Alternative Cell Design Strategy

Gate Matrix Style

The circuit is created as a matrix of intersecting transistor diffusion rows and polysil-
icon columns.

A simple example is the two input multiplexor we saw earlier. We align transistors
on their common gate connections (as for line of diffusion designs), but here we
allow multiple transistors to use the same polysilicon column.
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Gate Matrix Style

The layout of a standard six NAND gate d-type should illustrate the style more
completely.
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Here each NAND gate is allocated a different pair of rows in the layout (further
optimization of this circuit is possible).
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Cell Design Choices

« Line of Diffusion — Euler Path

The line of diffusion approach to cell design, backed up by investigation of
Euler paths, leads to efficient layout of small cells.

Gate Matrix

Where cells are more complex and in particular when there are multiple tran-
sistors sharing a common gate connection, gate matrix design will often give
more efficient use of area.

— Complex Standard Cells

- - Mux, D-Type, Full Adder etc
- consider impact of tall gate matrix cells on space efficiency in simple
cells.
— Full Custom Cells

- - Efficient sub-circuit design.
e.g. Full custom ALU bitslice.

note that partial Euler paths play an important part in efficient Gate Matrix design.
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Bit Slicing

Repetitive Logic

Where logic blocks are duplicated within a system, there is much to gain from
optimization.

o Optimize single block for size.
The etfect is amplified by the number of identical blocks.

e Optimize interconnect.

With careful design, the requirement for routing channels between the blocks
can be eliminated.

Interconnection is by butting in 2 dimensions.
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Bit Slicing

Instead of creating an ALU function by function, we create it slice by slice.

A[7:0]  B[7:0] Al Bl

Jr

Z[7:0] z[0]~ -

e Each bit slice is a full 1-bit ALU.
e N are used to create an N-bit ALU.
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Bit Slicing

Z= A&B Z=A|B Z= Al=B Z= A+B Z=A>>1 Z= A<<1

Z FilES

FA

e Simple 1-bit ALU.
e The control lines select which function of A and B is fed to Z.

e Some functions, e.g. Add, require extra data I/O.
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Distributed Multiplexing

Z
Soi# 51% szi# ssi# 54% ssi# SG%# 57%
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e The tri-state buffers act as a multiplexor.

o This distributed multiplexing reduces data wiring at the expense of increased
control wiring, potentially saving space in a multi-bit bitslice system.

e For on chip buses we must ensure that in each clock cycle the bus is driven by
exactly one source.
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Bit Slicing
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e Data busses horizontal, control lines vertical.

e Compact gate matrix implementation?.

*bit slice designs can also be built around standard cells although the full custom approach used
here gives better results
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e Bit Sliced ALU (3-bits, scalable).
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Bit Slicing

We can extend this principle to the whole datapath.
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¢ Bit Sliced Datapath
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Bit Slicing

e Distributed Multiplexing
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e Local Multiplexing
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Bit Slicing
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e Bitslice Exceptions

Where full bitslicing is not suitable we attempt to disrupt the bitslice as little as
possible.
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