• Simple multiplication algorithm.

– two *n*-bit numbers will produce a 2*n*-bit result.

• Implementation

- rather slow for single cycle operation

• Parallel Implementation

- should be faster¹
- faster implementations exist using more complex building blocks

¹note that the overall delay is less than three adder delays due to the skew of rippling carries

• Multi-cycle implementation

- partial product is initially set to zero
- calculation completes after n cycles (or when B = 0)

• Alternative implementation

• Alternative multi-cycle implementation

- A is not shifted giving a fixed width value on one input of the adder
- the top *n*-1 bits of a dedicated adder could be half adders

• Software implementation

- double word result
 - - use multi word shift left and add
- single word result
 - - check for overflow on each addition and each left shift of P

- each adder produces an (*n*+1)-bit result
 - - the least significant bit is fed straight to P
 - - the most significant n bits are fed to the next adder

• Multi-cycle implementation

 after each addition the least significant bit of the result is placed in P0 which is the least significant word of the partial product

• Algorithm Comparison

- justify each term before addition
- don't justify terms
 - - beginning with most significant term add each term to least significant slot and shift left
 - - beginning with least significant term add each term to most significant slot and shift right

• Standard implementation

- P0 uses the same register as B
- standard *n*-bit adder with carry out

• Multiplication of 2's complement numbers.

$\frac{11010111}{00100101} \times$	-41_{\times}
111111111010111 000000000000000 11111111	-287 -123 -1517

. .

1111101000010011

- allowing for a negative multiplicand requires only minor modifications (sign extension is used to retain sign information).
- coping with a negative multiplier is somewhat harder and will not be covered here.

- Possible implementation?
 signed multiplicand (A) unsigned multiplier (B)
 Sign bit (arithmetic shift)
 Implementation
 Implementation<
 - we see that we need to perform an arithmetic shift on the result of the addition rather than using the carry out.
 - unfortunately this doesn't account for a possible overflow (which will give the wrong sign)

• Standard implementation signed multiplicand (A) - unsigned multiplier (B)

 use overflow information to recover the correct sign information (all other bits will be correct when overflow occurs)

ALU Functionality

Where a single cycle multiply is not appropriate we may implement multiply as:

- A multi-cycle instruction
 - The 6809 MUL instruction performs a complete multiplication of two unsigned 8-bit numbers yielding a 16-bit result.
 ACCA' : ACCB' ← ACCA × ACCB

or

- A single-cycle multiply step instruction
 - The SPARC MULSCC P1, A, P1 performs a single multiply step instruction. The instruction uses a dedicated Y register which contains B/P0.

• SPARC implementation

- takes a step longer due to arrangement of registers and shifters.
- since neither signed nor unsigned numbers are dealt with properly in this system a few additional instructions are used to post-process (fiddle) the answer for signed or unsigned multiplication.