Connection Machines

Thinking Machine Corporation Formed to exploit parallel processing for Artificial Intelligence. Connection Machines

• CM-1

- Designed by Danny Hillis (of MIT).
- SIMD computer of 4096-65536 Single bit PEs
- 12D Hypercube of nodes.
- Each node is:
 - - A chip divided divided 50% packet routing, 50% processing.
 - - On chip there are 16 PEs arranged as a 4x4 grid.
 - - Off chip there are 4 kbits of static memory per PE.
- Fully configured, the system requires 24576 bi-directional links for communication!
- Data Parallel Languages: CM Fortran, C* & *Lisp.

Connection Machines

• CM-2

- Faster PEs
- More RAM
- Optional Floating Point Accelerator:
 - -- Weitek 3132 chip (14 MFlops).
 - - 1 accelerator per 32 Single bit PEs.
 - - *Unbalanced!* Memory bandwidth to Weitek is only 8 MWords/sec resulting in performance closer to 4MFlops peak per accelerator.
- Concurrent I/O to Data Vault (array of discs) & High Speed Graphics
- In 1989 CM-2 won IEEE Gorgon Bell Award for 5.6 GFlops Sustained Performance on a seismic modelling problem.
 - (8-Pipe Cray Y-MP has a peak rating of 3 GFlops!).

CM-5 A Usable TerraFlop Computer

- Power
 - 16384 Nodes
 - Each node 128 MFlops.
 - Total: 2 TerraFlops
- Memory Bandwidth
 - Up to 512 MBytes/sec per node
- Communications
 - 20 MBytes/sec per node for nearest neighbour communications (over simulated 2D Grid).
 - Worst case provides 5 MBytes/sec per node.
- Programming Paradigm
 - Data Parallel on an MIMD machine!

PE Architecture

Processing Node Memory Memory Memory Memory 8 MBytes 8 MBytes 8 MBytes 8 MBytes (optional) (optional) (optional) 64+8 Memory Controller 64 RISC Network Micro-Interface processor Control Network Data Network

Processing Node with Vector Units

- RISC microprocessor is a SPARC.
- No vector nodes have yet been built.

CM-5 Architecture (Data Network)

Inter-node Links

- Each bi-directional link consists of two R-channels, one in each direction.
- An R-channel consists of 4 differential pairs for data and 1 differential pair for control.

• Communication is synchronous - all PEs and routing nodes share the same clock!

Routing

- Virtual Cut-Through Routing.
- Routing strategy:
 - Normal trees do not permit adaptive routing there is no route choice!
 - Fat trees allow adaptive routing as the message travels up towards the root, but there is no route choice as the message travels down towards the destination leaf.
 - Where there is choice, the message will take any available channel.

Deadlock Avoidance

Virtual Networks

- We need only two virtual networks in order to avoid cycles of undelivered messages, for any type of tree or fat tree.
- We can use one of two sets of virtual networks:

• Having provided sufficient buffering there is no need for any additional restrictions on routing.

Partitions & I/O

Data Parallel Programming

- Although each *Processing Node* is capable of independent *Process Parallel* type operation, the software for CM-5 supports a *Data Parallel* SIMD type programming style.
- Code is written in the same Data Parallel languages; CM Fortran, C* & *Lisp.
- The processing nodes can be divided into partitions.
- Each partition is controlled by a *Partition Manager*
 - a standard SPARCstation with a *Network Interface* and software to drive it.
- Each Partition Manager may execute a number of *Data Parallel* processes¹ on its own partition, any of which may communicate with a process from another partition.

¹The different processes are timesliced in a UNIX type fashion.