Complex Instruction Set Computers

CISC

Successors to the 6809 have continued to follow CISC philosophy.

e More registers
e More instructions
e More powerful instructions

e More addressing modes

Each improvement reduces the number of slow memory accesses made by the pro-
CesSO.

12501



Reduced Instruction Set Computers

RISC

New Philosophy
e Invest effort and chip area in accelerating commonly used instructions.
e We can build a chip with slimmed down instruction set which clocks faster.

— Common instructions execute faster.

— Efficient compilers should be easier to write for a simpler instruction set.

Most implementations aim for 1 cycle per instruction although now we see ma-
chines with multiple execution units aiming for even greater throughput.

12502



Reduced Instruction Set Computers

SPARC

e Scalable Processor ARChitecture
e Developed by Sun Microsystems
e Open architecture

e Owned by SPARC international
e Used in

— Sun SPARCstations
— other computers including CM-5
— embedded microcontroller systems

— ECS microprocessor lab

12503



SPARC Architecture

e Register / Register architecture

Register File

Memory

]
T T T TR TR TR

MMM‘MMM

e Most instructions will either reference three registers or two registers and one

immediate.
— ADD %20,%17,%5 regb <+ reg20 + regl?
- LD [%11+%12],%5 regh « [regll + regl2?]
— SLL %2,13,%5 regb <+ reg?2 >> 13

e All instructions are 32 bits wide.

12504



SPARC Architecture

rls (o7) temp r3l (i7) return address
ri4 (SP) stack pointer r30 (FP) frame pointer
ri3 (o5) outgoing param reg 5 r29 (i0) incoming param reg 5
out ri2 (04) outgoing param reg 4 in r28 (i0) incoming param reg 4
ril (03) outgoing param reg 3 r27 (i0) incoming param reg 3
rio (02) outgoing param reg 2 r26 >i0) incoming param reg 2
r9 (01) outgoing param reg 1 r25 (i0) incoming param reg 1
r8 (00) outgoing param reg 0 r24 (i0) incoming param reg 0
r7 (97) global 7 r23 (17) local 7
ré (g6) global 6 r22 (16) local 6
r5 (g5) global 5 r21 (15) local 5
global r4 (g4) global 4 local r20 (14) local 4
r3 (93) global 3 ri9 (13) local 3
r2 (92) global 2 ri8 (12) local 2
rl (91) global 1 ri7z (11) local 1
r0 (g0) 0 rl6 (10) local O

note that g0 is a dummy register; it is always zero.

12505




SPARC Architecture

e The 32 registers visible to the program are merely a window on those available.

= INs =
; LOCALS ; Previous Window
= OUTS = INS =
; LOCALS ; Current Window
- ouTs — INS -
; LOCALS ; Next Window
= OUTS = INS =
= LOCALS =
= outs =
= GLOBALS == GLOBALS == GLOBALS == GLOBALS =

t t 4 t
CWP+2 CWP+1 CWP-1

Current Window Pointer

e The current window pointer determines which register sets appear in this win-
dow.

12506



SPARC Architecture

e A subroutine call is normally combined with a context change, giving access to
a new window:.!

CALL 18348

%07 <+ PC

PC < nPC

nPC <« PC + 18348
SAVE

CWP <« CwP - 1
PC <+ nPC

e Parameters to be passed to a subroutine are set up using the OUT registers
which become the IN registers of the subroutine.

Due to the wonders of pipelining the SAVE is placed after the CALL and is executed anyway

12507



SPARC Architecture

e A return from subroutine uses JMPL to indirect via the stored return address
and RESTORE to recover the old register window.

JMPL %17 + 8, %0
%50 < PC
PC < nPC
nPC + %i7 + 8
RESTORE
CWP < CWP + 1
PC < nPC

12508



SPARC Architecture

Window Overflow

The Scalable architecture of the SPARC allows the manufacturer to choose how
many windows exist on the chip. Since this number is going to be finite, we must
allow for the possibility of window overflow.

g Previous Window

— NS -

g LOCALS g Current Window

= OUTS == INS =
= LOCALS = No Window
= ouTs =

== GLOBALS == GLOBALS =

4 ‘x 4
CWP+1 CWP-1

Current Window Pointer

12509



SPARC Architecture

e Windows are arranged in a circle.

W7
/
w7 ins w7 locals
w7 outs
w0 outs
w1l outs
M

w1 locals

w1

w5 ns\

w5 locals
outs

globals

W5
w4

@ w4 oui
w3 outs

w3 locals w3 ins

W3

12510




SPARC Architecture

Up to seven full windows (including ins and outs) are supported by the eight win-
dow circular stack. Initially the Current Window Pointer may be set to W7 and
the W0 window marked as invalid. The program may use all windows W7-W1
without any problems.

e A SAVE instruction which attempts to allocate the invalid window results in a
window _overflow trap.

— The trap routine is responsible for saving the contents of the oldest window
to an old window stack in memory.

— The trap routine will also change the Window Invalid Mask to indicate a
new invalid window.

e A RESTORE instruction which attempts to allocate the invalid window results
in a window_underflow trap.

— The trap routine will pull a window from the old window stack into the cor-
rect register positions.

12511



SPARC Architecture

w4

CWP =W7 (WO INVALID) CWP =W4 (WO INVALID) CWP=W1 (WO INVALID)

WOo
SAVE causes

Window Overflow Trap
Place Window 7 on stack
Mark Window 7 invalid
Set CWP to Window 0

w4

CWP=WO0 (W7 INVALID)

12512



SPARC Architecture

w4

CWP = W5 (W4 INVALID) CWP =W1 (W4 INVALID) CWP = W3 (W4 INVALID)

RESTORE causes

Window Underflow Trap
Pull Window 4 from stack
Mark Window 5 invalid
Set CWP to Window 4

CWP = W4 (W5 INVALID)

12513



