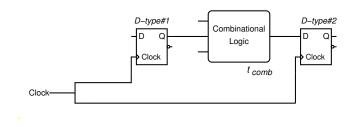
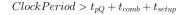


- All parts of the system share the same clock and the same clock edge sensitivity.
- The data may change between active clock transitions but must be stable by the time the next active transition occurs¹.


¹for most systems the *active transition* is the rising edge of the clock

20001

Synchronous Systems - D-type Timing



- Valid data should be present on D input for at least *t*_{setup} before the active clock edge and at least *t*_{hold} after the clock edge.
- The minimum D-type cycle time will be limited by the sum $t_{setup} + t_{pQ}$.

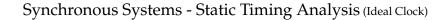
Synchronous Systems - Static Timing Analysis (Ideal Clock)

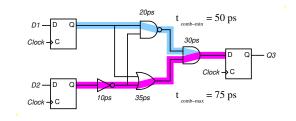
• To avoid a setup violation:

• To avoid a hold violation:

 $t_{pQ} + t_{comb} > t_{hold}$

20003


Synchronous Systems

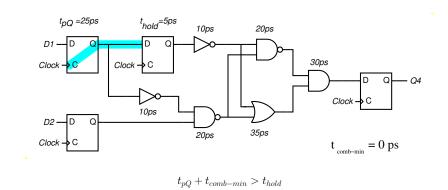

Static Timing Analysis

- Predicts the timing of a circuit without simulation²
- Analysis of gate network based on:
 - Propagation delays
 - Set-up and hold times for storage elements
 - Constraints such as desired operating freqency and the timing of inputs and outputs

Note that the examples given here are simplified in that they reduce the propagation delay through a gate to a single number - in reality there are predictable and unpredicable variations in gate delays which must be accounted for by static timing analysis tools.

 $^{^{2}\}mbox{timing simulations}$ for large digital systems are slow and will usually not catch all edge and coner cases

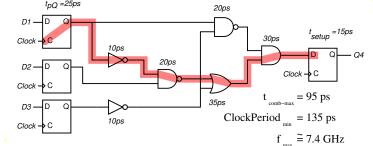
• To avoid a setup violation:

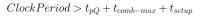

 $ClockPeriod > t_{pQ} + t_{comb-max} + t_{setup}$

• To avoid a hold violation:

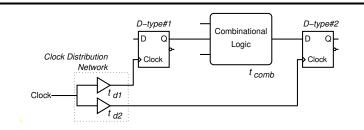
 $t_{pQ} + t_{comb-min} > t_{hold}$

20005


Synchronous Systems - Static Timing Analysis (Ideal Clock)


If we have an ideal clock and $t_{pQ} > t_{hold}$ we won't see hold violations even with if $t_{comb-min} = 0$.

20007

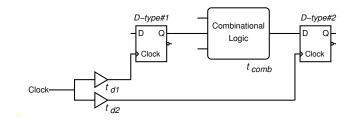


• Critcal path analysis allows us to determine the maximum feasible clock frequency:

$$f_{max} = \frac{1}{t_{pQ} + t_{comb-max} + t_{setup}}$$

Synchronous Systems - Clock Skew

Clock Distribution


The process of distributing clocks from a central source gives rise to delays. **Clock skew** is the difference between the arrival times of the clock at different points in the circuit.

• Clock Skew may cause unexpected timing violations

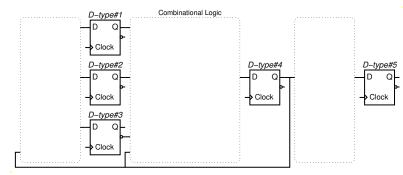
Hold: if *D-type* #1 clocks first, D input of *D-type* #2 may change too early³ **Setup:** if *D-type* #1 clocks second, D input of *D-type* #2 may change too late

³most likely where combinational logic is minimal or absent

Synchronous Systems - Static Timing Analysis (inc. clock skew)

• To avoid a setup violation:

 $ClockPeriod > t_{pQ} + t_{comb} + t_{setup} + (t_{d1} - t_{d2})$


• To avoid a hold violation:

$$t_{pQ} + t_{comb} > t_{hold} + (t_{d2} - t_{d1})$$

20009

Synchronous Systems - Static Timing Analysis (inc. clock skew)

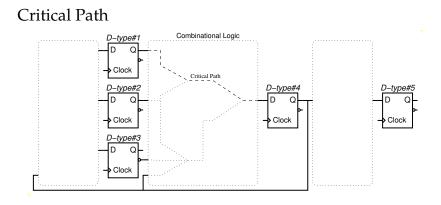
Critical Path

• To avoid a setup violation:

 $ClockPeriod > t_{pQ} + t_{comb-crit} + t_{setup} + t_{skew}$

20011

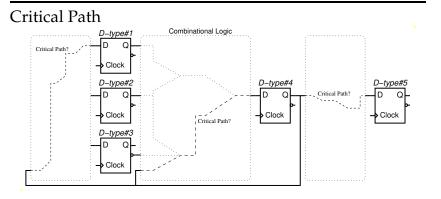
Synchronous Systems - Static Timing Analysis (inc. clock skew) t_{hold}=5ps t_{pQ} =25ps 10ps 20ps -- D D1 t_{setup} =15ps Clock1 Clock4 ¢ c 10ps *D2* — D = 95 ps t comb-max 35ps 20ps Clock2 - C ClockPeriod = ps $f_{max} \cong$ $t_{comb-min} = 0 \text{ ps}$ GHz tskew-max =16ps


• What is the maximum operating frequency of the circuit if the clock skew is no more than 16ps?

 $ClockPeriod > t_{pQ} + t_{comb} + t_{setup} + t_{skew}$

• What is the maximum clock skew that can be tolerated before we have a hold violation?

 $t_{pQ} + t_{comb} > t_{hold} + t_{skew}$


$Synchronous\ Systems\ \text{-}\ Static\ Timing\ Analysis\ (inc.\ clock\ skew)$

• To avoid a setup violation:

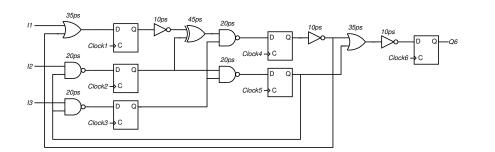
 $ClockPeriod > t_{pQ} + t_{comb-crit} + t_{setup} + (t_{d1} - t_{d4})$



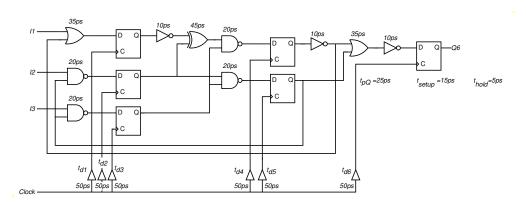
 $ClockPeriod > t_{pQ} + t_{comb-crit} + t_{setup} + (t_{d_{launch}} - t_{d_{capture}})$

- If we can control the skew (e.g. by increasing t_{d4}), we can ease the timing constraint.⁴
- ⁴this may result in the critical path moving to another part of the circuit

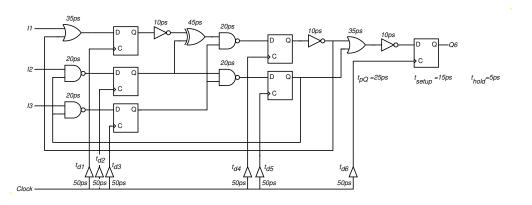
20013


Synchronous Systems - Static Timing Analysis (inc. clock skew)

- Calculate f_{max} in the presence of intentional clock skew.
- Suggest suitable values for t_{d1} , t_{d2} , t_{d3} , t_{d4} , t_{d5} , t_{d6}

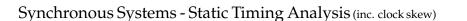

20015

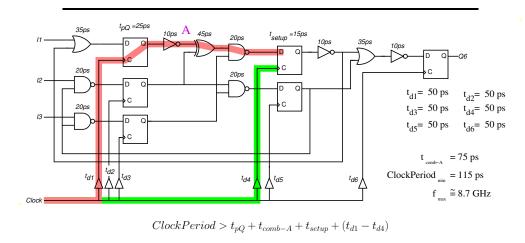
Synchronous Systems - Static Timing Analysis (inc. clock skew)

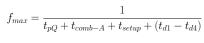


• Calculate f_{max} in the presence of intentional clock skew.

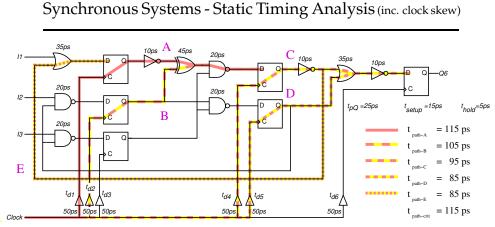
Synchronous Systems - Static Timing Analysis (inc. clock skew)

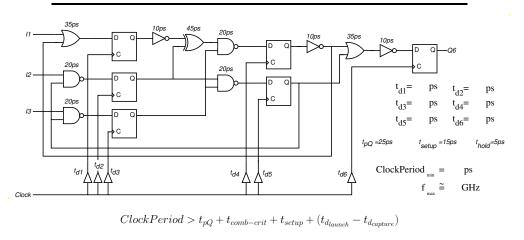

- Calculate f_{max} in the presence of intentional clock skew.
- Suggest suitable values for t_{d1} , t_{d2} , t_{d3} , t_{d4} , t_{d5} , t_{d6} Initially set all to a minimum value (in this case 50ps)

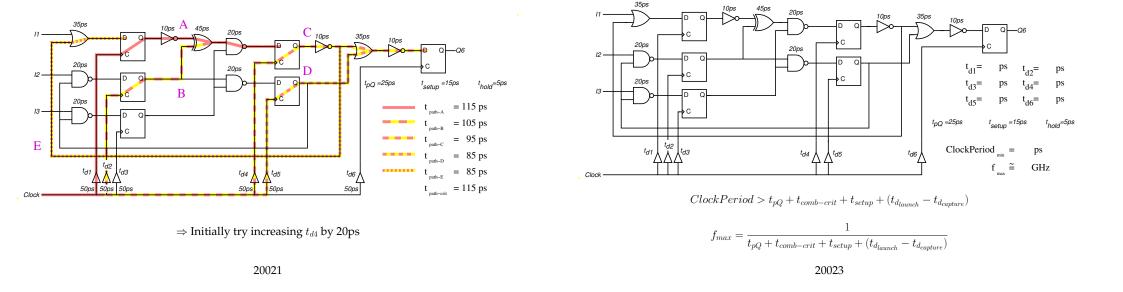



Synchronous Systems - Static Timing Analysis (inc. clock skew)

- Calculate f_{max} in the presence of intentional clock skew.
- Suggest suitable values for t_{d1} , t_{d2} , t_{d3} , t_{d4} , t_{d5} , t_{d6}
- \Rightarrow Identify longest timing paths

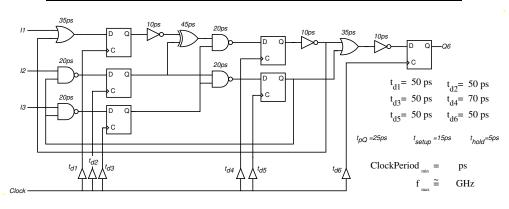

20017




- Calculate f_{max} in the presence of intentional clock skew.
- Suggest suitable values for t_{d1} , t_{d2} , t_{d3} , t_{d4} , t_{d5} , t_{d6}
- \Rightarrow Identify longest timing paths

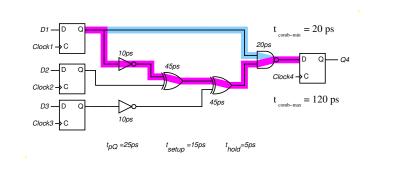
$$t_{path} = t_{pQ} + t_{comb} + t_{setup} + (t_{d_{launch}} - t_{d_{capture}})$$

Synchronous Systems - Static Timing Analysis (inc. clock skew)


$$f_{max} = \frac{1}{t_{pQ} + t_{comb-crit} + t_{setup} + (t_{d_{launch}} - t_{d_{capture}})}$$

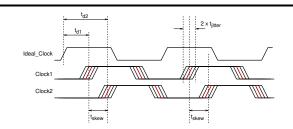
Synchronous Systems - Static Timing Analysis (inc. clock skew)

Synchronous Systems - Static Timing Analysis (inc. clock skew)


Synchronous Systems - Static Timing Analysis (inc. clock skew)

 $ClockPeriod > t_{pQ} + t_{comb-crit} + t_{setup} + (t_{d_{launch}} - t_{d_{capture}})$

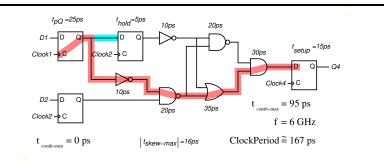
$$f_{max} = \frac{1}{t_{pQ} + t_{comb-crit} + t_{setup} + (t_{d_{launch}} - t_{d_{capture}})}$$


Synchronous Systems - Static Timing Analysis (inc. clock skew)

- Calculate f_{max} in the presence of intentional clock skew.
- Suggest suitable values for t_{d1} , t_{d2} , t_{d3} , t_{d4} given that the minimum delay through the clock tree is 50ps

remember to check for hold violations

Synchronous Systems - Jitter



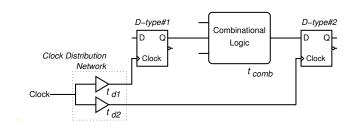
- Jitter
- Jitter is the cycle-by-cycle variation in the arrival time of the clock.
- Caused by
 - Variation in frequency/phase of clock source⁵
 - Power supply noise affecting clock distribution
 - Cross-talk affecting clock distribution
- Jitter may cause unexpected timing violations

⁵primary clock source or Phase-Locked Loop (PLL)

20025

Synchronous Systems - Static Timing Analysis (skew + jitter)

• What is the maximum jitter that can be tolerated given an operating frequency of 6GHz and clock skew of no more than 16ps?⁶


 $ClockPeriod > t_{pQ} + t_{comb-max} + t_{setup} + t_{skew} + 2 \times t_{jitter}$

 $t_{pQ} + t_{comb-min} > t_{hold} + t_{skew} + 2 \times t_{jitter}$

⁶remember to consider both setup and hold violations

20027

Synchronous Systems - Jitter

• To avoid a setup violation:

 $ClockPeriod > t_{pQ} + t_{comb} + t_{setup} + (t_{d1} - t_{d2}) + 2 \times t_{jitter}$

• To avoid a hold violation:

 $t_{pQ} + t_{comb} > t_{hold} + (t_{d2} - t_{d1}) + 2 \times t_{jitter}$