Interrupts

In order to provide faster response to external events, while avoiding
inefficient busy wait, most CPUs provide an interrupt request line for

use by I/O devices.
ROM RAM
A @ A A @ A
__________ - — - - - - - -\ == - > Address
- Data
C.P.U, o : ------ = Control
VY
e S
/O
Interrupt
Request M?H

The assertion of the interrupt request line by an I/O device should

initiate an interrupt cycle.

3001

Interrupt Cycle

e Disable interrupts
e Store PC

e Jump to service routine

— Determine source of interrupt
— Service interrupt

— Clear interrupt

— Return from interrupt

e Enable interrupts

3002

6809 Interrupts

The 6809 processor provides a number of interrupt request lines with
differing functionality.

6809
Interrupt

Control P —
=— IRQ

The simplest is the Fast Interrupt Request line, F'T RQ).
We shall consider the interrupt cycle initiated by asserting F'T RQ.

3003

6809 Interrupt Cycle

e F'TRO

— Push PC onto system stack
Ssp| PC sp| PC;
SP|{l PCpy
— Push CCR onto system stack
Clear E!
SP|l CCR

— Disable interrupts
set F, T

— Jump to service routine
PC < (FFFo) : (FFF7)

IE = 0 indicates a fast interrupt.

3004

6809 Interrupt Cycle

o RTT

— Restore CCR (and hence enable interrupts)

SP{ CCR
— Check for fast interrupt

IF (E ==)
- - Restore PC

SP{ PC

— Otherwise. ...

IF (B == 1)

3005

SP{} PCp
SP{} PCp,

6809 Interrupt Cycle

The diagram below illustrates the sequence of events for an FIRQ re-
quest including;:

e The stacking of the program counter and condition code registers.
e The indirection via the FIRQ interrupt vector, (FFF6):(FFF7).

. Complete Stack Fetch Instruction
Setup Time Current Registers new PC Fetch
_ Instruction ‘ ‘ ‘ ‘ ‘ ‘

FIRQ

AddrgﬁgMMKXXV<X>%XX

PC $FFFF SP-1 SP-2 SP-3 $FFFF $FFF6 $FFF7 ! $FFFF newPC !

R/WMW \ / \“C

DBaggXXﬂyxxxxxxxxxxxx

VMA | PC

PC,, CCR @ VMA 'newPC, newPC,’ VMA 3

L

3006

H

Interrupt Cycle

Use of registers

The interrupt should not affect the interrupted code. Thus any regis-
ters used by the interrupt service routine must be saved.

Where this is not done automatically by the processor it is the re-
sponsibility of the service routine.

e Store registers

e Determine source of interrupt

e Service interrupt

o Clear interrupt

e Restore registers

o Return from interrupt

3007

6809 Interrupt Cycle

e TRO

— Push PC onto system stack
SP| PC
— Push other registers onto system stack
sp| U,Y,X,DPR,B,A
— Push CCR onto system stack
Set E?
spll CCR
— Disable interrupts
set I
— Jump to service routine
PC < (FFF8) :(FFF9)

2E = 1 indicates that the entire state has been saved. RTI checks this flag and restores registers
accordingly.

3008

6809 Interrupt Priority

Each service routine automatically disables interrupts of the same or
lesser priority.

7 0
6809 EIFIH I N Z|V|C
—— Carr
Condition Code — (mm%bw
Zero
Register Negative
IRQ Mask
Half Carry
FIRQ Mask
Entire Flag
e IRQ low priority
sets I=1 disabling only IRQ requests.
e FIRQ high priority

sets F=1 and I=1 disabling FIRQ and IRQ requests.
Masks are reset when CCR is restored from stack by RTI.

3009

6809 Interrupt Priority

The 6809 supports a third interrupt line:
o NMI highest priority

— Non-Maskable Interrupt Request

— Saves entire state and sets E=1 like IRQ.

— NMl sets F=1 and I=1 disabling FIRQ and IRQ requests.
— There is no interrupt mask for an NMI request.

— An NMI event will interrupt any process

(including another NMI service routine).

3010

6809 Interrupt Priority

Non-Maskable Interrupts

e This interrupt is used for the most urgent tasks, which cannot
wait for other interrupt routines to complete.

e Since we cannot disable this interrupt, we must find an other method
of preventing recursive service routine calls as a result of a single
event.

— The NMI event is triggered by a falling edge on the N M line.

— The action of clearing the interrupt will enable subsequent in-
terrupts.

— We must consider the possibility of overlapping NMI requests®.

3e.g. poll NMI devices again after clearing the source of an interrupt

3011

Sharing an Interrupt Line

It is seldom possible to have one interrupt line per I/O device.

OR Gate C.P.U.
} IRQ
+5v Wire-OR { = Open Drain O/P C.P.U.
% e.g. 6809
10k
IRQ

/O, T 1/O0,RRYT o R o R

Daisy Chain C.P.U.
e.g. Z80
o, =° /o, *° /o, ~° o, ~° RQ

Note: The wire-OR here is actually a wire-AND of negated signals

3012

Sharing an Interrupt Line

¢ Determining the source of an interrupt

Polling

4

— The processor must poll each I/O device* connected to the line.

— This may be very time-consuming where many devices share
the same IRQ line.

Priority

— The order of polling determines the priority where multiple
devices are awaiting service.

4i.e. read the 1/0 device status register

3013

Sharing an Interrupt Line

Nested interrupts

In order to avoid blocking important events we may wish to re-enable
interrupts on the same line before an interrupt routine completes.

e Determine source of interrupt
e Clear interrupt

e Enable interrupts

e Service interrupt

e Return from interrupt

Note: Where request lines are level sensitive, we must clear the source of an interrupt before re-

enabling interrupts in order to avoid an endless recursion.

3014

Sharing an Interrupt Line

Nested interrupts

Alternatively, where one part of the routine is particularly time criti-
cal, interrupts may be enabled after this code has completed.

o Determine source of interrupt

e Time critical interrupt service
o Clear interrupt

o Enable interrupts

e Rest of interrupt service

e Return from interrupt

3015

6809 Interrupt Masks

The 6809 allows direct manipulation of the control bits in the CCR.”

7 0
6809 \E\F\H\I\N\ZMC\
. —— Carry
Condition Code I Overflow
_ Zero
Register Negative
IRQ Mask
Half Carry
FIRQ Mask
Entire Flag

e Interrupt masks may be set or cleared explicitly by the user.

— ANDCC #10111111, will enable FIRQ events.
— ORCC #01010000, will disable IRQ & FIRQ events.

>Note that greater selectivity may be achieved by masking an interrupt at source, but this is
rather dangerous; only the routine responsible for the management of an I/O device should ma-
nipulate its interrupt mask.

3016

Interaction with I/0O Device

e Interrupt Request asserted by I/O Device

— request will remain active until explicitly cleared

e Service Routine queries I/O Device

— read from status register

- - whether the device interrupt is active
- - what is the cause of an active interrupt®

e Service Routine services interrupt

— e.g. reads data from I/O device

e Service Routine clears interrupt

— Device dependent — consult device data sheet

%a single device may have several interrupts active concurrently

3017

Clearing of Interrupts

Consider our imaginary asynchronous receiver/transmitter device:

Asynchronous

CE R/W Al A0

Receiver / Transmitter

ffffffffff T

IRQ P
i AN
:} Interrupt Mask |
B EREEEE ;
| Status L = TxRTS
: =—— TXCTS
R Mode ——={ Control |
! =—— RXRTS
) Command — ——= RXCTS
D7-D0) Baud Rate ——= Clock
)| b
| Transmit Register |
lL Data
[— — 1 Encode [Tx
Data =+ RX
| \% — — | Decode

1l

~———{ Receive Register |

,,,

Clearing of Interrupts

e The device generates the interrupt request from a logical AND of
the Status Register and the Interrupt Mask Register.

IRQ

oj/ojjojjojjo]l 0 Interrupt Mask Register
XXX X][X]|X Status Register
Not used by this system -~ Data Arrived in Receive Register

””””” Transmit Register Empty

e The device supports two interrupts

— data arrived — needs reading
— data transmitted — send more

3019

Clearing of Interrupts

e Explicit clearing of interrupts

We might clear an interrupt by writing to “Interrupt Clear” com-
mand to the Command Register.

e Implicit clearing of interrupts

Our I/0O device does not in fact support an “Interrupt Clear” com-
mand since we can combine the servicing of an interrupt with
clearing it.

— Reading from the Receive Register clears a “data arrived” in-
terrupt

— Writing to the Transmit Register clears a “data transmitted” in-
terrupt

3020

Automatic Clearing of Interrupts

e Many I/O devices support an interrupt acknowledge input.

— A pulse on the interrupt acknowledge line indicates that the
interrupt routine has been started.

C.P.U.

IRQ IRQ
I/O IACK IACK

— This enables an interrupt to be cleared at an early stage in the
interrupt cycle; well before the interrupt is serviced.

3021

Automatic Clearing of Interrupts

e The 6809 supports an interrupt acknowledge indicated by the state
of the Bus Available and Bus Status lines.

Interrupt
Cleared
Automatically

FIRQ

Interrupt

Acknowledge (BA.BS) /

AddrgﬁgMYXV%XXVXXY%X[

PC $FFFF SP-1 SP-2 SP-3 $FFFF $FFF6 $FFF7 | SFFFF newPC

TS
8A (0 ; ;
8s —
e KX LS S, S
VA PC_ PC, CCR VMA newPG,, newPCL§ VMA
Fetch ‘
new PC

3022

Automatic Clearing of Interrupts

A 780 style Daisy Chain may be used to regulate acknowledge.

C.P.U.

IRQ IRQ IRQ IRQ IRQ
i Ilol IACK I/OZ IACK I/OB IACK I/C)4 IACK IACK

Pros:

e We ensure that no more than one interrupt is acknowledged.
- JACK is passed to next device only if local IRQ is inactive.

Cons:

e Must still poll to discover source of interrupt.

— although the I/O devices know which interrupt is being ser-
viced!

e Priority system is fixed in hardware.

3023

Automatic Detection of Interrupt Source

Vectored Interrupts

+5v

%mk C.P.U.

]] 7™

/O RQ /O RQ /O RQ
— 1 JjacKl=—— 2 |ACK 3 JACK IACK
¢ DATA

e An alternative strategy allows the I/O device to identify itself dur-
ing the IACK cycle.

3024

Automatic Detection of Interrupt Source

Vectored Interrupts

e Initialization

— I/0O devices have vectors programmed at start up

o JACK cycle

- JACK signal requests vector (typically 8 bits only)
— Responding device places vector on data bus
— C.P.U. grabs service routine address from vector table

e No requirement for device polling

e Priority scheme still fixed in hardware

3025

6809 Vectored Interrupts

The 6809 supports different interrupt vectors for the different inter-
rupt request lines:”

e FIRQ vector (FFF6):(FFE7)
e IRQ vector (FFF8):(FFF9)
e NMI vector (FFFC):(FFFD)

Since the 6809 IACK cycle corresponds to the reading of the interrupt
vector, it is possible for the vector to be provided by the I/O device.

e This task is rather too complex for most I/O devices, we would
need an Interrupt Controller.

7other vectors are used for the RESET input and the SWI instructions.

3026

External Interrupt Controllers

IRQ
/0, \ack C.P.U.
V()ZIACK Interrupt AcK
Controller

IRQ
I/C)BIACK

RO) DATA
I/04|ACK

External interrupt controllers are used where we wish to deal effi-
ciently with large numbers of I/O devices.

e The interrupt vector is provided by the controller during the IACK
cycle.

Thus we can make use of I/O devices which don’t provide vector
registers.

3027

External Interrupt Controllers - 8259

The 8259 supports the 80x86 family of microprocessors:

INT INTA
Control
IRO |
0 ‘
IRL | DATA
IR2 | | Interrupt In I
IR3 | Priority |
IR4 | | Request [> (7 Service
IR5 ; Resolver
IR6 l Register Register
—_— =
IR7
Interrupt Mask Register >

,,,

External Interrupt Controllers - 8259

e Behaviour on interrupt

—I/0 device(s) assert one (or more) of IR0-7 inputs to request
interrupt.

— 8259 propagates interrupt to INT pin of CPU unless locally masked.

— CPU performs an IACK cycle, asserting INT A.

— 8259 places 8 bit vector corresponding to highest priority re-
quest on data bus.

- - most significant 5 bits are 8259 programmable vector
- - remaining 3 bits indicate IR number

3029

External Interrupt Controllers - 8259

o Flexible priority system

— Any combination of inputs may be masked

— Priority resolver has 3 modes of operation

- - Fixed: IRth‘ghest A .IR7lOw€5t

- - Rotating: most recently serviced becomes lowest priority, rest
rotate from there.
e.g. IR4—IR5—IR6—IR7—IR0—IR1—IR2—IR3,, st ccent

- - Specific: program lowest priority, rest as for rotating.

— Priority is resolved during the IACK cycle.

3030

External Interrupt Controllers

e Summary

— CPUs provide only limited facilities for interrupt handling.
—1/0 devices do not always support CPU facilities.

— Interrupt controllers provide hardware support for rapid inter-
rupt servicing

- - Separate masking of I/O devices
- - Dynamically adjustable priority system
- - Efficient vector management

— Essential for advanced Real-Time software

3031

Response times

e Response time is the sum of:

— Time to execute service routine code.

— Interrupt latency.
Interrupt latency is the hidden time between the IRQ event and

start of the interrupt service routine.’
Complete _
Setup Time Current Interrupt Stacking and Vector Fetch Sequence Inséreutgtkl]on
) Instructipn
FIRQ \

Addrgagmyxy«xxyxxyxx[

PC $FFFF SP-1 SP-2 SP-3 $FFFF $FFF6 S$FFF7 S$FFFF newPC |

R/wmv \ / . C
DBaggXX£7<xxxxxxxxxxxx

VMA PC

PC,, CCR VMA newPG newPG VMA |

L H

8i.e. the overhead associated with an interrupt request.

3032

Guaranteed Response Times

A guaranteed response time must include:
e Worst case for variable delays
— Time for SPARC context storage will depend on the availabil-

ity of a free register window.

— Even the time to complete the current instruction may some-
times be large.

e Delay due to nested interrupts.
— Use a priority system
- - thus ensuring that time critical interrupts are unaffected by
those of lesser priority.
— Keep all service routines as short as possible

- - this benefits the interrupted routines as well as the service
routine itself.

3033

