a conditional

PC relative branch (unconditional if RO is tested). BSR provides a PC relative branch which stores

the calling address in a register. JMPL provides the ability to return from a subroutine and also the

ability to jump a long way.

1010

Basic Processor Design — RISC

Q5Agrsc Define Assembly Language Syntax® and Semantics.
Mnemonic Format Syntax Semantics
Arithmetic ADD* A ADD Rsl,0p2,Rd Rd <« Rsl+ Op2

where Op?2 is either Rs2 or simm7

SUB* A SUB Rsl,0p2,Rd Rd<« Rsl - Op2
ADDX* A ADDX Rsl,0p2,Rd Rd <+ Rsl+Op2+C
SUBX* A SUBX Rsl,0p2,Rd Rd <+ Rsl-0p2-C
Logic AND A AND Rsl,0p2,Rd Rd <+ Rsl&Op2
OR A OR Rsl,0p2,Rd Rd <+ Rsl | Op2
XOR A XOR Rsl,0p2,Rd Rd<+ Rsl”™ Op2
LSR* A LSR Rs1,Rd Rd + Rsl >>1
Data Movement LD A LD [Rsl+0p2],Rd Rd <+ mem(Rsl + Op2)
ST A ST Rd, [Rs1+0p2] mem(Rsl + Op2) + Rd
SETHI B SETHI simml0,Rd Rd ¢ simml0 <<6
Control Transfer BZ B BZ Rd,simmlO if (Rd =0)then PC < PC + simml10
BSR B BSR simml10,Rd Rd + PC; PC + PC + simm]10
JMPL A JMPL Rs1+0p2,Rd Rd <+ PC; PC + Rsl + Op2
Soperand order follows SPARC convention *marked commands update the Carry flag (C)

1011

Basic Processor Design — RISC

Q5Brisc
What Opcodes will be Assigned?

Op[1:0]
opls2] 00 01 11 10
00| ADD ADDX AND OR
01/ SUB SUBX XOR LSR
11/C_LD ST O - JVPL)
10| SETH i | BZ BSR |

Instructions are grouped so that decoding is simple.

1012

Format A

Format B

Basic Processor Design — CISC

o Instruction Length is Variable

— instructions with implied operands will typically be 1 word (i.e. 16 bits)

— instructions with an explicit operand will be 2 words

Single Word Instruction

Instruction

Double Word Instruction

Instruction Data

16 16

The data word contains either the operand itself (immediate addressing mode)
or a value which will be used to calculate the operand address in memory.

1013

Basic Processor Design — CISC

o Register-Memory Architecture

A typical arithmetic or logic instruction will take one operand from a register
and one from memory. It will return the result to a register.

e.g. ADDA 203 A < A + mem(203)
A is the implied operand while 203 is the address of the explicit operand.

o A single instruction may give rise to a complex sequence of events
e.g. JSR +137 SP+ SP -1
mem(SP) < PC
PC + PC + 137

The old value of the program counter is stored on a stack in memory during a jump to subrou-

tine instruction.

1014

Basic Processor Design — CISC

Qleise
How many Data Registers and Address Registers?

The minimum system for this exercise will have just one data register (Accumula-
tor: A) and one address register (Stack Pointer: SP).

e Extra Address Registers.
Having another address register (e.g. Index Register: X) should help to reduce
the number of memory accesses to speed up the processor. It should also help
to simplify the programming.

e Extra Data Registers.
Having another data register (e.g. Accumulator: B) is likely to have less effect
unless you add support for Register-Register arithmetic/logic instructions.

e Multi-Purpose Registers.

For this exercise it may be beneficial to allow any register to be used as either a
data register or an address register, with just one of the registers acting also as
the stack pointer.

1015

Basic Processor Design — CISC

Q2¢ 150
What Addressing Modes should we support for Arithmetic/Logic/Load

& Store?
Basic addressing modes”:

Addressing Mode | Assembly Language Syntax | Semantics
Immediate ADDA #imm A+ A+ imm
Direct ADDA addr A +— A+ mem(addr)
STA addr mem(addr) < A
Indexed with X | ADDA X, offset A+ A+ mem(X +of fset)
STA X,offset mem(X + of fset) < A
Indexed with SP | ADDA SP,offset A<+ A+mem(SP +of fset)
STA SP,offset mem(SP +of fset) «+ A
Stack (pop) ADDA SP++ A+ A+mem(SP); SP+ SP —1
(push) |STA --SP SP <+ SP —1;mem(SP) + A

7Tt is not necessary to implement all of these modes

1016

Basic Processor Design — CISC

Assembly language conventions used here:

#nnn The literal value nnn is the operand

nnn nnn is the address of the operand

Reg,nnn Reg + nnn is the address of the operand
(nnn) nnn is the address of a pointer to the operand

--Reg Reg is pre-decremented before the address is calculated
Reg++ Reyg is post-incremented after the address is calculated

Less useful addressing modes:

Addressing Mode Assembly Language Syntax | Semantics

Indirect ADDA (point_addr) A+ A + mem(mem(point_addr))
(Pre-)Indexed Indirect | ADDA (X, offset) A+ A+ mem(mem(X +of fset))
Indirect (Post-)Indexed | ADDA X, (point_addr) | A < A + mem(X + mem(point_addr))

These modes all use multiple memory accesses to reach data in complex data structures. Since
such data structures are unlikely to be required for this processor, the extra complexity involved in
implementing them is not justified by the benefit gained.

1017

Basic Processor Design — CISC

Q3c1sc

What Instructions will we support?

Because we do not need to include an immediate field in the 16 bit instruction

word, we can have more instructions

This is one possible set based on the CISC example processor model in Verilog:

Type Function Mnemonic Function Mnemonic
Arithmetic Add ADDA Subtract SUBA
Add with Carry ADCA Subtract with Borrow SBCA
Logic Bitwise NOT COMA Bitwise AND ANDA
Bitwise OR ORA Bitwise Exclusive OR XORA
Logical Shift Right LSRA Logical Shift Left LSLA
Data Movement | Load LDA,LDX,LDS || Store STA,STX,STS
Control Transfer | Branch Always BA
Branch if Equal BEQ Branch if Not Equal BNE
Branch to Subroutine BSR Return from Subroutine RTS

Sthis lack of constraint is all the more reason to choose the instruction set carefully

1018

Basic Processor Design — CISC

Qdcrse
Which Addressing Modes are Supported for each Instruction?

e Inherent

For certain instructions (LSRA, LSLA, COMA, RTS) the addressing mode is
implied/inherent in the instruction. These are always single word instruc-
tions.

e PC Relative

For Branch instructions the addressing mode is PC-relative (some processors
use PC-absolute instead). The branch destination is calculated by adding the
branch offset to the current program counter (PC).

e Other Instructions

The remaining instructions can support any of the addressing modes described
in Q2¢75¢°-

*with the exception that a store instruction in immediate mode is meaningless

1019

Basic Processor Design — CISC

Q5¢rsc
How is the Instruction Coded?

Normally CISC instructions are compactly coded leading to complex decode logic.
The most one might expect is an instruction field that specifies the addressing mode.

With a word length of 16 bits and no immediate to include we can produce an
orthogonal coding with many sub-fields for easy decoding (and potentially more
power).

Opcode Addressing Mode
L Load Extra Word
Specify Data Register ——— Specify Index Register
Branch Condition Pre-decrement Stack Pointer
ALU Function Post-increment Stack Pointer

Note: just a few of the potential sub-fields are shown here.

1020

