é The Transputer

The INMOS Transputer - (SGS-Thompson)

e A Single Chip Microprocessor:
- CPU
- RAM
-1/0

¢ A Building Block For Parallel Processors:

— Virtual Concurrency
— Message Passing
— Occam Engine

255

é The Transputer

Transputer Structure

Off-chip Processor
Memory
Expansion
On-
Chip
Link 1
Link 2
Link 3

MAA

e T414 Transputer:

- 32 bit CPU
— 2 kbytes On-chip RAM
— 4 INMOS Serial Links.

256

Inmos
Standard
Serial Links

é The Transputer

The Transputer - A Single Chip Microprocessor

e Designed for embedded processing and parallel computing.

e Minimum overheads for support circuitry.

— Minimum requirement is:
Transputer + Power supply + 5 MHz Clock.

— 42 Transputers on 9” by 9” PCB.

e Memory interface makes for easy connection to external RAM (if
present).

e External ROM is seldom required except in standalone configura-
tions.

257

The Transputer

T414

1 N .
System 32 32 bit
Services N /| Processor
Link
Timers Services
M N Link
2k bytes \ |—|32 J Interface
Of /]—,\

. 32 A N Link
On-chip N V] 32
RAM N Interface

M N Link
N Interface

M N Link
External 1___ N 32

N Interface
Memory 32

Interface

Event

The Transputer

Processor
RISC

e Instructions are 8 bits long:

— 4 bits Function Code
— 4 bits Data/Operation Code

e Where longer data words or operation codes are required, we use
the Prefix instruction to concatenate data nibbles prior to function
execution.

e 70% of executed functions are encoded in a single byte.
i.e. without use of the Prefix instruction.

e Many single byte instructions take only one cycle to complete.
(e.g. 1dc 0)

259

é The Transputer

Processor

Support for Virtual Concurrency

e Microcoded Scheduler

— Faster & Simpler than scheduler in software kernel.

e A Linked List of Active Processes.

— Scheduler cycles through list.

e Minimum of Internal Registers.

— Allows rapid process switching.

260

The Transputer

Process being Executed

Registers Locals Program

A
B
C

Workspace

Next Inst.

Operand

e Three Register Stack: A B C
e Workspace Pointer points to Process Local Workspace.
e Instruction Pointer points to Next Instruction.

e Operand Register stores concatenated Data Words or Operation Codes.

261

The Transputer

Active Process Queue

Registers Locals Program
Front P2
Back

P3
P4
A
B
C P1
Workspace
Next Inst.
Operand

262

The Transputer

Active Process Queue

e Process P1 is Active and Executing.
e Processes P2-P4 form the Active Process Queue.
e When P1 comes to the end of its timeslice:

— P1 completes any arithmetic operation, leaving the stack empty.

— P1’s Instruction Pointer is stored in its workspace.

— P1’s Workspace is added to the back of the active queue.

— P2’s Workspace is taken from the front of the queue.

— P2’s Workspace Pointer and Instruction Pointer are loaded into
the appropriate registers.

Rescheduling is complete.

263

The Transputer

Channel Communication

Registers Locals Program

P1

A: count

B: channel Channel

C: pointer

P2

Workspace

Next Inst.

Operand

e Soft Channel is a single memory location - initially empty.

264

The Transputer

Channel Communication

e When P1 attempts to access channel it is empty.

— P1’s data pointer (from C) is stored in its own workspace.

— P1is descheduled, its workspace pointer is placed in the chan-
nel - not added to active process queue.

e When P2 attempts to access channel it contains P1 workspace pointer.

— P2 uses this pointer to access P1’s data pointer and performs
the transfer - whether it be read or write.
— P2 then adds P1 to the back of the active process queue.

— P2 returns channel to empty state.

265

é The Transputer

Links
e T414 has 4 INMOS Serial Links
LinkOuti i Linkin
—N Link 1 1 Link V1
12‘/ Interface : : Interface \,33
Linkin 3 iLinkOut
T

e Links bit serial and asynchronous.
e Links are bi-directional supporting:

— LinkIn channel & LinkOut channel.
e Link interface is autonomous:

— Uses DMA for data transfer.
— Allows processing to continue.
— All eight channels can be in use at the same time.

266

The Transputer

Links

All transfers are acknowledged.

H H

0

1

2

34

5

6

7L

Data

HIL,

Data and Ack are multiplexed onto a single line.

Linkin

LinkOut

Ack ‘

Data gL
ACK | Linkin DMA
\/ Data gj
/\ ACK __| LinkOut DMA —

=)

Link Interface

267

é The Transputer

Links Transfer Rate

e Link speed is selectable:
- 5MHz 10MHz 20MHz (for T414)

e T414 transmits Ack after it receives end of Data.

— Achieves uni-directional transfer rate of 0.8 Mbytes/sec.

e T425 can transmit Ack as soon as it recognizes Data.

— Thus Data and Ack can be overlapped.
— Achieves uni-directional transfer rate of 1.8 Mbytes/sec.
— Achieves bi-directional transfer rate of 2.4 Mbytes/sec.

268

The Transputer

External Channel Communication

e The same instructions, in and out, are used for internal and ex-
ternal communications.

e Links are mapped onto the lowest eight memory locations:

#08 Event

#07 Link 3 Input
#06 Link 2 Input
#05 Link 1 Input
#04 Link O Input

#03 Link 3 Output
#02 Link 2 Output
#01 Link 1 Output
#00 Link O Output

e The processor traps in and out to these locations and adjusts its
behaviour accordingly.

269

The Transputer

External Channel Communication

Registers Locals Program Link
Interface
Registers
A: count
B: channel Channel
C: pointer D-point
£ Pl Count
Workspace
Next Inst.
Operand

e When process P1 attempts to access the channel, it delegates the
data transfer task to the link interface.

— P1’s data pointer (from C) and data count (from A) are trans-
ferred to the link interface registers.

270

Locals Program Link
Interface
Registers

Channel
D-point
P1 Count

— P11is descheduled leaving its workspace pointer in the link Chan-
nel register.

e The other process on the other Transputer will do the same.
e Data is transferred between the two link interfaces.

— Note that the receiving link interface will not acknowledge the
first byte until the in instruction has been executed.

e When transfer is complete the separate processes are rescheduled.

271

The Transputer

High Priority Processes

e Two Linked Lists of Processes
e Low priority processes

— Executed only when no high priority processes are active.
— Execute until:

- - Completion.

- - Wait on communication or timer.
- - Second timeslice tick - every 1ms.
- - Ousted by high priority process.

e High priority processes.

— Execute until:

- - Completion.
- - Wait on communication or timer.

272

The Transputer

Fast Interrupt

e High priority process waits on external communication.
e High priority process interrupts low priority process.

— Wait for end of non-interruptible instruction.
— Doesn’t wait for end of expression evaluation.
— Store State in memory (effectively memory mapped shadow registers).

#11 EregIintSavelLoc
#10 |STATUSIntSavelLoc
#OF AreglintSaveloc
#0OE BregIntSavelLoc
#0D CregIntSavelLoc
#0C IptrintSavelLoc
#0B | WdescIntSavelLoc

e Typical Latency 19 Processor Cycles.
273

The Transputer

Event Interface

e We have seen that external communication can generate interrupts.

e For more conventional interrupts we have the Event Interface.

EventReq EventReq / \

EventAck / \

Event

' EventAck

T

e The event interface behaves like an input channel but conveys no
data.

Event ? dummy -—- walt on EventReqg signal.

274

The Transputer

Timers

e Two 32 bit Timers which tick periodically.
e Clock0

— Accessible only to high priority processes.
— Ticks once every microsecond.

e Clockl

— Accessible only to low priority processes.
— Ticks once every 64 microseconds.

e Timer can be interrogated or waited upon.

— Timer ? Vv -—- assign v := Timer.

— Timer ? AFTER time -- wait on Timer >= time.

e Each timer supports an ordered queue of waiting processes.

275

é The Transputer

Boot from Link

Transputer behaviour on reset:
e BootFromRom =1

— Transputer starts executing code at address at top of memory.
e BootFromRom = (

— Transputer waits on data from any link.
— Receives length data followed by program data from any link.
— Places program data in RAM and executes it.

In this way we can load code from one Transputer to the next through
a complex network. Frequently the code will be stored on a host ma-
chine, there is no need for any Transputer to have any ROM.

276

The Transputer

Host System Master Transputer Transputer Network
UNIX/DOS TDS Occam Program
Link .
D Interface @ @ @ @
Co11 -

Simple Transputer System

e TDS is downloaded from the host system to the master Trans-
puter.

277

e The Occam program is downloaded from master to network.

278

The Transputer

Host System
UNIX/DOS

Master Transputer
TDS

System Services

Transputer Network
Occam Program

pbe P B Sl

bl

Reset Analyse & Error

Reset
Analyse
Error

e Host controls master with a memory mapped RAE interface.

e Master controls network with a similar interface.

e Errors are ‘OR’ed to give single network error signal to master.

279

=| I heTransputer

64 bit
Floating Point Unit

iz

System 1 N 32 bit
Services 32 Processor
Link
Timers Services
VN Link
4k bytes 32 Interface

of M N { }

. 32 v N Link

On -Chlp N 1/ 32
RAM N Interface

VN Link

N Interface

v N Link
External /\?'\ \Iil/ Interface
Memory

Interface

Event

e 4 kbytes RAM (more compact)
e 64 bit Floating Point Unit - Extended Instruction Set.

280

ﬁ The Transputer

Networks

e Transputer has a fixed valency of 4.

e Hence the choice of networks is limited.

o o o 0 0 o
* 0 0 0 0 o
* 0 0 0 0 o
o o o 0 0 O

® o 0o 0 00

e Grid is natural choice for exploiting data parallelism over arrays.
e We partition data to exploit Geometric Parallelism.

N.B. We must usually break one link for communication with a master Trans-
puter if we use a 2D Torus.

281

ﬁ The Transputer

Networks

e Ternary Tree Structure:

e Used in processor farms:
— Discrete bundles of processing are farmed out by the master
processor to any available processor.
— The processes may be identical, but must be independent (no
inter-process communication).

N.B. Ternary trees are seldom used in packet routing systems because of the root
hot spot.

282

ﬁ The Transputer

Networks

e Algorithm Mapping.

e The processors are arranged to match the data flow of the algo-
rithm.

e The code rather than the data is distributed across the processors.
e The result is a pipeline type multiprocessor.

Frequently used in embedded applications and signal processing.

283

ﬁ The Transputer

Reconfigurable Networks

Given that Software Packet Routing is relatively expensive in Trans-
puter networks and manual rewiring is not a serious option we need
a reconfigurable Transputer network.

e C004 Programmable Link Switch.

— 32x32 crossbar switch for 32 INMOS Serial links.
— Supports any one to one link mapping.
— Controlled by another INMOS Serial link.

284

ﬁ The Transputer

Reconfigurable System

16
\V Slave
Transputers

Host System Master Transputer
UNIX/DOS TDS 16 Link 0
Link |co04 d5 Links -
D Interface i
Cco11
16 Link2
[o s s

Transputer Network
Occam Program

e Master Transputer controls 2 C004 link switches.
e We can connect any link 0 or 1 to any link 0 or 1.

e We can connect any link 2 or 3 to any link 2 or 3.

N.B. We must connect master boot link manually - no C004 links left.

285

ﬁ The Transputer

Supernode Project

e Supernode of n Transputers:

n lin

n links
W=—+r——=

N
n links n links
N
W 2 off 2nx2n
: crossbar
T i E switches
S n links
ks n links
n links
2 off
2nx2n S
crossbar n links
switches E

286

ﬁ The Transputer

e Supernode Connectivity

— We can connect any link N to any link S.
— We can connect any link E to any link W.

— It can be shown that we can create any graph of n labeled Trans-
puters.

e Automatic configuration from algorithm topology!

e Supernode has 4n external links and n processors.

— Processing to communications ratio is unchanged.

e For bigger systems we connect multiple supernodes.

287

Occam Implementation on Transputers

A single Occam program should run on one Transputer or on many
Transputers.

e This allows the debugging of programs in the comparatively sim-
ple environment of a single Transputer, before porting to multiple
Transputers.

288

Occam Implementation on Transputers

PLACED PAR
PROCESSOR 0 T4
PLACE y AT LinkInl
PLACE i AT LinkInO
PLACE j AT LinkOut?2
P(y,1,7)
PROCESSOR 1 T4
PLACE x AT LinkInO
PLACE 1 AT LinkIn2
PLACE i AT LinkOutl :
PLACE k AT LinkOut?2 : X
0(x,1,1i,k)
PROCESSOR 2 T4
PLACE j AT LinkInl
PLACE k AT LinkInO
PLACE z AT LinkOut?2
PLACE 1 AT LinkOutO0
R(j,k,z,1)

Configuration

289

Restrictions of Occam Implementation on Transputers

e Only two Occam channels (one in each direction) can be mapped
onto a Transputer link.

DT

e Communicating processes must be on adjacent Transputers.

T

Occam doesn’t support implicit message forwarding

o—4— L1 4

290

Restrictions of Occam Implementation on Transputers

Process Placement:
e Only Separately Compiled procedures can be used in PLACED PAR.

— This is a reasonable restriction as it prevents common variable
access between these procedures.

e Configuration is only permitted at the top level of the program.

— Thus there is no facility for PLACED PAR within SEQ.

— These Remote Procedure Calls would be beneficial if difficult to
implement.

SEQ
IN ? A
IN ? B
C := A * B

é The Transputer

PUMA Project

Parallel Universal Message-passing Architectures
Southampton CCG and Others

e This project has looked at re-writing Occam for a Transputer net-
work with hardware or software message routing.

e The project has also addressed the problems of remote procedure
calls.

e The result is a Distributed Occam which is closer to the ideal for an
MIMD machine.

292

