Simple architecture

• Register / Memory architecture¹:

- ADD 123

 $Acc \leftarrow Acc + Mem[123]$

¹a.k.a. Single address architecture.

Memory access is slow – use more registers.

• Register / Register architecture²:

$$regD \leftarrow regB + regF$$

²a.k.a. Three address architecture.

Address Registers and Addressing Modes

• Program Counter

$$-$$
 IR \leftarrow (PC), PC \leftarrow PC + 1

• Stack Pointer

- PSHS B SP \downarrow B SP \leftarrow SP 1, (SP) \leftarrow regB³
- PULS B SP \uparrow B regB \leftarrow (SP), SP \leftarrow SP + 1

³note that stack is upsidedown

• Index Register

- STA 3,X
- STA ,X
- LDA Y,X
- -LDB +3,SP

- $(regX + 3) \leftarrow regA$
- $(regX) \leftarrow regA$
- $regA \leftarrow (regX + regY)$
- regB \leftarrow (SP + 3)

• General Purpose Registers

In many modern machines the registers are general purpose, any register may be used as a stack pointer or index register as well as a data register.

Calls and Context

• Call Subroutine

- JSR 1234

- Return
 - RTS

SP↑ PC

The processor will automatically store the PC value (return address) on the stack.

Calls and Context

Other local values may be stored automatically or explicitly.

• Context saved by calling routine

• Context saved by subroutine

MC6809 Expanded Block Diagram

- Simple μP
- 8 bit Data Bus (mixed 8/16 bit internal architecture).
- 16 bit Address Bus.
- Registers

The 6809 has a number of special purpose registers to support a variety of addressing modes.

- A & B registers combine as 16 bit D register.
- Two stack pointers; S, U.
- Two index registers; X, Y.
- Direct Page register, DP, nominates one page for local addressing.
- Condition Code register, CC, contains 8 status and control bits for the processor.

