

Cosmic Cube

• Developed at CalTech with chips donated by Intel.

Cosmic Cube

- Node Architecture:
 - 8086 8-bit microprocessor.
 - 8087 arithmetic co-processor. *-50 kflops*
 - 7 bi-directional communication links @ 2Mbits/s.
 - - One of which is connected to global ethernet.
- System Architecture:
 - 6D Hypercube structure (64 nodes). -Total 3 Mflops
 - Host controls via ethernet.
- System Software:
 - Each node runs kernel for *multiprocessing* & *message passing*.
 - Store & forward packet routing.

iPSC/1

Intel Personal SuperComputer

- Built by Intel Scientific Computers (iSC).
- Based on Cosmic Cube.
- Advances:
 - 80286/7 based nodes. -125 kflops
 - NX- Node Executive kernel
 Supports multiprocessing & message passing.
 - Optional extras:
 - - 4.5 Mbytes memory.
 - -- VX- Vector eXtension modules 6.6 MFlops.
- Max system 64 VX nodes 6.6 MFlops = 422 MFlops.

iPSC/2

• Advances:

- 80386/7 based nodes with optional Wietek 1167 arithmetic accelerator.
- 8 Mbytes of memory.
- Direct-Connect Routing Module:
 - - Hardware Routing co-processor
 - -- 8 bi-directional links 2.8 Mbytes/s
 - - Wormhole routing

• Performance:

- Max Node performance with VX module is barely changed from iPSC/1.

iPSC/860

- Architecture:
 - i860 CPU:
 - - 40 MHz RISC with on chip FPU
 - - Multiple Instructions per cycle with pipelining & instruction caching
 - - 60 Mflops peak! Only with very careful programming.
 - 8-16 Mbytes of memory.
 - 8 link Direct-Connect Module.
- Major Flaw:
 - Multiple processes per node are not supported by NX/2 kernel.
 - Context switching would require pipelines to be flushed severe performance degradation.