MIMD Programming problems

Interaction Of Processes
e A Simple Situation

— A road junction in France

o A simple Set of Rules

— Drive until you have to Give Way to traffic from the right.
— Wait until the way is clear, then continue.

158

MIMD Programming problems

Deadlock

The state in which two or more processes are deferred indefinitely because
each is awaiting another process to make progress, and no process is able to
make progress.

e By some fluke all four cars have arrived at the junction together.
e We have deadlock.

159

Programming MIMD Systems

Dining Philosophers

e One Table - One Bowl of Spaghetti.

e Four Philosophers - Four Chairs - Four Plates - Four Forks.

160

*# Dining Philosophers

e The Situation:

— Philosophers Think & Eat.
— Thinking and Eating are Exclusive Tasks.

e The Catch:

— A Philosopher requires two forks in order to eat.
— There are only four forks in all.

e The Problem:

— We must write code to model the behaviour of one philoso-
pher.

— We will then examine the group behaviour.

161

OCCAM for Dining Philosophers

OCCAM Processes

e An OCCAM program can be considered as hierarchy of processes.
e Most processes perform actions and then terminate.
Process Construction

SEO
Process A
Process B

e This compound process is the sequence of the two processes Process A
and Process B.

e Process A is executed to termination before Process B is be-
gun.

e The compound process terminates when Process B terminates.

162

OCCAM for Dining Philosophers

o Loop

WHILE condition
Process A

e This process executes Process_A repetitively while condition
is true.

163

OCCAM for Dining Philosophers

e Choice

IF
condlition a
Process A
condition b
Process B
e This process executes Process A if condition a is true.
e Else it executes Process B if condition_ b is true.

e Else it executes nothing at all and doesn’t terminate.

164

OCCAM for Dining Philosophers

e Parallel Processes

PAR
Process A
Process B

e This compound process executes Process A and Process B in
parallel.

e Process_A need not terminate before Process B is begun.

e The compound process terminates when both Process_ A and Process B
have terminated.

165

OCCAM for Dining Philosophers

e Declarations

INT 1:
Process A

e Declares i to be an integer within Process A.

e Procedures

PROC fred()
Process B

Process A

e Defines fred () to represent Process B within Process A.

166

*# Dining Philosophers

Approach

e We will code the problem in OCCAM.

e A number of pre-defined functions are available for our use. Thus
we do not have to worry about the intricacies of philosophical
thought or the winding of spaghetti.

e We are not initially provided with a function allowing our philoso-
phers to talk to each other.

167

*# Dining Philosophers

PROC Think ()
--- Think until hungry - unspecified duration.

PROC Eat ()
-——- Eat until full - unspecified duration.

PROC Pick Fork If Possible(FORK f)
-—— Pick up fork £ 1f it 1is there.

BOOL FUNCTION Got_ Fork(FORK f)
-——- Returns TRUE if fork £ has been picked up.

PROC Pick_Fork_Always(FORK f)

WHILE NOT Got_Fork(f)
Pick Fork TIf Possible(f)

168

*# Dining Philosophers

Solution 1

Let us take the simple approach:

e Our philosopher will Think first.

e When hungry our philosopher will pick up the fork to his left and
then the fork to his right.

e Our philosopher will then Eat.

e When full our philosopher will put down the fork to his right and
then the fork to his left.

169

*# Dining Philosophers

Solution 1:

PROC Try_Eat ()
SEQ
Pick_Fork_Always(left)
Pick_Fork_Always(right)

Eat ()

Put_Fork(right)
Put_ Fork(left)

WHILE TRUE
SEQ
Think ()
Try_Eat ()

170

*# Dining Philosophers

Group Behaviour

e Unfortunately by some fluke all the philosophers happen to fin-
ish thinking together.

e Each philosopher picks up the fork to his left.

e Each philosopher must wait for his right hand neighbour to finish
eating.

e None of the philosophers can make progress.

e We have deadlock.

The state in which two or more processes are deferred indefinitely be-
cause each is awaiting another process to make progress, and no process
is able to make progress.

171

*# Dining Philosophers

Solution 2

To prevent deadlock we must modify the behaviour of our philoso-
pher:

e The deadlock arises because our philosopher stubbornly holds onto
one fork while awaiting the other.

o If he must wait for a second fork, he should put down the first
while he does so.

e Thus a waiting philosopher holds no forks. We can have no dead-
lock.

172

*# Dining Philosophers

Solution 2:

PROC Try_Eat ()
SEQ
Pick_Fork_Always(left)
Pick_Fork_If Possible(right)

WHILE NOT (Got_Fork(left) AND Got_Fork(right))
Swap_and_Retry ()

Eat ()

Put_Fork(right)
Put_Fork(left)

173

*# Dining Philosophers

Where Swap_and Retry() has been defined as:

PROC Swap_and_Retry ()

1F
Got_Fork(left)
SEQ
Put_Fork(left)
Pick_Fork_Always(right)
Pick Fork If Possible(left)

Got_Fork(right)
SEQ
Put_Fork(right)
Pick_Fork_Always(left)
Pick_Fork_If Possible(right)

174

*# Dining Philosophers

Group Behaviour

e By fluke each philosopher picks up the fork from his left.
e No philosopher can pick up the fork on his right.

e All philosophers put down their left forks and pick up their right
forks.

e No philosopher can now pick up the fork on his left.

e The process swaps and repeats.

e By some further fluke the philosophers remain synchronized.
e No food is consumed.

e We have livelock.

175

*# Dining Philosophers

Livelock

o A state in which the actions of two or more concurrently executing pro-
cesses prevent computation from proceeding. No useful work is done by
the interacting processes.

o The state may arise from a quirk of timing and may disappear for a sim-
ilar reason. Unlike deadlock, livelock is not inherently stable.

176

*# Dining Philosophers

Solution 3
We shall try a different approach:

e Our problems are still caused by the state where the philosophers
each have one fork.

e Let us assume that we can add another procedure to our library:

PROC Pick Both Forks TIf Possible()
-—-- Pick up both forks if both are on the table.

e Are all our problems solved?

177

*# Dining Philosophers

Solution 3:

PROC Pick_Both_Forks_Always ()
WHILE NOT (Got_Fork(left) AND Got_Fork(right))
Pick Both Forks If Possible()

PROC Try_Eat ()
SEQ
Pick_Both_Forks_Always ()
Eat ()

Put_Fork(right)
Put_Fork(left)

178

*# Dining Philosophers

Group Behaviour

e Let us assume that philosopher number 1 Eats while philosopher
3 Thinks and vice versa.

e Philosophers 2 and 4 will never see two available forks and will
never Eat.

o We have Indefinite Postponement

179

*# Dining Philosophers

Indefinite Postponement

o A state in which the progress of one group of (one or more) processes
is indefinitely postponed awaiting the release of resources by another

group.
e The problem is essentially one of fairness in the allocation of resources.

o Like livelock, indefinite postponement is not inherently stable. It is pos-
sible for a timing quirk to return the system to normal operation.

180

*# Dining Philosophers

Deadlock, Livelock & Indefinite Postponement

e All of these problems are timing dependent.

e When we find our code behaving strangely we add extra debug-
ging in order to track down the cause.

e The system timings are changed by this examination.

e Frequently we find that a problem disappears when we try to chase
it.

e It is even possible for the this examination to expose new prob-
lems to confuse the issue further.

Programming with Concurrent Processes is Difficult.

181

