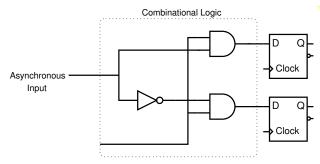

Synchronous Systems

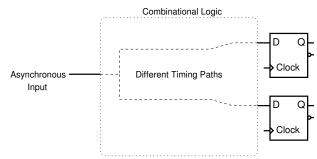
Asynchronous Inputs



With different timing paths through combinational logic, we can get unexpected results.

21001

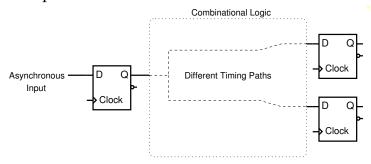
Synchronous Systems


Asynchronous Inputs

With different timing paths through combinational logic, we can get unexpected results.

In this example, a falling input we may be registered as neither high nor low.

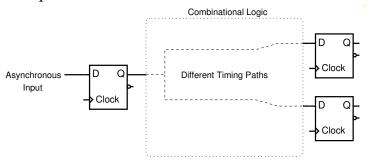
Asynchronous Inputs



Retiming the asynchronous input before the combinational logic block should give more predictable results.

21003

Synchronous Systems

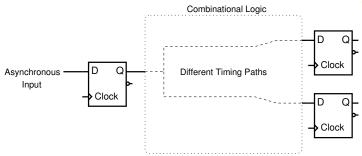

Asynchronous Inputs

Retiming the asynchronous input before the combinational logic block should give more predictable results.

Synchronous Systems

Asynchronous Inputs

To avoid a setup violation¹:

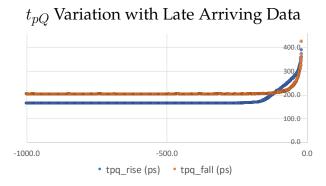

$$ClockPeriod > t_{pQ} + t_{critical_path} + t_{setup}$$

¹assuming ideal clock

21005

Synchronous Systems

Asynchronous Inputs

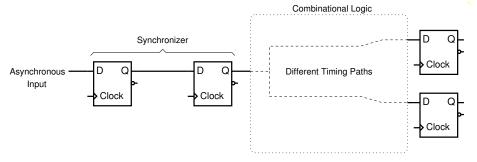


To avoid a setup violation¹:

 $ClockPeriod > t_{pQ} + t_{critical_path} + t_{setup}$

but t_{pQ} may now be unpredictable

¹assuming ideal clock

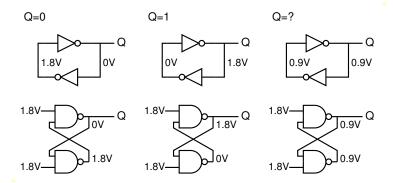


- As the setup time (t_{setup}) is reduced (close to it's absolute minimum value), the clock-to-Q delay (t_{pQ}) increases sharply.
- A flip-flop dasheet will quote a t_{pQ} value for a minimum t_{setup} value. When we violate the minimum specified t_{setup} value, the quoted t_{pQ} value is no longer valid.

21007

Synchronous Systems

Asynchronous Inputs

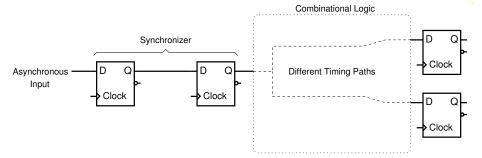


A second flip-flop in the synchronizer gives a predictable $t_{\it pQ}$ for our equation:

 $ClockPeriod > t_{pQ} + t_{critical_path} + t_{setup}$

Synchronous Systems

Flip-Flop Stable States



The third state is described as *metastable* since a slight perturbation in one of the 50%-of- V_{DD} voltages will result in a move to one of the other states.

21009

Synchronous Systems

Metastability

- The first flip-flop in our synchronizer may go metastable in the extreme case where the set-up time for D is reduced and t_{pQ} increases.
- The two flip-flop synchronizer gives a full clock cycle for the metastable state to resolve itself into one or other normal state.

21010