MIMD Parallel Computers

e Heterogeneous MIMD Machines

A MIMD parallel computer constructed of non-identical processing elements.

(350 various UNIX machines on Ethernet working together to solve a Prolog
problem).

— N ]

) o] o o) 3 [on

e Homogeneous MIMD Machines (Replicated MIMD Machines)

A MIMD parallel computer constructed of identical processing elements.

m—




Memory Configuration in MIMD systems

M

&) @) @) ) @) ) G

e Shared Memory Multiprocessor Systems

e Distributed Memory Multiprocessor Systems

129



MIMD - Shared Memory Multiprocessors

Shared Memory Multiprocessor Systems

| e

‘ 1
e Replicated Processing Elements
e Each PE is a full CPU including IPU & ALU !
e Single Memory

e Communications Network - Processor to Memory

"No extra charge for TLAs
130



MIMD - Shared Memory Multiprocessors

For years we have multi-tasked on single processors.

We have been giving the user the illusion of one processor per pro-
cess now we can do it for real!

Unix offers facilities such as -

e fork() - forks a new process.

e wait() - waits for the new process to die.

e pipe() - allows inter-process data transfer.

e semctl() - semaphores allow process synchronization.

All communication and synchronization is via shared access to mem-
ory.

With a few changes to the operating system we can run existing

software with significant speed increase.

131



MIMD - Shared Memory Multiprocessors

Bus Architectures
In a simple system the communications network is a bus.

e Bus Contention
Multiple requests for bus access.
e Bus Arbitration
Centralised control over the allocation of bus cycles.

e Delay due to Contention and Arbitration

Collisions will be more the norm than the exception.

E__B We have an imbalance between Processing Power and Mem-
ory Bandwidth.

132



MIMD - Shared Memory Multiprocessors

Caches

We can begin to balance Processing Power and Memory Bandwidth
by using local caches for each PE.

133



MIMD - Shared Memory Multiprocessors

Caches

e Reduces Global Memory Access

Dependent on locality of accesses.

e Cache Coherence

Must ensure we always access the most up-to-date copy of a data value.

A write to a location in one cache must result in the update of all copies in all
caches, or cause such copies to be discarded from the caches.

e More Complex System

More central control. More hardware. More cost.

Our true Memory Bandwidth is now somewhere between the Total
Cache Memory Bandwidth and the Global Memory Bandwidth.

134



MIMD - Shared Memory Multiprocessors

Local Memory

C.P.U. C.P.U. C.P.U. C.P.U. C.P.U. C.P.U. C.P.U.

-0 H@D
© @ © © © © .

| : 1

By adding local memory to each PE we can further reduce accesses
to global memory.

135



MIMD - Shared Memory Multiprocessors

Local Memory

e Reduces Global Memory Access.
¢ Deviates from our Shared Memory Ideal.

e To run Efficiently we must modify our programs to use local mem-
ory.

e Compiler Technology can help.

e Data which appears local to a process may become global after a
process fork().

e More Complex Programming.

136



MIMD Shared Memory Multiprocessors

Multi Bank Memories

POOOOO A
Toiooos
CHEDEDE

e We allow one memory access per cycle per bank.

<

e We have a dramatic increase in Memory Bandwidth.

137



MIMD Shared Memory Multiprocessors

Multi Bank Memories

We still have problems with Contention.

e We have pathological programs which require all processors to ac-
cess the same bank simultaneously.

e Distribute data such that adjacent memory locations are on differ-
ent banks.

Use a prime number of banks and a power of two of processors.

e Distribute Randomly
Use a hashing scheme to determine the location on a data value.

The cost of the system can be very high 2 in order to allow wide
bandwidth connection between any processor and any memory bank.

2CRAY multiprocessor systems employ this approach.

138



MIMD Shared Memory Multiprocessors

The Limits

The number of processors in a shared memory system is restricted
by the following factors.

¢ Central Control
e Memory Collisions
e Bus Physical Size

e Interconnect Complexity

e With caches and local memory we might manage 32 processors in
a shared memory system.

e Not really sensible for Massively Parallel Systems

139



MIMD Shared Memory Multiprocessors

The Future?

Larger systems are envisaged using distributed communications
and multiple memory banks.

140



