MIMD Message Forwarding

Software Message Forwarding

Process

Process

Process

Process

Process

Process

Consider the mapping of any to any process connectivity onto the

simplest partial network.

e We must prepend a processor address to our message.

e Messages arriving at a node, carrying the local node address are

consumed

o All other messages are forwarded to the next node.

This message delivery system is Store and Forward.

182

MIMD Message Forwarding

Messages
Tail Head

™

m
Data Network

Address

e The message consists of a header containing a unique network
address and a tail consisting of the message data.

e The header may include other information such as:

— Length of message

— Type of message
— Return address
e We must provide a buffer at each node which is big enough to

hold the largest message.
183

MIMD Message Forwarding

Packets
.Q Packet 1
.Q Packet 2
.Q Packet 3

| Max Packet Length = Buffer Size |

Divide message before transmission into packets.
e Each packet carries its own copy of the destination address.
e Packets have a fixed maximum length.

e On arrival the packets are re-assembled into the original message.

184

MIMD Message/Packet Routing

For more complex partial networks we must make routing deci-
sions:

e At each node we must decide which output link should be used
for each unconsumed message.

185

MIMD Message/Packet Routing

& e o o —e —e—o
>—o o o) w—e & & 9

e Deterministic Routing
— The path of the message is deterministic, predefined by the source
and destination addresses.
— e.g. Route first in X and then in Y.

— If there is a temporary blockage at a node en route, the mes-
sage must wait.

186

MIMD Message/Packet Routing

— ® o o—9¢ M o9 o eo—eo—eo—9¢
& & @ o Moo o Mo o)X

e Adaptive Routing

— The path is not predetermined, at any node the message may
take any link which brings it closer to it’s destination.

— The messages are sometimes able to adapt their paths in order
to avoid blockages.

187

MIMD Message/Packet Routing

Adaptive Packet Routing

Adaptive routing may result in problems for message re-assembly.
It is possible for packets to arrive out of sequence, having taken
different paths to their destination.

e Packet headers may include an index number such that they can
be re-ordered on arrival.

o Alternatively we can delay sending a packet until the previous
packet has arrived.

This requires the sending of an acknowledge message for each
packet.

188

MIMD Message/Packet Routing

Blockages & Buffering

e Process 1 wishes to send data to Process 4, Process 4 is ready to accept data.
e Process 3 wishes to send data to Process 2, Process 2 is ready to accept data.
e Process 1 injects two segments which occupy the routing buffers 1 & 2.
e Process 3 injects two segments which occupy the routing buffers 3 & 4.

e All buffers are full, no packet has arrived, we have deadlock.

189

Deadlock Free Message/Packet Routing

We must distinguish between program deadlock and routing deadlock.

e We have program deadlock if we have packets in the network which
are not being removed because the receiver process is not ready.
The network may then help to spread the blockage such that all
processes are stopped.

e We have routing deadlock where there are no arrived packets and
we have cycles of blocked packets.

Our programming model assumes that we can freely send data from
any process to any other process. We must have a deadlock free rout-
ing system which remains deadlock free regardless of load.

190

Deadlock Free Message/Packet Routing

e Let us increase the buffering.
— The more that buffering is increased the less likely the system is to dead-
lock.
— In any real system there must be an upper bound on the buffering.

— It will always be possible for deadlock to occur.
e Let us limit the number of packets in the network’.

— If there are fewer packets than buffers it will always be possible for at least
one packet to move.

— We can accomplish this by having a fixed number of empty packets in the
network after initialization.

IThis is the technique used by the Cambridge Ring.
191

— Empty packets can be swapped for full packets and full packets for empty
packets but no packets can be added or taken away.

192

Deadlock Free Message/Packet Routing

Deadlock Freedom in other networks

If we try to avoid deadlock by limiting packet numbers in any net-
work with bidirectional links we find that the maximum number of
packets we can use is one. We must find a new method.

Cycle Free Networks

@ @ @ @ @ @ @ @ @ @ @ ®
e These uni-directional line networks are cycle free and hence dead-
lock free.
e Neither network is capable of providing our full connectivity.

o If we provide both networks for the connection of a single line of
processors we can provide full connectivity.

e Each message will either travel in one network or the other.

193

Deadlock Free Message/Packet Routing

Virtual Networks

Instead of providing two different networks we can provide two

independent virtual networks within a single network.
® @ @ @ @ ® ® ® ® ® ® o

U

® ® ® ® ® ®
In order to maintain the independence of the virtual networks:

e Each network must have a separate set of buffers.

e Where two networks use the same link? they must be multiplexed
such that a blockage in one network does not prevent the other
network from using the link.

2this is not the case here

194

Virtual Networks

Deadlock Freedom in 2 Dimensions
We can divide a 2D bi-directional grid network into four cycle free

networks.

*—0—0—0
*—0—0—0

*—0—0—0

*—0—0—0

il

e These four networks use different links and can be provided with

separate buffer spaces.

e While they remain independent they cannot provide full connec-

tivity.

e We must route a message in more than one network.

195

*——0—0—0
*——0—0—0

*=—0-—0-—0

1t

Virtual Networks

Deadlock Freedom in 2 Dimensions
o If we allow a message to travel from one virtual network to an-

other network without restriction, we can re-introduce cycles and
deadlock.

e If we apply an ordering to the networks and restrict the messages
to travelling through the networks in order we can still avoid cy-
cles.

*—0—0—0
*—0—0—0
*—0—0—0
*—0 -0 -0
*~——0o-—0-—o
*——0o-—0-—o
*——0o—0-—0

Thus we employ restricted routing;:
Route first in X and then in Y.
In this case we cannot have adaptive routing.

196

Virtual Networks

Deadlock Freedom in Closed Networks
e So far we have applied virtual network routing to open networks.

e How shall we eliminate cycles in closed networks?

(=020

e We can map two or more open networks onto a single closed net-
work to provide the required connectivity.

e Here we will usually need to run two links where there was pre-
viously only one.

This is achieved by multiplexing the links and supporting two
separate handshakes, one for each network.

Thus a blockage in one network cannot cause a blockage in the
other.

197

Virtual Networks

Deadlock Freedom in Closed Networks
The same technique can be used in two or more dimensions with

uni-directional or bi-directional links.
2D Bi-directional Torus

I

E&*ﬁ\}%jj [xuu
it e == 0l

nn D HHEE

e We divide our torus into two overlapping bi-directional grids.
e Each grid can then be divided into four virtual networks.

e Again we will restrict our routing; Route first in X and then in Y.

198

Hypercube Routing

e Hypercubes can be considered as open networks or closed net-
works (because all PEs are edge PEs).

e An ND hypercube is divided into an ordered set of 2N virtual
networks:

— Dimension 1 positive
— Dimension 1 negative

— Dimension N positive
— Dimension N negative

e Routing is then performed in dimension order.

e The nodes are numbered such that the state of a single bit in the
address determines whether the packet needs to be routed in a
particular dimension.

199

Hypercube Routing

Node numbering in a hypercube network.

011 0111

0101

0000 0001
200

Hardware Routing v Software Routing

Software Routing

e With software packet routing we run a routing process on each
PE.

e The routing process is timeslice multi-tasked with the other pro-
cesses running on the PE.

e In a communications intensive program the PE will spend most
of its time routing packets which are merely passing through the
node.

e This will get worse as the network gets bigger.

201

Hardware Routing v Software Routing

Hardware Routing

e With hardware packet routing we provide each PE with a packet
routing co-processor.

e Routing decisions can be made within one cycle thereby speeding
message delivery.

e The PE’s CPU need only deal with messages to or from the local

node.
Links Address & Memory Control Bus
other
Data Bus

202

Routing Co-Processors

Cost/Benefit Analysis
A specialised routing co-processor may double the cost of a PE,
but because it is a dedicated device it can increase performance by
a greater amount.

§[d

The ideal balance is to be able to get data in and out as fast as we
can process it.

Independent Routing Processors
Some co-processors can exist independently of there hosts as in our
fat tree.

Store and Forward Packet Routing

Let us examine the transport of a packet in a store and forward net-

work.

=

204

Store and Forward Packet Routing

Routing Performance

e The time taken for the delivery of a message is calculated as fol-
lows;
T=nx(l+h)/B
where

— n is the number of hops.

— [is the number of data bits.

— h is the number of header bits.

— B is the link bandwidth in bits per second.

Assumptions

— There is no overhead for decision making (hardware routing).

— We have an empty network (packets will be further delayed in
a busy network).

205

Alternative Routing Strategies

We are waiting for a time ¢ = ({+h)/B at each node while the whole
packet is stored before making a routing decision.

Yet we see that after a time ¢ = h/B we have received the header
information. We have all the information required in order to make
our routing decision.

If we make our routing decision at ¢', we gain in two ways:

e We reduce the message latency.

e We no longer require large buffers at each node.

The buffer size is determined by the header size. We can return to
message routing rather than packet routing (if we so desire).

We have Wormhole Message Routing
206

Wormhole Message Routing

Let us examine the transport of a packet in a wormhole network.

()

______________________________>

207

Wormhole Message Routing

Routing Performance

e The time taken for the delivery of a message is calculated as fol-
lows;

T=(l+(nxh))/B
where
— n is the number of hops.
— [is the number of data bits.
— h is the number of header bits.
— B is the link bandwidth in bits per second.

c.f.
T =n=x(l+ h)/B for Store & Forward

Again we are assuming hardware routing in an empty network.

208

The Problem with Wormhole

e We have looked at the performance of wormhole routing in an empty
network and found it considerably better than store & forward.

e One of the characteristics of wormhole routing is that messages
are spread out over the network. When a single message is de-
layed due to a temporary blockage that single message will re-
main spread out across the network, thus potentially blocking a
large number of other messages.

e In this way it appears that store & forward routing may have ad-
vantages in busy networks, as a single waiting packet can only
block one node.

209

Alternative Routing Strategies

Virtual Cut-Though Packet/Message Routing

Virtual cut-through packet routing is a hybrid of wormhole and store
& forward.

e In an empty network it behaves like wormhole routing where each
packet spreads itself across the network.

e When a packet encounters a blockage, the head stops at the block-
age while the tail continues until all of the packet is buffered at a
single node.

When the blockage is gone the packet will again spread out across
the network.

e In this way we get the best of both worlds.

We can implement either packet routing or message routing with
virtual cut-through. If we implement message routing then a long
message may remain spread out over several nodes when its progress
is blocked.

210

Virtual Cut-Though Packet/Message Routing

Buffering of a blocked packet in virtual cut-through routing;:

(o))

211

Alternative Routing Strategies

Mad Postman Packet/Message Routing
- The Leading Edge

e Mad Postman Routing takes virtual cut-through one stage further.

e Instead of delaying the message until the header can be checked,
the mad postman passes the received information immediately to
the next processor while taking a copy for itself. The minimum
delay of one cycle is applied at each node.

e When the header has been received (& sent on), a decision on the
routing of the data can be made.

e In the event of a temporary blockage a full packet can be buffered
at a single node (c.f. virtual cut-through).

212

Mad Postman Packet/Message Routing

1D Mad postman routing - Individual behaviour :

O

B

213

Mad Postman Packet/Message Routing

1D Mad postman routing - Group behaviour :

214

Mad Postman Packet/Message Routing

Routing Performance

e The time taken for the delivery of a message is calculated as fol-
lows;
T=(+h+n-1)/B
where
— n is the number of hops.
— [is the number of data bits.
— h is the number of header bits.
— B is the link bandwidth in bits per second.

c.f.
T =n=x(l+ h)/B for Store & Forward.
T = (l+ (n*h))/B for Wormhole and Virtual Cut-Though.

215

2D Mad Postman

The present implementation of mad postman routing is 2D grid split
into four virtual networks.

The {+X,+Y}, {+X,-Y},{—X,+Y} & {—X, —Y} allow for adap-
tion without deadlock. A message need travel in only one virtual
network in order to reach its destination.

HH <

The mad postman provides independent links for the different net-
works.

216

2D Mad Postman

A) Arrival in X

2D Mad Postman

B) Arrivalin'Y

2D Mad Postman with Adaption

e When a packet is blocked at a node it can be fully buffered at that
node (c.f. virtual cut-through).

o If after the first header has been buffered there is an unblocked
channel in the other dimension, then the packet will be re-directed
into that dimension.

e For this to happen the headers must be swapped such that the
leading header corresponds to the direction of travel.

e As aresult of this initial delay for header swapping the node where
the blockage occurred will continue to buffer a header sized chunk
of the packet.

219

2D Mad Postman with Adaption

B) Adapt1on XtoY

T X Address
G v Address

<) Dpaa

2D Mad Postman with Adaption

T X Address
G v Address

<) Dpaa

