Software for MIMD Message Passing Machines

e Old languages with additions for concurrent programming.

— Parallel versions of C
— Parallel versions of Fortran

e Routines are added for access to communication links.
e One or a few processes are placed on each processor.

e Mechanism of inter-process communication depends on process
location.

e The hardware changes but the languages remain the same.

— Important for market acceptance.

221

Software for MIMD Message Passing Machines

”

Portability Problems

e Code written in C for an NCUBE hypercube won’t run on an Intel
hypercube.

e Code written for an 8 node machine will use only 8 nodes of a 16
node machine.

e Code written for an 8 node machine will not run at all on a 4 node
machine.

222

Excess Parallelism & Virtual Concurrency

e Sufficient Parallelism

With the Parallel C/Fortran approach we extract as much concur-
rency from the problem as we need. We can then write a program
for each processor.

e Excess Parallelism

If instead we extract as much concurrency from the problem as
possible, we find that we will often have more parallelism than
we have processors. We have excess parallelism.

o Virtual Concurrency

In order to support excess parallelism, we run multiple processes
on a single processor. This multi-tasking we call virtual concur-
rency because the time-sliced processes must appear to run con-
currently.

223

The Benefits of Excess Parallelism

e Masking of Message Latency

In MIMD message passing systems the latency of message pass-
ing is often a limiting factor.

In order to mask this latency such that it doesn’t effect the exe-
cution time of the program, we can deschedule a process which is
waiting for communication such that it no longer gets any CPU
time.

The greater the level of excess parallelism the greater the masking
effect.
e Abstraction

The number of processors is no longer important. The real con-
currency will expand to fit any number of processors until there
is only one process on each processor.

Programs are more portable and easier to write.

224

Portable Programs

»

Consider Portability for sequential machines:!

o All sequential machines are assumed to be von Neumann ma-
chines.

Programmers seldom need to know more about the architecture
than the approximations contained in the von Neumann model, since
exact processor details are hidden by the compiler.

"Most code for sequential computers is portable, there is no market for a book
on programming in C for the Sun workstation, since C is the same on all ma-
chines. Some problems still remain with the portability of i/o code, since this re-
lies on a number of emerging standards such as operating systems and windowing

systems.

225

Von Neumann Machine

Processor
Arithmetic
" Logic /' -~ Registers - -
Control

sequential instruction execution

226

Memory

holds instructions

and data

Von Neumann Machine

The von Neumann model is a loose description of a real machine.

e ’rocessor

A processor that performs instructions such as “add the contents
of these registers and put the result in that register.”

e Control

A control scheme that fetches one instruction after another from
the memory for execution by the processor, and shuttles data be-
tween memory and processor one word at a time.

e Memory

A memory that stores both the instructions and data of a program
in cells having unique addresses.

227

Portable Programs — Virtual Machines

For portable compilers we introduce an intermediate code.

T e e

Front-end compilers; one for each language

T

Back-end compilers; one for each machine

— i T
e All front-end compilers are written in this code and compile to this code.

e All back-end compilers and run-time systems support this code.

This is the machine code for a virtual machine. The virtual machine
must be carefully chosen to allow efficient code generation for all real

machines.
228

Portable Programs — Virtual Machines

A typical virtual machine will perform a defined set of arithmetic
operations on a stack, with variable storage available in addressed
memory locations.

Processor

Arithmetic Memory

Stack
Limitiess <'”§ \

Control

Fixed
Progam - | | i
Limitlacce

LIt Cc 5SS

Both the stack and the addressed memory are considered as unlimited in size.

229

Portable Programs — Virtual Machines

Major Problems

e A real machine cannot have unlimited memory or stack space.

e A real machine may have a number of fast access registers.
Solutions

e Virtual Memory

A system of virtual memory with swap space on disc allows a small amount of
real memory to appear as a very large (if not unlimited) amount of memory.

This system must be supported by the run-time system and /or additional hard-

ware.

e Code Optimization

The back-end compiler will re-code stack arithmetic as register — register arith-
metic so as to reduce off-chip data accesses.

In general it is the task of the back-end compiler to produce the most efficient
code possible for the target architecture.

230

Portable Programs for Parallel Machines

We have seen that portability relies on the concept of a generic vir-
tual machine or processing model?.

Having defined the functionality of the model the system design-
ers must support the model for any particular machine.

We have introduced three different processing models

e Data Parallel Model
e Shared Memory Model

e Communicating Processes Model

2A processing model may be considered as a loosely specified virtual machine
which has no machine code.

231

Portable Programs for Parallel Machines

Data Parallel Model

e This model assumes that we have a single process which performs
calculations over whole data structures in parallel.

The data parallel model has led to Fortran 90 as a portable lan-
guage for vector processors and other SIMD machines. Some MIMD
machines adopt the data parallel model due to its ease of use, al-
though the model (and hence the language) has to be extended in
order to achieve process parallelism.

For portable languages the user is unable to control the mapping
of data to processors. A poor mapping may result in unnecessary
communications overheads on a real processor.

232

Portable Programs for Parallel Machines

Shared Memory Model

e Assumes that we have multiple processes all of which share the same
memory map.

The standard multi-tasking facilities of UNIX convert C into a portable
language for shared memory machines.

In order to create portable code we must exploit the excess paral-
lelism contained within a problem since we no longer know how many
processors the real machine will have. For many machines this is
wasteful where the overheads of virtual concurrency are heavy.

233

Virtual Processors

We can consider this programming style as programming for a set

of virtual processors>.

We program as if for an arbitrarily large number of virtual proces-
sors, one per concurrent process, and then map the virtual processors
onto the available real processors.

3c.f. virtual memory

234

Portable Programs for Parallel Machines

Shared Memory Model

The shared memory model is typified by the much cited PRAM
machine, an ideal processor on the same lines as the Paracomputer.

Real shared memory machines are far too small to be considered
as general purpose machines.

Although a distributed memory machine may emulate shared mem-
ory in software, the assumptions made in the model about uniform
access times for all memory locations mean that code written for this
mode] will run very badly on these machines.

235

Random Access Machine

Processor
Arithmetic Memory
Accumulator \
. Limitless
Control
Fixed
PC Program -+ | | |

The Random Access Machine (RAM) is a model used in algorithm
comparison (complexity theorem). Each instruction in its fixed in-
struction set is assumed to take a single cycle to complete.

236

Parallel Random Access Machine

Processor

Arithmetic

Processor

w

Arithmetic

w

Processor

Arithmetic

w

Control -
Fixed
Program .

Control -
Fixed
Program .

Control -
Fixed
Program .

Limitless

The P-processor Parallel Random Access Machine (PRAM) com-
pletes P instructions, one on each processor, in every cycle.

237

Portable Programs for Parallel Machines

Communicating Processes Model

e Assumes that we have multiple independent processes which com-
municate and co-ordinate via the sending of messages. Each process
can communicate with any other process, but can only access its
own local memory.

A truly portable language for this model should be able to express
fine-grain concurrency to allow maximum excess parallelism in or-
der to hide communications latency.

The language should not contain references to process placement
or the placement of communication channels since no knowledge of
the underlying architecture can be assumed.

Occam attempts to fulfil this requirement with built-in support for
fine grain parallelism and inter-process communication.

238

General Purpose Parallel Computers

Much of the research into Parallel Computer architecture is now
aimed at building general purpose parallel computers. This research
is driven by the requirement of usable power.

Parallel computers have always been difficult to program, the situ-
ation becomes worse as the machines get more powerful.

In order to achieve acceptance of parallel machines as cheaper desk-
top workstations than equivalent sequential machines, programming
the parallel machines must become a task of similar complexity.

Here we consider a general purpose machine as one designed to
support one or more portable languages based on one or more of the
processing models.

239

General Purpose Parallel Computers

e Functionally

— The programmer will be able to program without regard to or
knowledge of:

- - process or data location
- - processor interconnection

— A single program should run without modification on any ma-
chine.

e Performance

— The performance of portable code should be comparable with
that of hand-crafted code.

240

General Purpose Parallel Computers

e Implication

— System software (compilers & operating systems) must con-
tain the knowledge of how to get the best from the machine
- this may call for simple architectures since complex function-
ality may be wasted*.

— Hardware must be tailored towards the programming model
since there is now much less ability to tailor the programming
model to the hardware.

e Pragmatism

This is a major task, most systems are approaching the goal one
step at a time.

4c.f. CISC vs RISC
241

