SPARC Exception Handling

The SPARC supports various types of traps:

e Synchronous traps

— Exceptions generated by standard instructions
e.g. 1llegal_instruction,window.overflow etc.

— Exceptions generated by memory access instructions
— Exceptions generated by floating-point instructions
— Exceptions generated by coprocessor instructions

— Explicit trap instruction
Trap on integer condition codes, Ticc.

e Asynchronous traps

— Reset
— Interrupts

4501

SPARC Exception Handling

Each trap is assigned a priority and a trap type.

- iy . Sync/

ap rotity ap—Type Async
Reset 1 - Async
lllegal Instruction 2 1 Sync
Privileged Instruction 3 2 Sync
Tag Overflow 13 10 Sync
Ticc 14 128-255 Sync
Interrupt level 15 15 31 Async
Interrupt level 14 16 30 Async
Interrupt level 2 28 18 Async
Interrupt level 1 29 17 Async

4502

SPARC Exception Handling

e Priority

— Where multiple traps occur the highest priority trap is taken.

e Trap Type
— When a trap is taken the value of the Trap Base Register is copied
into the Program Counter.
— The trap type forms a field in the Trap Base Register.

Trap Base Register

31 12 11 4
TBA tt

(@R
O |o

(@ BN

QO |w

Trap Base Address Trap Type

4503

Exception Handling

e The processor state register contains a number of fields relevant
to exception handling:

Processor State Register

31 28 27 24 23 22 21 20 19 14 13 12 11 8 7 6 5 4 0
impl ver |N:Z:V.C reserved ECEF| PIL |S|PSET| CWP
\ﬁ/—/
Processor Current
Interrupt Window
Level Pointer

Supervisor Mode

Previous Supervisor Mode

Trap Enable

4504

SPARC Exception Handling

Trap Operation

e Further traps are disabled

— interrupts are ignored
— synchronous traps force the processor into error mode

ET < O
e Processor enters supervisor mode
— also save previous state

PS < S
S+ 1

e A new register window is selected
CWP < CWP - 1

4505

SPARC Exception Handling

e PC and nPC are saved into new window
%11 < PC
%12 < nPC

e The tt field in the Trap Base Register is set appropriately

e Jump to service routine

— For all traps except reset:
PC < TBR
nbPC < TBR + 4

— For reset:
PC « O
nPC « 4

4506

SPARC Exception Handling

Trap Table

e The trap table contains 256 4-word entries (although many are
unallocated).

e A 4-word entry is rather small for a full service routine, a typical

entry will save the processor status register and jump to the real
routine:

Crap_entry:
mov %psr, %10

sethi %hi(trap_func), %14
Jmp %14 + %lo(trap_func)
nop

4507

SPARC Exception Handling

Trap Routine

e The trap routine will restore the status register before returning
from the trap.

trap_func:
|

! body of trap routine in this space
|

mov %10, %psr

nop ! flush %psr update through pipeline
nop

nop

Jmp 311 ! restores old PC

rett %12 ! restores old nPC and other bits

4508

SPARC Exception Handling

Return from Trap

e Return from trap is achieved using the control transfer couple:

JMPIL, %11, %0!
%0 <« PC
PC & nPC
nbPC +«— %11

RETT %12
ET < 1
PC < nPC
nPC + %12
CWP < CWP + 1
S < PS

YMP xx = JMPL xx, %0
4509

SPARC Exception Handling

Trap Window

e The trap operation decrements the window pointer without per-
forming a check for an invalid window. Since the local variables
of an invalid window don’t overlap with other windows, we can
use these registers in our trap handler.

w4

CWP =WO0 (WO INVALID)

4510

SPARC Exception Handling

Fast Trap Routines

The following restrictions apply to fast trap routines:

e Use only local variables $13 — %17

—since $10, $11 & %12 are used for PSR, PC & nPC

e Use no subroutines

— since CALL would overwrite 307

e Don’t re-enable traps

— since a nested trap would decrement CWP again

4511

SPARC Exception Handling

Slow Trap Routines

For more complex trap routines we may wish to lift these restric-
tions. In particular we may wish to re-enable traps and make use
of subroutines. The following conditions should be met:

e Check for invalid window on entry and before return

— manipulate old window stack as required
— RETT will not restore an old window from the stack

e Top level of trap routine has restricted variable access

—uses locals $13 — %17 and outs $00 — %07

e Disable traps before return

— automatic (provided we save and restore processor status)

4512

SPARC Interrupts

o, o 1/O¢ " /10, "

o, "1 o, " o, ©°

o, "ol o, "°rl o, TOf]
o, Il o, T°Ml (o, ¢ SPARC

o, “¢llll oy 'RT IO, 'RQL

— (INTACK)

IRL[3:0]

e The SPARC supports up to fifteen separate interrupt lines via the
four bit IRL bus.

— IRL[3:0] = n indicates that interrupt request n is active.
— IRL[3:0] = 0 indicates that no interrupt request is active.

4513

SPARC Interrupts

e Since the IRL bus can only indicate one active interrupt to the pro-
cessor we use a simple priority encoder.

— Interrupt request 15 (IRL[3:0] = 1111,) has highest priority and
request 1 has the lowest.

1o, "2 1og T[] |no, T
1o, "% [vo, " o, "
o, M o, "M o, ™ SPARC
oy, "Nl o, ®Q 1o, "¢
4 9 4
oTRin /0y Rﬂ 10, "¢ Priority | ontack)
Encoder
IRL[3:0]

e A more advanced system might use a custom interrupt controller
combined with the INTACK signal from the SPARC?.

Znot all SPARC processors support INTACK
4514

SPARC Interrupts

Interrupt Cycle

e Interrupt request on line 5
e Priority encoder output changes from 0000, to 0101,

e SPARC retimes IRL signals and checks for stability over two cy-
cles

e SPARC interrupts at end of current instruction
e Trap type field of the Trap Base Register is set to 21 (5+16)

e SPARC jumps to trap routine for Interrupt Level 5

4515

SPARC Interrupts

Interrupt Masking

The 4 bit Processor Interrupt Level (PIL) field of the Processor State
Register provides a simple priority based interrupt mask.

e PIL =0 allows all interrupts provided that traps are enabled (ET =1).

e PIL = n masks all interrupts whose interrupt level is not greater
than n.

e Interrupt level 15 is not maskable by the PIL (hence PIL = 14 is
equivalent to PIL = 15).

4516

SPARC Interrupts

Fast Interrupt Service Routines
e These routines are the fast trap routines already discussed.

They may make only limited use of the SPARC register set and
cannot support subroutines or nested traps.

Slow Interrupt Service Routines

e Slow interrupt routines may have full use of the facilities offered
by the SPARC register set provided that they are careful to avoid

causing a window overflow or underflow trap while traps are dis-
abled.

— Flat register window model subroutines may be used once a
full register window has been acquired.

— Standard register window model subroutines may be used if
traps are re-enabled.

e Once traps are re-enabled we may support nested interrupts.

4517

SPARC Interrupts

Nested Interrupts

e Standard behaviour of a slow interrupt routine which wants to
support nested interrupts is:

— Set the PIL field of the PSR to the level of the current interrupt
when re-enabling traps.
This blocks lower priority interrupts.

— The previous PIL value will be restored along with the pre-
served PSR at the end of the service routine.

o Alternatively the routine might:

— Set PIL to 15 to block all except the non-maskable interrupt.

— Set PIL to zero to enable all interrupts.

This is likely to be the case where an alternative priority sys-
tem is implemented.

4518

SPARC Interrupts

Summary
e Basic SPARC interrupt scheme:

— priority fixed in hardware
assisted by a simple priority encoder

— maximum of 14 prioritized interrupt levels
— single non-maskable interrupt

— limited masking control
since the PIL is used to support the priority scheme.

Where we require a more flexible scheme we might use a more ad-
vanced interrupt controller.

4519

REB Interrupt Scheme

XCK
Level Source Signal : || :

T T | — IRL[3
12 PI/T1 TO iu AND ﬁ 3]
9 DUART IRQ 4 or | i IRLE2]
° Pl PIRQ }E; ARRAY | > [T IRL[1]
6 ? PI/T 2 PIRQ l |

- | B | IRL[O
3 EXBUS EIQ iu ﬁ (0]
‘ Programmable ‘
Logic Device

e The RISC Experimenter Board supports 5 interrupts
e Priority is resolved by a simple programmable logic device (PLD)

e PLD also synchronizes the signals to XCK

e PIR() signals from the 2 PI/T devices are wire-or’ed at level 6

4520

REB Interrupt Scheme

Trap Table
e EPROM programs

— trap table is in EPROM 0 to FFF - unalterable.
— default trap routines simply light LEDs for diagnostics.

e RAM programs

— trap table is copied to RAM at C1000 to C1FFF
— trap base address is adjusted accordingly
— user may then install own handlers

4521

