Pipelined Vector Computers.

Pipelined Computers.

These machines can execute in parallel the various subfunc-
tions of an operation in a manner similar to a factory assembly
line.

Not all pipelined computers are considered as parallel computers. We shall re-
strict our definition to those that manipulate vector data structures. Such a com-

puter is a Pipelined Vector Computer.

In order to understand a pipelined vector computer we will compare multipli-
cation operations in sequential and vector parallel machines.

35

Multiplication in a Scalar Computer.

Consider the multiplication of two 16 bit integers to give a 32 bit integer. A sim-
ple 16 cycle algorithm is employed:

Operand 1 Accumulator

During each cycle

e Operand 1 is added to the Accumulator conditional on the least significant bit
of Operand 2.

e Operand 1 is shifted right.
e Operand 2 is shifted left.

36

Multiplication in a Pipelined Vector Computer.

Pipeline Multiplier

In a pipelined architecture this process is unrolled:

As in the scalar machine a single multiplication takes 16 cycles.

Where more than one multiplication is required a vector multiplication is used.

37

Multiplication in a Pipelined Vector Computer.

Vector Multiplication
The pipeline vector computer will multiply operands from vector registers giv-
ing a vector result.

Operand 1
Operand 2 (LTI X
(LTI
Result][I Pipeline
T Multiplier

Vector Registers

e In each cycle a new pair of scalar operands will be presented to the pipeline.

e After an initial delay of 16 cycles results will be produced at a rate of one per
cycle.

e The time to multiply vectors of 1 elements is 15 + n cycles’

le.f. 16 x 1 cycles for scalar machine

38

Pipeline Granularity.

Our multiplier example performs the multiplication in 16 cycles.

e For a scalar machine, this involves a considerable saving in hardware over a
multiplier which takes fewer cycles, due to the re-use of the same hardware.

e For the pipeline machine, the unrolled multiplier cannot re-use any hardware.
Hence we can combine stages to produce an 8 or 4 cycle multiplier without any
hardware cost.

A vector processor may have one or more pipelines, where each pipeline may
be fixed (unifunctional) or re-configurable (multifunctional).

Across all pipelines, the maximum stage delay will be fixed, usually equal to one
processor clock cycle.

Thus the pipeline granularity will be chosen such that the individual stage de-
lays are matched as closely as possible to this maximum.

39

Floating Point Addition Algorithm.

Consider the following addition:

dXx2°=ax 2P +bx 24

The standard algorithm involves a number of different sub-operations:

manti ssa
_vvith
m n(p, q)

manti ssa
with
max(p, q)

| p-al

Right
Shifter

O]

Mantissa Leading

Zero
Counter

Adder

Left
Shifter

max(p, q)

b Mantissa
Selector
q—
T b
a Exponent —
Compare
P o

40

Exponent

-

Subtractor

Pipeline for Floating Point Addition.

The following is a possible arrangement for a four stage pipeline:

=

Right

Shifter

=

Mantissa

Shifter

] | .
u u

Adder

\

|
|

Leading
Zero
Counter

Exponent

2

Subtractor

b Mantissa
— Selector
q—=
a Exponent —
Compare
Y -

[

41

[

CPU Power vs Memory Bandwidth

Scalar machine

Illustrated below is the architecture of a simple scalar machine with a register
to register architecture. A well designed machine should balance memory band-

width with C.P.U. power.

CE CE | CE CE

Memory
Scalar Registers

The memory may typically take three processor cycles for a single transfer while
the A.L.U. may consume two values and produce one for every arithmetic opera-
tion.

Since the arithmetic operations take several cycles to produce a result this does
not lead to any great imbalance.

42

CPU Power vs Memory Bandwidth

Vector Parallel machine

(I Pipeline
(== ni
~—={[[IT=
IS
~—={[[IT=
Memory
Vector Registers

In the case of the pipeline processor we are aiming to calculate a new result ev-
ery clock cycle.

Thus the pipeline unit expects three data transfers per cycle to and from the reg-
isters, while the memory can only support one data transfer every three cycles.
The system is out of balance.

This explains why many vector parallel machines have very complex caching
structures together with multiple banks of memory. These are the speed at all costs
machines such as CRAY-1 and its successors.

43

Cray X-MP

O
N
Main processor unit (4 processor machine):
¢ Performance: 200 Mflops/s (approx.)
e Height: 2m

e Diameter: 1.5m

e Weight: 5 Mg

Support:
e 175 kVA generator

e Freon Cooling

We shall consider the single processor CRAY X-MP/12.
44

Cray X-MP/12
(Main datapath)

Vector Registers

Vector Pipelines

Memory VO - V7 D
64 x 64 bits Add
2 Mwords .
16 banks D Shift
128 kwords per bank @ :
Logic
Vector Length Population
VL
fp Pipelines (shared)
Vector Mask
A M fp Add
B . fp Mult
Scalar Registers
c > fo Reciprocal
T (scalar buffer) 64x64 bits Approximation
SO - S7
] 64 bits Add
Shift
I/O Systems Logic
64 Mword SSD Population
+ Disc, Tape etc.

45

Uniprocessor Cray X-MP

Register Structure

e Word length — 64 bits.

o VO-V7
8 off 64 word vector registers.

Rapid update, pipeline to memory.

e SO0 -S7
8 off scalar registers.

e TO-T63
64 word scalar buffer.
Rapid update, pipeline to memory.

Allows fast feeding of scalar registers.

46

Uniprocessor Cray X-MP

Pipeline Structure

e Vector Pipes

— VL: Vector Length control
A seven(?) bit register defining the length of the vectors to be processed.

V5(0:31) = V1(0:31) * V3(0:31)

— Vector & Scalar arguments
Vector pipes can be fed with scalar and vector arguments to give vector re-
sults.

V5(0:63) = V2(0:63) * S3

e Multiple pipes.
Concurrent or chained operation.

e Accelerated pipes for scalar operands.

e Shared pipes for floating point operations.

47

Uniprocessor Cray X-MP

Memory Structure

e 4 Port Memory

— 3 for C.P.U.
- 1forl/O

e 16 Memory banks

Reduces memory conflicts.

e Pipelined memory access
A single memory access takes 4 cycles

Pipelined access from four or more different banks gives one access per cycle
per port.

e SSD Solid State Device

Secondary Memory Device.

48

Concurrent & Chained Operations

Consider the execution of two vector operations.

Sequential Operation

Single Pipeline Operation Concurrent Pipeline Operation Chained Pipeline Operation

e Sequential Operation. no pipeline

No operation is started until the previous result has been obtained.

49

e Single Pipeline Operation. single multifunctional pipeline

Two different vector operations are executed. Each pipeline operation yields
one result per cycle. The first pipe is flushed before the second vector opera-
tion is started.

e Concurrent Pipeline Operation. multiple pipeline — independent operations

Where different registers and different pipes are used, a new vector instruction
may be issued every cycle.

VO(0:3) = Vv1(0:3) + V2(0:3)
V3(0:3) = Vv4(0:3) * V5(0:3)

e Chained Pipeline Operation. multiple pipeline — dependent operations

Here the second vector instruction uses the result of the first, the operations
are chained together.

VO(0:3) = Vv1(0:3) + V2(0:3)
V3(0:3) = Vv0(0:3) * V5(0:3)

Uniprocessor Cray X-MP

CPU Power vs Memory Bandwidth

Memory Vector Registers Vector Pipelines

A i h
: 1 h

e CPU power.

— Single active pipe — two operands and one result per cycle.
Thus the pipeline/register transfer rate is three words per cycle.

¢ Memory Bandwidth

- A, B & C memory ports can be used concurrently.

Provided that there are no conflicts, the register/memory transfer rate is
three words per cycle.

51

Uniprocessor Cray X-MP

CPU Power vs Memory Bandwidth

Thus we can chain memory access and pipeline operations:

Memory

Vector Registers

(T

(T

(T

(T

2

Vector Pipeline

(T

)

(T

Where more than one pipeline is concurrently active, the architecture relies on
the use of local register values to maintain the power bandwidth balance.

2A conflict on memory read will result in a bubble in the pipe, a conflict on write
will result in buffering in a vector register.

52

Performance Measurement

e Scalar Machines

Given that an average single instruction takes

th[ps]
then we can say that the performance of the machine is
1/t [Mps]

e Vector Machines

The above assertion is no longer true since the vector machine may be execut-
ing several instructions in parallel.

Ideally we might hope for a performance of

p/t1[Mips]

where p is the number of operations carried out in parallel.

53

Performance Measurement

« Pipeline performance

Consider an [stage pipeline performing an operation on a vector of length n.
The time taken for each stage is 7 (normally 1 clock cycle). There is also an
additional set-up time s7 to prepare the pipe for calculation.

Thus the time taken to produce the first result is
ty=[s+ 1]
then at a rate of one result per cycle giving
tyipe = [s+ 1+ (n—1)|7
or
Lpipe = Lo + T

where t, is the perceived start-up time ([s + [— 1]7).

54

Performance Measurement

« Asymptotic Performance, 7

The asymptotic rate is a useful measure of parallel computer performance, it
indicates the rate of operations for a very large vector.

reo = lim n/t
n—oo
Thus for our simple pipeline

_ -1
Toopipe = T

» Half-performance Length, n, /,

The performance of our computer with shorter vectors is indicated by the half-
performance length; the length of vector that will result in half the asymptotic
performance.

Ty = ro/2

Thus for our simple pipeline
n1/2 = t()/’f

55

Performance Measurement

The performance of our generic machine is fully defined by r,, and n, ;.

t =

T~

T
-N
72

. n1/2—|—n

””””””””””””””””””” o
++ T
LT
,,,,,,,,,,, vt T
+ I
+ | 2
+
+
. n
V2

For most real machines this will not be the case, but it is usually possible to ap-
proximate their behaviour to that of a generic machine.

56

Uniprocessor Cray X-MP

Performance Measurement

In the case of the Cray X-MP the performance will be modified due to the max-
imum vector length (64). This will result in an additional overhead every time a
new internal vector instruction is started.

t
— -1
slope = r;

w w w w w
-N 64 128 192 256
1
%

The solid line indicates the actual performance while the dashed line indicates
the equivalent generic performance, a best fit line giving values for ., and n, .

57

