Static CMOS Complementary Gates

- For any set of inputs there will exist **either** a path to Vdd **or** a path to GND.
- No transistor sizing is necessary for circuit function¹. Minimum geometry transistors may be used.

¹although transistor sizing may improve performance

Pseudo-NMOS Gates

- Compact design with fewer transistors.
- Weak P channel device is always on.²

 $^{^{2}}W_{p}$: W_{n} ratio determines gate speed, static power consumption and low output voltage.

Dynamic CMOS Gates

- Precharge Phase (CLK=0) Output is precharged to Vdd.
- Evaluate Phase (CLK=1) Output is conditionally discharged to GND. Evaluation is very fast since there is no pull-up.
- Output capacitor is primarily the gate capacitance of subsequent transistors.

CMOS Domino Gates

Dynamic gates can not be cascaded with other dynamic gates using the same clock phase since inputs may not fall during the evaluate phase.

- Domino gates can be cascaded.
- Only non-inverting structures are possible.

Dynamic CMOS D-Type

- Very fast Master Slave D-Type
- Minimum clock speed is determined by charge leakage.

Dynamic D-Types are often used in conjunction with static logic gates. Similarly static D-Types may be used alongside dynamic logic gates.

Pass Transistor Circuits

- Provides very compact circuits.
- Good transmission of logic '0'.
- Poor transmission of logic '1'.
 - slow rise time
 - degradation of logic value

Pass Transistor Gates

- Pass transistor circuits can also be built with PMOS transistors
 - Good transmission of logic '1'.
 - Poor transmission of logic '0'.

or a mixture of NMOS & PMOS.

These compact gates may come at the expense of very poor performance, particularly for transistors with larger values of threshold voltage.

Complementary Pass Transistor Circuits

• For good pull-up and pull-down performance we need complementary networks.

Although this may simply replace pass transistors with transmission gates, optimizations are possible where:

- PMOS network passes all '1's

but not necessarily all '0's

- NMOS network passes all '0's

but not necessarily all '1's

Complementary Pass Transistor Gates

The first design employs a transmission gate multiplexor while the second is the standard 6 transistor XOR:

Complementary Pass Transistor Gates

An 18 transistor full adder may be constructed making use of both XOR designs.