Dataflow Computers

Control flow and data flow representations of a program:

p 1= X+y, X y SEQ
q:=Pply; p .= Xty
ro.=xp; \ / PAR
> =g q:=ply
t 1=r*p; r = xX*p
u:= s/t; P PAR

N s S :=1T1-(

t :=r1r*p
' d u:= s/t
S t

: u
Single Thread Multiple Thread
Control Flow Data Flow Graph Control Flow

58



Dataflow Computers

Consider the critical path:

SEQ
p = Xty 2 2 5
PAR
q:=ply 9
ro.=x*p 4} 9
PAR 9
S :=r1-q 2
t :=r1*p 4} 4
u:= s/t 9 9 5
24
+ 2 cycles 9
- 2 cycles
* 4 cycles o
/9 cycles 22

Our simple control flow description does not exploit the early availability of r
in order to take t out of the critical path. If we produce a dataflow machine based
on execution of the dataflow graph we can exploit the full parallelism with ease.

59



Fixed Program Dataflow Computers!

e Each node on the dataflow graph maps to a PE (Processing Element) in the archi-
tecture.

e Each arc on the dataflow graph maps to a link in the architecture.
e The node is said to fire when it receives sufficient data tokens on its input links.

e Computation is driven by the flow of data tokens between the nodes.

Fixed Program

Data Flow Computer PEs and Links

@

®7
_} Input @<7 @ Output _}
A iy

'These machines are often used in signal processing where a constant stream of
data values is to be processed.

60



Programmable Dataflow Computer

e Each PE is programmed to act as a node from our graph.

e The link switch is programmed with the graph topology, feeding the data to-
kens to their correct nodes.

e Where a data token must be delivered to several nodes, it is the link switch
which copies it.

—» Input Output —»
Link
Switch

1:many

PE

PE

PE

PE

61



Programmable Dataflow Computer

We can reduce the requirement for seldom used communication links using a
new token protocol.

e Each token carries with it a destination address.

e The token router ensures that tokens reach the correct PEs.

—» Input Output —»

Token
Router

PE

PE

PE

PE

62



Dataflow Computers

In most real machines we cannot provide one PE per node in our graph.?

Mapping of nodes onto PEs:

e A de-activated node doesn’t need a PE.
A de-activated node is one which is waiting for one or more data tokens before
firing.

e When a node is activated we must allocate a PE for it.
This is done from the set of idle PEs.

e If there are no idle PEs, the activated node must be placed in a queue.

°In fact this would be inefficient in any application where there is not a constant
stream of input data to keep the nodes busy.

63



Dataflow Computers

The following architecture is based on the Manchester Dataflow Computer:

Input ——— Output
> >

Token

Router

Token
Queue

PE

Node

Unit

PE

PE

e De-activated nodes are matched with data tokens in the matching unit.
e Activated nodes are stored in the node store awaiting a free PE.

e The token router deals with I/O and orders data tokens for placement in the
token queue.

64



Dataflow Language Issues

To allow for decision making and iterative calculation, we enrich our dataflow
graphs with further operators.

e+ / Operator T gate Merge
join Y Data Link \1 P/ g J J
Copy ?

« « / Decider F gate Branch
" T Boolean Link
Copy

e Data Link3

Carries general data values such as integer, real and complex numbers.

¢ Boolean Link

Carries Boolean values for control purposes.

SNote the join, which passes all input tokens in some order, and the copy, which
implicitly copies a data token to a number of destinations.

65



Dataflow Language Issues

e Operator
Applies an operator, f, to its input values to produce its result.

e Decider
Applies a predicate, p, to its data input values to produce a boolean result.

o T gate(/F gate)
— Passes data if it receives a true(/false) value on its boolean input.

— Discards data if it receives a false(/true) value on its boolean input.

¢ Branch
Passes its data input to one of its two outputs dependent upon its boolean in-
put.

o Merge
Passes one of its two data inputs to its output dependent upon its boolean in-
put.

Other sets of operators exist, this set merely attempts to be self consistent.

66



Dataflow Language Issues

The following graph illustrates some of these operators, used to perform an iter-
ative calculation.

n

ah

<20
T

» N,n-1,n-2,..1,0

67



Dataflow Language Issues

Dataflow graphs are usually generated from suitable languages. These are sin-
gle assignment languages and declarative (zero assignment) languages.

Taking single assignment languages (since these are simpler to understand), they
obey the single assignment rule making them easy to convert into dataflow graphs.

Single Assignment Rule

Each variable may only occur once on the left hand side of an assignment statement.
P g r

X X
|
I
X O
1
)
P
AN

Other beneficial features include freedom from side effects and locality of effect.

68



Dataflow Language Issues

Function Calls
e Expansion of function calls in line.

— Inefficient, multiple copies of graph.
— Precludes recursion.

¢ Dynamic instance creation.

— Graph section is dynamically copied and destroyed on completion.
— Nodes and tokens are tagged to distinguish between instances.

Function

Q Template

Tagged
Function
Instance

69



Dataflow Computer Issues

Dataflow computers provide an interesting alternative to parallel control flow comput-
ers.

While we avoid many problems associated with parallel control flow comput-
ers, we introduce new problems. These include:

e Copying of large data sets.
— Each destination node requires a different token.
e Communications Bottleneck.

— Due to the small granularity of the operations, the overhead for token trans-
port is significant.

e Strange Languages

— Few people are familiar with the languages, some concepts are very differ-
ent from procedural languages.

— It is suggested (by declarative programmers) that declarative programming
can increase programmer productivity!

70



