Occam the ideal language ?

Occam:
e Designed for MIMD Message Passing machines.
— Described as machine code for the Transputer.
e Includes low level support for concurrent processes.

e Includes built in support for message passing.

Although Occam itself contains the elements of an ideal language
for portable concurrent programming with communicating processes,
its implementation on Transputers falls short of the ideal.

Let us look further at Occam.

242



Occam

Primitive Processes
All programs are built from the following primitive processes:

o Assignment (assign expression e to variable v)

vV 1= e
e Input (assign a value to variable v from channel ¢)
c ? Vv

e Output  (output expression e via channel c)
c ! e

e No Operation (do nothing and then terminate)
SKIP

e Error (do nothing and then don’t terminate)

STOP
243



Occam

e Sequence

SEQ
Pl
P2
P3

SEQ

c2 !

Process Constructions

(standard sequential construction - note indentation)

244



e Parallel (low level support for parallelism)

PAR
P1
P2

PAR
cl ? x
cl 'y * zZ
e Loop (standard sequential loop structure)

WHILE condition
P

WHILE x <= 256
SEQ

245



e Replication - Sequence (repeat n times in sequence for different i)

SEQ 1 = 0 FOR n
P

SEQ 1 = 1 FOR 15
Al1] := A[1-1] + 1

e Replication - Parallel  (replicate n times in parallel for different i)

PAR 1 = 0 FOR n
P

PAR 1 = 0 FOR 16
Al1] := B[1] + C[1]

246



e Conditional (executes at most one process)

IF
conditionl
Pl
condition?
P2

IF

247



e Selection (executes at most one process)

CASE expressionl
expression?
Pl
expression3, expressiond
P2

CASE day
saturday, sunday
play ()
tuesday, wednesday, thursday, friday
work ()

248



e Alternation (executes at most one process)

ALT
cl ? vl
Pl
c2 ? V2
P2

WHILE TRUE
ALT
cl ? X
c3 ! x
c2 ? X
c3 ! x

249



Occam Channels

Occam channels provide unbuffered unidirectional point to point commu-
nication of values between two concurrent processes.

e Declaration

CHAN OF protocol channel

CHAN OF BYTE screen

PAR
screen ! A
PROTOCOL packet IS INT16; INT1l6::[]BYTE

CHAN OF packet link
INT16 address, length
[256]BYTE buffer
PAR
link ? address;length::buffer

250



Occam Channels

Occam channels provide unbuffered ...communication ...

¢ Unbuffered Communication
— As communication is unbuffered it is also synchronized. Com-
munication cannot take place until both processes are ready.
— Thus we can use the communication of dummy values for inter-
process synchronization.
e Buffered Communication

— We can provide buffered communication by explicitly includ-
ing a buffer process. We are then forced to consider the re-
quired buffer size.

— N.B. Buffered communication can simulate unbuffered com-
munication by forcing an acknowledgment after each item is
transferred.

251



Occam Channels

Occam channels provide . ..unidirectional point to point communication ...

e Uni-directional Communication

— Only one of the two communicating processes may write to a
channel and only one may read from it. Bi-directional connec-
tions are constructed from two channels.

e Point to Point Communication

— Broadcast (one to many) communication
This can be achieved with processes which output the same
data over more than one channel.

— Many to one communication

This is achieved with a multiplexor process which accepts data
from more than one channel.

252



Occam Buffer Process

C.in ( C.out

ceveesosssseses.
L J

CRCACACACACLCACACAEACAEACLELCAE

PAR
WHILE TRUE
SEQ
c.in ? x[0]
cl0] ! x[0]
WHILE TRUE
SEQ
cl1l4] ? x[15]
c.out ! x[15]
PAR 1 = 1 FOR 14
WHILE TRUE
SEQ
cli-1]1 2 x[1]

cl[i] I x[1]

253



Occam Granularity

e Occam has been designed in order to encourage programs using
large amounts of concurrency.

e Thus the grain size of a concurrent process is small.

e We must match this with a low overhead for initiating concurrent
processes.

We would like for the execution time of:

PAR
A := B + C
D := E + F

to be comparable to the execution time of:

SEQ
A := B + C
D := E + F

254



