
Arithmetic - Integer Multiplication

� Simple multiplication algorithm.

01010111
00100101
01010111

01010111
00000000

00000000
00000000
01010111

0000110010010011
00000000
00000000

87
37

609
261
3219

� two n-bit numbers will produce a 2n-bit result.

106

Arithmetic - Integer Multiplication

� Implementation

1

1

1

1

1

1

1

A B

P

� rather slow for single cycle operation

107

Arithmetic - Integer Multiplication

� Parallel Implementation

1

1

1

1

1

1

1

P

A B

� should be faster1

� faster implementations exist using more complex building blocks

1note that the overall delay is less than three adder delays due to the skew of rippling carries

108

Arithmetic - Integer Multiplication

�Multi-cycle implementation

11

BA

P

� partial product is initially set to zero

� calculation completes after n cycles (or when B = 0)

109

Arithmetic - Integer Multiplication

� Alternative implementation

1
1

1

1

1

1

1

P

A B

110

Arithmetic - Integer Multiplication

� Alternative multi-cycle implementation

1

1

BA

P

� A is not shifted giving a �xed width value on one input of the
adder

� the top n-1 bits of a dedicated adder could be half adders

111

Arithmetic - Integer Multiplication

� Software implementation

1

1

BA

P

� double word result

- - use multi word shift left and add

� single word result

- - check for over�ow on each addition and each left shift of P

112

Arithmetic - Integer Multiplication

� Reduce adder widths
0

A B

P

� each adder produces an (n+1)-bit result

- - the least signi�cant bit is fed straight to P

- - the most signi�cant n bits are fed to the next adder

113

Arithmetic - Integer Multiplication

�Multi-cycle implementation

1

BA

9

8 8

P1 P0

� after each addition the least signi�cant bit of the result is placed
in P0 which is the least signi�cant word of the partial product

114

Arithmetic - Integer Multiplication

� Algorithm Comparison

11

BA

P

1

1

BA

P

1

1

A
B

0

P

� justify each term before addition

� don't justify terms

- - beginning with most signi�cant term add each term to least
signi�cant slot and shift left

- - beginning with least signi�cant term add each term to most
signi�cant slot and shift right

115

Arithmetic - Integer Multiplication

� Standard implementation

P1 B/P0

A

� P0 uses the same register as B

� standard n-bit adder with carry out

116

Arithmetic - Integer Multiplication

�Multiplication of 2's complement numbers.

00100101 37
11010111

1111111111010111

11111111010111

11111010111

000000000000000

0000000000000
000000000000

0000000000
000000000

-41

-287
-123
-1517

1111101000010011

� allowing for a negative multiplicand requires only minor mod-
i�cations (sign extension is used to retain sign information).

� coping with a negative multiplier is somewhat harder and will not be

covered here.

117

Arithmetic - Integer Multiplication

� Possible implementation?
signed multiplicand (A) - unsigned multiplier (B)

P1 B/P0

A

Sign bit (arithmetic shift)

� we see that we need to perform an arithmetic shift on the result
of the addition rather than using the carry out.

� unfortunately this doesn't account for a possible over�ow (which
will give the wrong sign)

118

Arithmetic - Integer Multiplication

� Standard implementation
signed multiplicand (A) - unsigned multiplier (B)

P1 B/P0

A

V

� use over�ow information to recover the correct sign informa-
tion (all other bits will be correct when over�ow occurs)

119

ALU Functionality

Where a single cycle multiply is not appropriate we may implement
multiply as:

� Amulti-cycle instruction

� The 6809 MUL instruction performs a complete multiplication
of two unsigned 8-bit numbers yielding a 16-bit result.

ACCA
0
: ACCB

0
 ACCA� ACCB

or

� A single-cycle multiply step instruction

� The SPARC MULScc P1,A,P1performs a single multiply step
instruction. The instruction uses a dedicated Y register which
contains B/P0.

120

Arithmetic - Integer Multiplication

� SPARC implementation

A

P1

N V

Y

� takes a step longer due to arrangement of registers and shifters.

� since neither signed nor unsigned numbers are dealt with prop-
erly in this system a few additional instructions are used to
post-process (�ddle) the answer for signed or unsigned mul-
tiplication.

121

