MIMD Parallel Computers

e Heterogeneous MIMD Machines

A MIMD parallel computer constructed of non-identical processing elements.

(350 various UNIX machines on Ethernet working together to solve a Prolog
problem).
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e Homogeneous MIMD Machines (Replicated MIMD Machines)

A MIMD parallel computer constructed of identical processing elements.
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Memory Configuration in MIMD systems
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e Shared Memory Multiprocessor Systems

e Distributed Memory Multiprocessor Systems
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MIMD - Shared Memory Multiprocessors

Shared Memory Multiprocessor Systems
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e Replicated Processing Elements
e Each PE is a full CPU including IPU & ALU !
e Single Memory

e Communications Network - Processor to Memory

"No extra charge for TLAs
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MIMD - Shared Memory Multiprocessors

For years we have multi-tasked on single processors.

We have been giving the user the illusion of one processor per pro-
cess now we can do it for real!

Unix offers facilities such as -

e fork() - forks a new process.

e wait() - waits for the new process to die.

e pipe() - allows inter-process data transfer.

e semctl() - semaphores allow process synchronization.

All communication and synchronization is via shared access to mem-
ory.

With a few changes to the operating system we can run existing

software with significant speed increase.
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MIMD - Shared Memory Multiprocessors

Bus Architectures
In a simple system the communications network is a bus.

e Bus Contention
Multiple requests for bus access.
e Bus Arbitration
Centralised control over the allocation of bus cycles.

e Delay due to Contention and Arbitration

Collisions will be more the norm than the exception.

E__B We have an imbalance between Processing Power and Mem-
ory Bandwidth.
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MIMD - Shared Memory Multiprocessors

Caches

We can begin to balance Processing Power and Memory Bandwidth
by using local caches for each PE.
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MIMD - Shared Memory Multiprocessors

Caches

e Reduces Global Memory Access

Dependent on locality of accesses.

e Cache Coherence

Must ensure we always access the most up-to-date copy of a data value.

A write to a location in one cache must result in the update of all copies in all
caches, or cause such copies to be discarded from the caches.

e More Complex System

More central control. More hardware. More cost.

Our true Memory Bandwidth is now somewhere between the Total
Cache Memory Bandwidth and the Global Memory Bandwidth.
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MIMD - Shared Memory Multiprocessors

Local Memory
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By adding local memory to each PE we can further reduce accesses
to global memory.
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MIMD - Shared Memory Multiprocessors

Local Memory

e Reduces Global Memory Access.
¢ Deviates from our Shared Memory Ideal.

e To run Efficiently we must modify our programs to use local mem-
ory.

e Compiler Technology can help.

e Data which appears local to a process may become global after a
process fork().

e More Complex Programming.
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MIMD Shared Memory Multiprocessors

Multi Bank Memories
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e We allow one memory access per cycle per bank.

<

e We have a dramatic increase in Memory Bandwidth.
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MIMD Shared Memory Multiprocessors

Multi Bank Memories

We still have problems with Contention.

e We have pathological programs which require all processors to ac-
cess the same bank simultaneously.

e Distribute data such that adjacent memory locations are on differ-
ent banks.

Use a prime number of banks and a power of two of processors.

e Distribute Randomly
Use a hashing scheme to determine the location on a data value.

The cost of the system can be very high 2 in order to allow wide
bandwidth connection between any processor and any memory bank.

2CRAY multiprocessor systems employ this approach.
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MIMD Shared Memory Multiprocessors

The Limits

The number of processors in a shared memory system is restricted
by the following factors.

¢ Central Control
e Memory Collisions
e Bus Physical Size

e Interconnect Complexity

e With caches and local memory we might manage 32 processors in
a shared memory system.

e Not really sensible for Massively Parallel Systems
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MIMD Shared Memory Multiprocessors

The Future?

Larger systems are envisaged using distributed communications
and multiple memory banks.
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