Number Systems — Integers

Unsigned
0 to 255

Sign Magnitude

-127 to +127

‘1’s complement

-127 to +127

‘2’s complement

-128 to +127

Biased (bias =128)
-128 to +127

(+/- zero)

(+/- zero)

10|11
128 64 32 16
1 0|11
+/- 64 32 16
1 0|11
-127 64 32 16
1 0|11
-128 64 32 16
170111
128 64 32 16

-128

186

-69

-70

58

Arithmetic — Integer Addition

e Simple Binary Arithmetic

Unsigned ‘2’s complement

186 -70
+ +

28 +28

214 -42

— works for unsigned and ‘2’s complement' integers

— doesn’t work for other integer number systems

— most integer systems support unsigned and 2’s complement

only

laddition of two negative numbers will generate a carry out which must be ignored — the result

has the same number of bits as the operands

2

Half Adder & Incrementer

e Half Adder

e Incrementer Unit

A® B

INC —‘

3

X[0] X[1] X[2] X[3]
T 5T =
A B A B A B A B
HA HA HA HA
S C S C S C S C
T TR T
Y[0] Y[1] Y{2] Y[3]
Y[]=X[]+ INC

Half Adders

e Implementation

— the simplest NAND based implementation re-uses C'out in the
calculation of S.

A
oL S

>o0—°cC

— more advanced implementations may be technology dependent;
the following use CMOS compound gates:

T inwac

D@ >0 C >o0—=cC

Full Adder

e Full Adder

e iy) WP

Cin
>:::>>Cout

Hj

Cout=A.B+ A.Cin + B.Cin

]

Hj

Multi-bit Adders

e Ripple Carry Adder

Cin —

—— Cout
(S[4])

A[0] BIO0] A[1] B[1] A[2] B[2] A[3] BI3]
A B A B A B A B
FA FA FA FA
Cin Cout Cin Cout Cin Cout Cin Cout
S S S S
S[0] S[1] S[2] S[3]

S[1=A[]+ B[]+ Cin

— note that the delay of the complete adder is primarily deter-
mined by the addition of delays in the carry path?.

2calculation of S[3] may also be in the critical path since Cout is likely to become available before

SI3]

6

Full Adder

e Implementation

Cin

Cout

Wi%%ﬁw

— various implementations exist which use a minimum number
of gates/transistors dependent on technology:

Cout

Multi-bit Adders

e Fast Ripple Carry Adder

- in order to optimize performance it is necessary to minimize
the carry propagation delay. Generate, (G[i|, and propagate,
P[], signals are pre-calculated allowing fast response to changes
on carry in, Cli — 1].

N Al — Gl
GI[i] = A[i].B[] AL _)@ } i

P[i] = A[i] + B[] QE}:}>@ >0 P[i] DQJ

Cli] = G[i] + P[il.C[-1] Cli-1]
Slil = All @ Bli] @ C[-1] ol :>D_L
Cli-1] >>) sl

Multi-bit Adders

e Manchester Carry Adder

— the Manchester carry system uses a different definition of prop-
agate, this propagate signal is used in the calculation of the

sum output.

Glil = Al BIi
Pl = Al ® B[]
Cll = C[i-1] P[] + GIi] PJi]

Cin 1

ﬁo

G[0] P[O]

SIi] Plil & C[i-1]

Alll —
B[] —

C[1]

} Gli]
o

Bli] —

C[2]

Cl3]

1

11

Do

Cli-1] —

0

P[1]

11

G[2]

0

P[2]

G[3]

0

P[3]

Multi-bit Adders

e Manchester Carry Adder

— various implementations exist making use of fast multiplexors
based around pass transistors or transmission gates.

— a long run of these gates requires buffering to maintain perfor-

mance.
Pl

C[i-1]
Pl Cli

G[] P

G[o] P[0] G[1] P[] G[2] P[2]

10

C[3]

PR3]

Adders

e Carry Lookahead Adder

Gl = Al Bl M e

P[i] = A[i] + B[] QE} —

P

C[i] = G[i] + PJ[i].C[i-1]

S[il = Ali] ® B[i] ® C[i-1] Mm—i>j_
B[] —
[

C[i-1]

— uses generate and propagate as before — but expands recursive
carry expression

11

Adders

e Carry Lookahead Adder

— using 2 stage NAND NAND logic

C[0] = G[0] + P[0].Cin
C[1] = G[1] + P[1].G[0] + P[1].P[0].Cin

C[2] = G[2] + P[2].G[1] + P[2].P[1].G[0] + P[2].P[1].P[0].Cin
C[3] = G[3] + P[3].G[2] + P[3].P[2].G[1] + P[3].P[2].P[1].G[0] + P[3].P[2].P[1].P[0].Cin

s
0 P2l
Cin G[1]Doﬁ} Cl2l

P[2]—
P[1]—
G[0]—

P[2]—
P[1]—
P[0l

Gl >0—] Cin—
P[1] C[1]
s),

P[1]
P[O]
Cin

12

G[3]{ >0

P[3]—
G[2]—
P[3]—
P2]—
G[1]—
P[3]—
Pl2]—
P[1]—
G[0]—
P[3]—
P[2]—
P[1]—
P[0]—
Cin—

R

Cl3]

Adders

e Carry Lookahead Adder

— using compound CMOS gates
- - max. 5 transistors in series in compound gate!

C[0] = G[0] + P[0].Cin
C[1] = G[1] + P[1].(G[0] + P[0].Cin)
C[2] = G[2] + P[2].(G[1] + P[1].(G[0] + P[0].Cin))

C[3] = G[3] + P[3].(G[2] + P[2].(G[1] + P[1].(G[O] + P[0].Cin)))

G[3]
P[3]
P[2]
G[1]
P[1]
GI[O]
P[0] — >
13

Cin —

Hybrid Adders

e Carry Lookahead Adder

— multi-bit carry lookahead is limited by large fanin and fanout

requirements
— carry lookahead is frequently used to accelerate ripple carry
adders
Sum|0:3] Suml[4:7] Sum[8:11] Sum[12:15]
Unit Unit Unit
Ripple Ripple Ripple Ripple
—Cin A Sum g Cout| Cin A Sum g Cout| Cin A Sum g Cout| Cin A Sum g Cout|
A[0:3] B[0:3] Al4:7] B[4:7] A[8:11] B[8:11] A[12:15] B[12:15]

— 4 bit lookahead unit shares propagate and generate with 4 bit
ripple carry adder

— lookahead is used to calculate every fourth carry

14

Hybrid Adders

e Carry Select Adder

— carry select offers another technique for carry acceleration
A[15]

A[é]\ L1 L1 L1 A[\8]\ L1 L1 L1 A[1\2\] L1 L1 \\8[15]
A[g][o] 1 - 1 - 1
L L LL L L LL L L LL
“n] | Al) Al8]) Al12] - cou
0- 0- 0-

BNy
TTTT TTTT TTTT

S[0] S[4] S[8] S[12]

— all possible values are calculated in the time taken for a 4 bit
adder, carry signals are then used to select correct results

— pairs of 4 bit adders act as macro carry propagate and carry
generate units

15

Hybrid Adders

e Carry Select Adder

— any adder may be used as the building block for a carry select
adder — overall delay is only partially proportional to adder
delay.

— variable length adders can be arranged such that the carry in
signal is valid at the same time as the results for selection, giv-
ing a better overall performance.

1+ 14 14

}uu Tt | | T
TTTT TTTTT TTTTTT

Arithmetic Overflow

e Unsigned Addition

Unsigned
1/0|1(12(0|0|21 |0 178
+ +
1/1/]0j0(0|1|1|0 198
. 6o 00 01 1o Overflow!
o|1/1(1|1]0(0]0 120

— the carry out indicates an overflow

17

Arithmetic Overflow

o 2’s Complement Addition

‘2’s complement

1,1,1(1/0;0]1/0 -14
+ +

1110|002 |10 -58

1/0]1}12(1,0|0|0 -72

— the carry out is ignored — no overflow here!

18

Arithmetic Overflow

o 2’s Complement Addition

‘2's complement ‘2’s complement
1/0(1|1|{0]0|1]|0 -78 oj1(1j12j0|0|1]O0 114
+ + + +
1/1/]0|0|02]1]0O0 -58 oj1/0(0|0O]1|1]|O0 70
. °o 00 0 1 10 Overflow! 0 t o001 10 Overflow!
o(1|1j12(1240|0]0 120 1/0(12(1,1{0j0]|0O0 -72

— when overflow occurs the sign of the result is different from
the sign of either operand

— we can detect ‘2’s complement overflow as V = C[8] & C|T7]

19

Arithmetic Overflow

e Dual purpose overflow detecting adder

A[0] B[0] A[1] B[1] Al2] B[2] A[3] B[3] A[4] B[4] A[5] B[5] A[6] B[6] A[7] B[7]

A B A B A B A B A B A B A B A B

FA FA FA FA FA FA FA FA
0——Cin Cout Cin Cout Cin Cout Cin Cout Cin Cout Cin Cout Cin Cout Cin Cout

S

S

S

S

S

S

S

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

IR

v

S[7]

e Use the same adder for unsigned and 2’s complement addition

— C indicates an overflow for unsigned addition

— V indicates an overflow for 2’s complement addition

20

‘2’s Complement Arithmetic

e 2’s Complement Negation

%[;] %[;] %[;] %[;] %[;] %[;] %[;] Al7]
A A A A A A A A
HA HA HA HA HA HA HA HA

1—B Cout—— B Cout—— B Cout—— B Cout—— B Cout—— B Cout—— B Cout B Cout
S S S S S S S S

"

S[0] S[1] S[2] S[3] S[4] S[8] S[e] S[7]

SO =-Al=A[+1

— overflow occurs for -(-128) since the number system cannot rep-
resent +128

- - overflow detection uses carry monitoring, as for addition

21

‘2’s Complement Arithmetic

B[0]

B1]

B[2]

B3]

e 2's Complement Adder/Subtractor

B[4]

B[5]

B[6]

B[7]

N N N N N N N N
™ Y IY Y ™Y Y Y TY
A B A B A B A B A B A B A B A B
FA FA FA FA FA FA FA FA
Cin Cout Cin Cout Cin Cout Cin Cout Cin Cout Cin Cout Cin Cout Cin Cout

S

S

S

S

S

S

S

S

]

S[o]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

|

v

S[7]

— Merging the addition and negation units gives a single adder/subtractor
unit
- - Sub/ Add signal is used to select between subtraction and ad-
dition

22

Unsigned Arithmetic

e Unsigned Subtraction

Unsigned Unsigned
1/0(1/1{0]0|10 178 1/0(1/1{0]0|10 178
1/0/{0/0|O0O|2 |10 134 i1/1/]0/0(0|2 |10 198
O] o o 0 1 1 0 O - 1 1 0 0 1 1 0 O Overflow!
o|o0oj1j0|1|1|]0]|0O0 44 1/1/12,0(1|212,0/0 236

— the final borrow indicates an overflow since we cannot repre-
sent negative numbers

23

Unsigned Arithmetic

e Full Subtractor

—[>0—— BORROWout

X Y Bin| S Bout XY
0 0 0|0 O

0 0 1.1 1

0 1 0 1 1 1 A B
o 1 1/0 1 FA

1 0 0 1 0 BORROWin —Q >0O—1 Cin Cout
1 0 1/0 O s

1 1 0/0 O e
1 1 1/1 1 <

— a full subtractor unit may be constructed from an existing full

adder unit

24

Multi-bit Subtractor

e Multi-bit Subtractor for Unsigned Numbers

Al0] BI[O] Al1] B[1] Al2] B[2] Al3] B3] Al4] B[4] A[5] B[9] Al6] B[6] Al7] B[7]
B
FA FA FA FA FA FA FA FA
1—Cin Cout Cin Cout Cin Cout Cin Cout Cin Cout Cin Cout Cin Cout Cin Cout %>O— BORROW
S S S S S S S S
S[0] S[1] S[2] S[3] S[4] S[8] S[é] S[7]

— in a multi-bit subtractor we need not invert the carry signals
between full adders

25

Multi-Purpose Adder/Subtractor

e Overflow detecting adder/subtractor for unsigned and 2’s com-
plement integers

B[O] B1] B[2] B[3] B[4] B[5] B[6] B7]
Sub/Add \l B \l \l \l \l \l \l
NV NV NV NV NV NV NV NV
ALO] AlL] AL2] AL3] AL4] Al5] Ale] AlT]
| | | | | | | |)¢
A B A B A B A B A B A B A B A B
FA FA FA FA FA FA FA FA

S S S S S S S

S[0] S[1] S[2] S[3] S[4] S[8] S[e] S[7]

S

Cin Cout —— Cin Cout —— Cin Cout — Cin Cout— Cin Cout— Cin Cout —— Cin Cout —(Cin Cout —

e Overflow:

— C indicates an overflow for unsigned arithmetic
— V indicates an overflow for 2’s complement arithmetic

26

ALU adder unit

e ALU integer adder unit.

A[0] B[0] A1l B[1] Al2] B[2] A[3] B[3] Al4] B[4] Al5] B[9] Al6] B[6] A7l B[7]
— | | | | | | | |
Il Il Il W Il Il Il Il
Multiword L
D
A B A B A B A B A B A B A B A B
FA FA FA FA FA FA FA FA
c >D Cin Cout —— Cin Cout— Cin Cout —— Cin Cout — Cin Cout —— Cin Cout — Cin Cout Cin Cout —
in
S S S S S S S S
| | | | | | | L v
S[0] S[1] S[2] S[3] S[4] S[5] S[6] S[7]

— most ALUs offer the capability of multi-word addition{subtraction}
the carry{borrow} out signal is stored after each operation such
that it may fed back into the next operation as carry{borrow}
in.

- - Sub/ Add signal controls operation as before

- - MultiW ord signal enables C;, for all but the first, least sig-
nificant, word of a multi-word operation

27

Number Systems — Reals

Fixed point
— 1{o|1|1]1]*0[1]0 186
0 to 31.875 lg

16 8 4 2 1 1/2 1/4 1/8

Floating Point
0 to 3968

23 x2°

[EY
o
[EY
[EEY
[EY
o
[EY
o

I

16 8 4 2 1 x2

e Fixed Point

— arithmetic as easy as integer arithmetic
— limited application due to small range (even with 32 bits)

e Floating Point

— arithmetic difficult
— potentially very large range
— many different format possibilities

28

Floating Point Formats

e Format choices

+2
1 11011 0 10| = -11x2 1 11011 0 1/0| = -5x2
+- 2 1 -4 2 1
+- 8 4 2 1 x2 16 8 4 2 1 x2
Range: -120 ... +120 Range: -128 ... +120
_ +2 _)
1 11011 0 1/0/| = -11x4 1 1101 1 o|1]0]| = 5x2
+/- 2 1 +/- 4 2 1
+/- 8 4 2 1 x4 +/- 4 2 1 x2
Range: -960 ... +960 Range: -896 ... +896
— Radix
T
--2,2",10

— Sign formats for mantissa and exponent

- - Sign magnitude, 2’s complement, ‘1’s complement, biased
— Bits per field

- - Range vs accuracy

29

Floating Point Formats

e Multiple representations for the same number

+0
11 |/12]0lo]lo]| |o| |0o|lo]|] = -8x2

+- 2 1
+/- 8 4 2 1 x2

+1

11 lol1]lo]lo]| |o| |o|l21] = “4x2

+1- 2 1
+/- 8 4 2 1 x2

+3

11 lololol1| |o| |1|1] = -1x2

+1- 2 1
+/- 8 4 2 1 x2

— wastes almost 1 bit of information

30

Floating Point Formats

e Normalized numbers

/ M.S.B. Implicit

| _ +2
1] ‘1]/1]0]|1|0| |o| |1]|0]| = -26x2

— arrange for most significant bit to be ‘1’
— since m.s.b. is almost always “1” it need not be stored
— zero must be treated as an exception

31

IEEE 754 Standard

e Single precision
30

31 23 22 0
1/1/0{1]0/0/0/1 1/0/1/0/1/0/0/0/1]0{1]1/1]1|0 1/0|0|1
Sign Biased Exponent Field Fraction Field

1/1/0|1 -127
-| 1¢/1/0/1/0/1/0/0/0/1/0/1/1]1/1/0/1]0/0J0/1l0j0]1] 2 2

2

— 32 bits; Sign (1-bit), Biased Exponent (8-bit), Fraction (23-bit).

— Radix =2

— Normalized, giving 24 bits of precision

— Implicit m.s.b. and binary point

— {Biased Exponent = Fraction = 0} represents ZERO

— Sign magnitude (hence +/- zero)

— Biased exponent field; bias = 127

32

IEEE 754 Standard — Exceptions

e Zero {+/-} & denormals

31 30 23 22 0
@ 0/0/0/0]/0/0]0|0 0/0/0/0j1/0/0|0/1|0/1]1]2|1/0|1|0|0|0]1/0/0/2
Sign Biased Exponent Field Fraction Field

00000010001011110100010012 X 2

— zero is a special case of a denormal number;
i.e. a number that is too small to be normalized.

— denormal numbers have an implicit leading zero.
— a biased exponent of zero indicates a denormal number.
— the actual exponent is ‘1’ minus the exponent bias!

33

IEEE 754 Standard — Exceptions

e Infinity {+/-}

— infinity may be taken to indicate any number too large to be
represented.
c.f. zero represents all numbers too small to be represented —
hence the usefulness of +/-zero

— infinity is indicated by a zero fraction field and a maximal bi-
ased exponent field.

31 30 23 22 0
1{1]21]11]1]1]1]1 0/0/0/0|0|0|0]0/0|0/0|0|0|0|0|0]0|0|0/0|0Oj0|0O
Sign Biased Exponent Field Fraction Field

e NaN Not a Number

Any number represented by a maximal biased exponent field and

a non zero fraction field is a Not a Number, such as may result
from v/—1 or 0 + 0.

34

Arithmetic with Normalized Numbers

Before

e Unpack operands

— make most significant bit explicit; ‘1’ for normal numbers, ‘0’
for denormals

— set biased exponent to ‘1" for denormals
After

e Normalize

— shift left mantissa and decrement exponent up to the limit im-
posed by the exponent range

e Pack result

— if m.s.b. = zero set biased exponent to zero
— discard m.s.b.

35

Floating Point Addition

dxX2°=ax 2 +bx 2

manti ssa
_with
m n(p, q)

manti ssa
with
max(p, q)

| p-ql

Right

Shifter

Mantissa

Adder

i/

mex(p, q)

Leading
Zero
Counter

Shifter

1.
]

Exponent

3

Subtractor

b Mantissa
— Selector
q—
T |pg
a Exponent —
Compare
p o

Careful control is required to avoid loss of accuracy®

3IEEE standard defines that the result should be as if calculated exactly and rounded in one of a
number of ways

36

Floating Point Multiplication

d><25:(a><2p)><(b><29):ab><2(p+Q)
e Simple Algorithm

— Multiply mantissas
d=a xb
sign magnitude integer multiplication*

— Add exponents
S=p+q
biased addition [s + bias| = [p + bias| + |q + bias] — bias

*note that allowance must be made for the result which has twice the original precision with
two bits before the binary point

37

