Interrupts

In order to provide faster response to external events, while avoiding
inefficient busy wait, most CPUs provide an interrupt request line for

use by I/O devices.
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The assertion of the interrupt request line by an I/O device should

initiate an interrupt cycle.
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Interrupt Cycle

e Disable interrupts
e Store PC

e Jump to service routine

— Determine source of interrupt
— Service interrupt

— Clear interrupt

— Return from interrupt

e Enable interrupts
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6809 Interrupts

The 6809 processor provides a number of interrupt request lines with
differing functionality.

6809
Interrupt

Control P —
=— IRQ

The simplest is the Fast Interrupt Request line, F'T RQ).
We shall consider the interrupt cycle initiated by asserting F'T RQ.
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6809 Interrupt Cycle

e F'TRO

— Push PC onto system stack
Ssp| PC sp| PC;
SP|{l PCpy
— Push CCR onto system stack
Clear E!
SP|l CCR

— Disable interrupts
set F, T

— Jump to service routine
PC < (FFFo) : (FFF7)

IE = 0 indicates a fast interrupt.
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6809 Interrupt Cycle

o RTT

— Restore CCR (and hence enable interrupts)

SP{ CCR
— Check for fast interrupt

IF (E == )
- - Restore PC

SP{ PC

— Otherwise. ...

IF (B == 1)
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6809 Interrupt Cycle

The diagram below illustrates the sequence of events for an FIRQ re-
quest including;:

e The stacking of the program counter and condition code registers.
e The indirection via the FIRQ interrupt vector, (FFF6):(FFF7).

. Complete Stack Fetch Instruction
Setup Time Current Registers new PC Fetch
\_ Instruction ‘ ‘ ‘ ‘ ‘ ‘

FIRQ

AddrgﬁgMMKXXV<X>%XX

PC $FFFF SP-1 SP-2 SP-3 $FFFF $FFF6  $FFF7 ! $FFFF newPC !

R/WMW \ / \“C

DBaggXXﬂyxxxxxxxxxxxx

VMA | PC

PC,, CCR @ VMA 'newPC, newPC,’ VMA 3

L
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Interrupt Cycle

Use of registers

The interrupt should not affect the interrupted code. Thus any regis-
ters used by the interrupt service routine must be saved.

Where this is not done automatically by the processor it is the re-
sponsibility of the service routine.

e Store registers

e Determine source of interrupt

e Service interrupt

o Clear interrupt

e Restore registers

o Return from interrupt
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6809 Interrupt Cycle

e TRO

— Push PC onto system stack
SP| PC
— Push other registers onto system stack
sp| U,Y,X,DPR,B,A
— Push CCR onto system stack
Set E?
spll CCR
— Disable interrupts
set I
— Jump to service routine
PC < (FFF8) :(FFF9)

2E = 1 indicates that the entire state has been saved. RTI checks this flag and restores registers
accordingly.
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6809 Interrupt Priority

Each service routine automatically disables interrupts of the same or
lesser priority.

7 0
6809 EIFIH I N Z|V|C
—— Carr
Condition Code — (mm%bw
Zero
Register Negative
IRQ Mask
Half Carry
FIRQ Mask
Entire Flag
e IRQ low priority
sets I=1 disabling only IRQ requests.
e FIRQ high priority

sets F=1 and I=1 disabling FIRQ and IRQ requests.
Masks are reset when CCR is restored from stack by RTI.
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6809 Interrupt Priority

The 6809 supports a third interrupt line:
o NMI highest priority

— Non-Maskable Interrupt Request

— Saves entire state and sets E=1 like IRQ.

— NMl sets F=1 and I=1 disabling FIRQ and IRQ requests.
— There is no interrupt mask for an NMI request.

— An NMI event will interrupt any process

(including another NMI service routine).

3010



6809 Interrupt Priority

Non-Maskable Interrupts

e This interrupt is used for the most urgent tasks, which cannot
wait for other interrupt routines to complete.

e Since we cannot disable this interrupt, we must find an other method
of preventing recursive service routine calls as a result of a single
event.

— The NMI event is triggered by a falling edge on the N M line.

— The action of clearing the interrupt will enable subsequent in-
terrupts.

— We must consider the possibility of overlapping NMI requests®.

3e.g. poll NMI devices again after clearing the source of an interrupt
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Sharing an Interrupt Line

It is seldom possible to have one interrupt line per I/O device.

OR Gate C.P.U.
} IRQ
+5v Wire-OR { = Open Drain O/P C.P.U.
% e.g. 6809
10k
IRQ

/O, T 1/O0,RRYT o R o R

Daisy Chain C.P.U.
e.g. Z80
o, =° /o, *° /o, ~° o, ~° RQ

Note: The wire-OR here is actually a wire-AND of negated signals
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Sharing an Interrupt Line

¢ Determining the source of an interrupt

Polling

4

— The processor must poll each I/O device* connected to the line.

— This may be very time-consuming where many devices share
the same IRQ line.

Priority

— The order of polling determines the priority where multiple
devices are awaiting service.

4i.e. read the 1/0 device status register
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Sharing an Interrupt Line

Nested interrupts

In order to avoid blocking important events we may wish to re-enable
interrupts on the same line before an interrupt routine completes.

e Determine source of interrupt
e Clear interrupt

e Enable interrupts

e Service interrupt

e Return from interrupt

Note: Where request lines are level sensitive, we must clear the source of an interrupt before re-

enabling interrupts in order to avoid an endless recursion.

3014



Sharing an Interrupt Line

Nested interrupts

Alternatively, where one part of the routine is particularly time criti-
cal, interrupts may be enabled after this code has completed.

o Determine source of interrupt

e Time critical interrupt service
o Clear interrupt

o Enable interrupts

e Rest of interrupt service

e Return from interrupt
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6809 Interrupt Masks

The 6809 allows direct manipulation of the control bits in the CCR.”

7 0
6809 \E\F\H\I\N\ZMC\
. —— Carry
Condition Code I Overflow
_ Zero
Register Negative
IRQ Mask
Half Carry
FIRQ Mask
Entire Flag

e Interrupt masks may be set or cleared explicitly by the user.

— ANDCC #10111111, will enable FIRQ events.
— ORCC #01010000, will disable IRQ & FIRQ events.

>Note that greater selectivity may be achieved by masking an interrupt at source, but this is
rather dangerous; only the routine responsible for the management of an I/O device should ma-
nipulate its interrupt mask.

3016



Interaction with I/0O Device

e Interrupt Request asserted by I/O Device

— request will remain active until explicitly cleared

e Service Routine queries I/O Device

— read from status register

- - whether the device interrupt is active
- - what is the cause of an active interrupt®

e Service Routine services interrupt

— e.g. reads data from I/O device

e Service Routine clears interrupt

— Device dependent — consult device data sheet

%a single device may have several interrupts active concurrently
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Clearing of Interrupts

Consider our imaginary asynchronous receiver/transmitter device:

Asynchronous

CE R/W Al A0

Receiver / Transmitter

ffffffffff T

IRQ P
i AN
:} Interrupt Mask |
B EREEEE ;
| Status L = TxRTS
: =—— TXCTS
R Mode ——={ Control |
! =—— RXRTS
) Command — ——= RXCTS
D7-D0 ) Baud Rate ——= Clock
)| b
| Transmit Register |
lL Data
[ — — 1 Encode [ Tx
Data =+ RX
| \% — — | Decode

1l

~———{ Receive Register |
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Clearing of Interrupts

e The device generates the interrupt request from a logical AND of
the Status Register and the Interrupt Mask Register.

IRQ

oj/ojjojjojjo]l 0 Interrupt Mask Register
XXX X][X]|X Status Register
Not used by this system -~ Data Arrived in Receive Register

””””” Transmit Register Empty

e The device supports two interrupts

— data arrived — needs reading
— data transmitted — send more
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Clearing of Interrupts

e Explicit clearing of interrupts

We might clear an interrupt by writing to “Interrupt Clear” com-
mand to the Command Register.

e Implicit clearing of interrupts

Our I/0O device does not in fact support an “Interrupt Clear” com-
mand since we can combine the servicing of an interrupt with
clearing it.

— Reading from the Receive Register clears a “data arrived” in-
terrupt

— Writing to the Transmit Register clears a “data transmitted” in-
terrupt
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Automatic Clearing of Interrupts

e Many I/O devices support an interrupt acknowledge input.

— A pulse on the interrupt acknowledge line indicates that the
interrupt routine has been started.

C.P.U.

IRQ IRQ
I/O IACK IACK

— This enables an interrupt to be cleared at an early stage in the
interrupt cycle; well before the interrupt is serviced.
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Automatic Clearing of Interrupts

e The 6809 supports an interrupt acknowledge indicated by the state
of the Bus Available and Bus Status lines.

Interrupt
Cleared
Automatically

FIRQ

Interrupt

Acknowledge (BA.BS) /

AddrgﬁgMYXV%XXVXXY%X[

PC $FFFF SP-1 SP-2 SP-3 $FFFF $FFF6  $FFF7 | SFFFF newPC

TS
8A (0 ; ;
8s —
e KX LS S, S
VA PC_ PC, CCR VMA newPG,, newPCL§ VMA
Fetch ‘
new PC
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Automatic Clearing of Interrupts

A 780 style Daisy Chain may be used to regulate acknowledge.

C.P.U.

IRQ IRQ IRQ IRQ IRQ
i Ilol IACK I/OZ IACK I/OB IACK I/C)4 IACK IACK

Pros:

e We ensure that no more than one interrupt is acknowledged.
- JACK is passed to next device only if local IRQ is inactive.

Cons:

e Must still poll to discover source of interrupt.

— although the I/O devices know which interrupt is being ser-
viced!

e Priority system is fixed in hardware.
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Automatic Detection of Interrupt Source

Vectored Interrupts

+5v

%mk C.P.U.

] ] 7™

/O RQ /O RQ /O RQ
— 1 JjacKl=—— 2 |ACK 3  JACK IACK
¢ DATA

e An alternative strategy allows the I/O device to identify itself dur-
ing the IACK cycle.
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Automatic Detection of Interrupt Source

Vectored Interrupts

e Initialization

— I/0O devices have vectors programmed at start up

o JACK cycle

- JACK signal requests vector (typically 8 bits only)
— Responding device places vector on data bus
— C.P.U. grabs service routine address from vector table

e No requirement for device polling

e Priority scheme still fixed in hardware
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6809 Vectored Interrupts

The 6809 supports different interrupt vectors for the different inter-
rupt request lines:”

e FIRQ vector (FFF6):(FFE7)
e IRQ vector (FFF8):(FFF9)
e NMI vector (FFFC):(FFFD)

Since the 6809 IACK cycle corresponds to the reading of the interrupt
vector, it is possible for the vector to be provided by the I/O device.

e This task is rather too complex for most I/O devices, we would
need an Interrupt Controller.

7other vectors are used for the RESET input and the SWI instructions.
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External Interrupt Controllers

IRQ
/0, \ack C.P.U.
V()ZIACK Interrupt AcK
Controller

IRQ
I/C)BIACK

RO ) DATA
I/04|ACK

External interrupt controllers are used where we wish to deal effi-
ciently with large numbers of I/O devices.

e The interrupt vector is provided by the controller during the IACK
cycle.

Thus we can make use of I/O devices which don’t provide vector
registers.
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External Interrupt Controllers - 8259

The 8259 supports the 80x86 family of microprocessors:

INT INTA
Control
IRO |
0 ‘
IRL | DATA
IR2 | | Interrupt In I
IR3 | Priority |
IR4 | | Request [ > (7 Service
IR5 ; Resolver
IR6 l Register Register
—_— =
IR7
Interrupt Mask Register >

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,



External Interrupt Controllers - 8259

e Behaviour on interrupt

—I/0 device(s) assert one (or more) of IR0-7 inputs to request
interrupt.

— 8259 propagates interrupt to INT pin of CPU unless locally masked.

— CPU performs an IACK cycle, asserting INT A.

— 8259 places 8 bit vector corresponding to highest priority re-
quest on data bus.

- - most significant 5 bits are 8259 programmable vector
- - remaining 3 bits indicate IR number
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External Interrupt Controllers - 8259

o Flexible priority system

— Any combination of inputs may be masked

— Priority resolver has 3 modes of operation

- - Fixed: IRth‘ghest A .IR7lOw€5t

- - Rotating: most recently serviced becomes lowest priority, rest
rotate from there.
e.g. IR4—IR5—IR6—IR7—IR0—IR1—IR2—IR3,, st ccent

- - Specific: program lowest priority, rest as for rotating.

— Priority is resolved during the IACK cycle.
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External Interrupt Controllers

e Summary

— CPUs provide only limited facilities for interrupt handling.
—1/0 devices do not always support CPU facilities.

— Interrupt controllers provide hardware support for rapid inter-
rupt servicing

- - Separate masking of I/O devices
- - Dynamically adjustable priority system
- - Efficient vector management

— Essential for advanced Real-Time software
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Response times

e Response time is the sum of:

— Time to execute service routine code.

— Interrupt latency.
Interrupt latency is the hidden time between the IRQ event and

start of the interrupt service routine.’
Complete _
Setup Time Current Interrupt Stacking and Vector Fetch Sequence Inséreutgtkl]on
) Instructipn
FIRQ \

Addrgagmyxy«xxyxxyxx[

PC $FFFF SP-1 SP-2 SP-3 $FFFF $FFF6 S$FFF7 S$FFFF newPC |

R/wmv \ / . C
DBaggXX£7<xxxxxxxxxxxx

VMA PC

PC,, CCR VMA newPG newPG VMA |

L H

8i.e. the overhead associated with an interrupt request.
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Guaranteed Response Times

A guaranteed response time must include:
e Worst case for variable delays
— Time for SPARC context storage will depend on the availabil-

ity of a free register window.

— Even the time to complete the current instruction may some-
times be large.

e Delay due to nested interrupts.
— Use a priority system
- - thus ensuring that time critical interrupts are unaffected by
those of lesser priority.
— Keep all service routines as short as possible

- - this benefits the interrupted routines as well as the service
routine itself.
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