Parallelism

Let us consider the programming of a parallel machine, this will give us some
insight into what we want of our parallel machine.

For each problem to be solved, the following must be performed:

o Identify Parallelism

We must identify operations which can be done in parallel.

« Express Parallelism

We must write (or re-write) code to indicate the parallelism present.

« Exploit Parallelism

We must be able to distribute these parallel operations amongst our processing
elements.

19

Identify Parallelism

Two computations may be done in parallel provided that the
result from one is not required (directly or indirectly) for the
completion of the other.".

Take:

X := a + b;
vy = b + C;

These computations are independent.
We can carry out operations in parallel.

Take:

X := a + Db;
Yy 1= X + C;

y is dependent on the calculated value of x (we have data flow between them).
We can’t carry out operations in parallel.

1i e. there is no flow of data from one to the other

20

Express Parallelism

We must use a language which can cope with parallelism.

OCCAM provides us with two basic structures to distinguish between sequen-
tial and parallel operations.

SEQ
A
B
C

Causes A, B & C to be evaluated in strict SEQuence.

PAR
A
B
C

States that A, B & C may be evaluated in PARallel.
21

Express Parallelism

Thus

X := a + Db;
vy = b + C;

can be expressed as

PAR
X := a + b
y := b + C
Whereas
X := a + Db;
Yy = X + C;

must be expressed as

SEQ
X := a + b
YV 1= X + C

22

Express Parallelism

For a more formal approach we can use data flow analysis

a b C
w = atb;
X = a*a;
y = X*cC; ®
X W
z .= wWy;
\ /
/%/
?
Z
Sequential Form Data Flow Graph
(Pseudo Pascal)

Note that the scope of each PAR/SEQ is indicated by indentation.

23

SEQ
PAR
W = atb

X 1= a*a
y 1= X*C

Parallel Form
(Pseudo Occam)

Identify Parallelism

Parallel Algorithms

Given a single problem, there are frequently several algorithms for its solution.

e Usually one algorithm dominates all others due to its suitability for comput-
ing.
e What if this algorithm exhibits no potential for exploiting parallelism?

e We may be able to find an alternative algorithm specifically for parallel ma-
chines.

Thus we have specialised sequential algorithms which run efficiently on sequen-
tial machines and inefficiently on parallel machines, and specialised parallel algo-
rithms which run efficiently on parallel machines and inefficiently on sequential
machines.

24

Sequential Sum

The sequential sum problem in an excellent example where the ‘natural’ algo-
rithm is unsuitable for a parallel implementation.

We start with a vector A[1..n] and wish to obtain a vector of ‘sums’ SUM[1..n],

such that
SUM]Ji] = AJi] + SUM[i-1]

where
SUM[0] =0

The problem is defined as a recursion, each result depends upon the previous
one. It appears that we must produce the results in strict sequence with no paral-
lelism.

25

Sequential Sum - Sequential Algorithm

The sequential algorithm is straightforward and takes n — 1 additions all per-
formed in strict sequence.

All] A[2] A[3] Al4] Al Al6] AlT7] Al8]

RN

ON

RN

o8

@\i

SUM[1] SUM[2] SUMI[3] SUM[4] SUM[5] SUM[6] SUM[7] SUMI8]

26

Sequential Sum - Parallel Algorithm

The parallel algorithm is more complex taking logs(n) * n/2 additions to perform

the same task.

Al1]

N\

Al2] A

®

e

®

[3] Al4 A

N\

\

|
)
B

[5] Ale]

N\

®

Ny
N
71

<o

®© ©

Al7] Al8]

N\

™~/

I

SUM[1] SUM[2] SUM[3] SUM[4] SUM[5] SUM[6] SUM[7] SUM[S§]

27

Algorithm Performance

Parallel Speedup

We wish to compare our two algorithms.

e How much faster is our parallel algorithm?

For comparison purposes we invent a Paracomputer on which to run the soft-
ware.

The Paracomputer is an ideal parallel computer with an ar-
bitrarily large number of processors and no overheads for com-
munication or co-ordination.

The concept of such an ideal computer allows us to compare algorithms simply,
without considering particular machines.

28

Algorithm Performance

For sequential algorithm

We have n — 1 additions carried out in sequence.
hence
Toey = (n— 1)T a4
where
Toaa = time for a single addition

For parallel algorithm

We have [0g,(n) additions in the critical path
hence

Tpar — (lOQZ(n))Tadd

Parallel Speedup

Toeg n—1
Tpar ZOQZ(H)

29

Algorithm Performance

Algorithmic Parallelism

There is another measure of algorithmic performance.

e How many processing elements do we need for our algorithm?

Clearly our sequential algorithm only needs 1 processing element.
We say it has
Algorithmic Parallelism = 1

Our parallel algorithm needs n /2 processing elements.
We say it has
Algorithmic Parallelism = n/2

30

Algorithm Performance

For any real machine

If
Algorithmic Parallelism < Number O f Processing Elements

Then we are unable to make use of all of our processing elements.

If
Algorithmic Parallelism > Number O f Processing Elements

Then we must expect a lower parallel speedup.

Note that the parallel speedup for any particular machine is likely to be less than
predicted by the Paracomputer due to the overheads of communication and co-
ordination.

31

Identifying Parallelism

Process Parallelism

So far we have looked at process parallelism.

Process parallelism exists where any number of related or un-
related processes can be performed in parallel.

Data Parallelism
Data parallelism is a subset of process parallelism.

Data parallelism exists where we can manipulate data struc-
tures in parallel.

32

Express Parallelism

If we are adding two arrays together, element by element, we find that there is no
data flow between the different additions.? Hence we can perform the operations
in parallel.

Taking a sequential algorithm: (Pseudo Pascal)

for 1 = 0 to 99
begin

Cli] := A[1] + BIl[i];
end

we find that it exhibits data parallelism.
We can re-express it in data parallel form: (Pseudo Fortran 90)

C(0:99) = A(0:99) + B(0:99)
or even
C = A + B

Data parallelism in algorithms is easy to identify and easy to
express.

2This is also true for any elemental operation

33

Exploiting Parallelism

Having identified and classified the parallelism within your problem you must
exploit it on a parallel machine.

Due to the large number of scientific and engineering problems which exhibit
data parallelism, many parallel machines have been built specifically to exploit
this market.

These are A7ray Processors and Vector Processors.

In the early years of parallel computing, the most successful machines have been
Supercomutpers based on Pipeline Vector Processors.

34

