Computer Architecture - a brief history lesson

Princeton Architecture for Serial Computers

________ m———mmm——— T ———— - — - - =>
: —
CPU. T
Program Workspace
Memory Memory _A_dglr_is
Data
_
Control
....... >

e The Princeton Architecture uses a common set of buses for all components.

122

Computer Architecture - a brief history lesson

Harvard Architecture for Serial Computers

Program Workspace

< CPUL

Memory Memory

Control
....... >

e The Harvard Architecture uses different sets of buses for program and workspace
memories.

123

1 c.p.i. Harvard Architecture for SPARC

B i

PC

I nstruction

Addr (to decoder)
Instruction :D
imm.
Memory .
align

S1

Registers j] S2
Addr
Data
(Memory

124

DEST

Euhw

Instruction Cycle

To support a throughput of 1 instruction every cycle we must ensure that no bus
or functional unit is used more than once in the instruction cycle.

e Separate incrementer for PC

although instruction set allows for the ALU to be used for data address calcu-
lation and branch address calculation

e 4 port register file
allows three reads and one write in any one cycle

To illustrate the allocation of resources, we shall divide our instruction cycle into
five phases:

e [F (Instruction Fetch)

e ID (Instruction Decode/Register Fetch)
e EXE (Execute)

e MEM (Memory)

e WB (Write Back)

125

Instruction Cycle

Fetch Fetch Instruction

Phase R b
Decode Decode Instruction & Fetch Register Operands

Phase . ‘/ ,,,,,,,,,,,,,,,,,,,,,, TR \‘V ,,,,,,,
IE)r(lz(s:Zte Calculate Expression (Calculate Address \V Calculate PC
Memory Memory Read Memory Write

Phase | ¢7

TR . o~ T T : ””””” X ””””””””””””””””””””””””””” x ””””
\F/)VhrggeBack . Update Register Update Register Update PC

No unit is used more than once for each instruction!, the whole instruction may be

completed in a single clock cycle.

11 program memory access, 1 instruction decode, 1 ALU calculation, 1 (or 0) data register up-

date, 1 (or 0) workspace memory access

126

Instruction Cycle

Clock | B

Program | Address (X A
Memor l 3 l

"1 Dpaa X X

Workspace Address}K ‘ ‘ ‘ X ><
Memor l 5 5 5 5 5 |

1 pata N W

Fetch Decode Execute Memory Write
Access Back

e The period of the clock must be long enough to accommodate the worst case
timings for the worst case instruction.

127

2 c.p.i. Princeton Architecture for SPARC

+4
PC

IR

S1

|

DEST

. hif
Registers j] S2 shift

¢

Addr ess

Memory

Instruction Cycle

CIockJ: | | | : : r
Address Bus >O< >< X ><

Decode Execute Memory Write
Access Back

Data Bus

Fetch

¢ Memory is shared using Time-Slice Multiplexing

e 2 Cycles Per Instruction

— Cycle 1
The controller fetches an instruction from the common memory.
The instruction is latched in the new Instruction Register

— Cycle 2
The datapath may access data in the common memory.

129

5 c.p.i. Princeton Architecture for SPARC

M

II\ imm.
IR align
Registers j}

SRip

hift

S2

=
i

<

[}%

MDRin

DEST

Addr ess

Memory

130

Instruction Cycle

Clock Ji ' | ' | | :

Address Bus >O< >< ' ' N ><
§ §

Data Bus

Fetch 'Decode Execute Memory 'Write

Access Back
¢ 5 Cycles Per Instruction

— Additional registers are required to store intermediate results
S1 and S2 registers are updated at the end of cycle 2.

ALU output, Shifter output and MDR output registers are updated at the
end of cycle 3.

MDR input register is updated at the end of cycle 4.
— A better use of available time where memory access doesn’t dominate
— Latching overheads are more significant for shorter clock cycles

131

Processor Performance

e Let us consider the performance of our simple machines:

Instruction Rate

Work Rate =

Instructions per Task

— The Instructions per Task value will be determined by the power of our in-
struction set and how well it matches the task to be performed.

Clock Frequency (MHz)

Instruction Rate (Mips) = Cycles per Instruction

— The Cycles per Instruction value is an average over the whole task. For the
moment we shall consider this to be a constant® for the machines we have
described, although optimizations are possible for the 5 c.p.i. architecture.

21,2 or 5 cycles depending on the implementation

132

Abuse of Statistics

e Mips

— The Instruction Rate of a machine is frequently given as a measure of its
performance. Since an average Instruction Rate may depend on the set of
instructions chosen the maximum Instruction Rate is quoted.

Here we can take Mips to mean Meaningless Indication of Processor Speed, the
best we can hope for is an indication of the relative performance of ma-
chines sharing the same instruction set and a similar architecture.

e VAX Mips

— Relative Mips value w.r.t. to VAX 11/780.
This is better but will still dependent on the task chosen for the comparison.

e Benchmarking

— Competition between those who write benchmark programs and those who
modify compilers and architectures in order to achieve favourable results.

133

Concurrency in Serial Computers

Sequential Nature of the Sequential Computer

Taking a simplified view of instruction execution:
e Fetch
e Decode
e Execute
e Memory Access
e Write Back
Repeat once for each instruction.

Although the process appears inherently sequential®, there is room for some tasks
to be done in parallel.

3each operation depends on the completion of the previous operation

134

Pipelining

e We begin one operation before the previous operation has completed.

— Although each individual instruction will take the same length of time to
complete, a group of instructions may be completed in a much shorter time
due to overlap.

— The increase in performance arises since we are making more efficient use
of our hardware. More of the hardware is kept busy for more of the time.

— We have a limited form of COYZCMTTBTZC}/

e A 5 c.p.i. Harvard Architecture can be modified to produce a 5 stage pipeline
machine:

135

5 c.p.i. Harvard Architecture

PC

@

Instruction
imm.
Memory

ALU
S1
])
shift
s2
—/

MDRout

Addr

Data
Memory

T

MDRin

DEST

Addr
IR align
1 Registers

136

5 Stage Pipeline Harvard Architecture

PC

@

AUE}““ I P

Addr _L i
Instruction — 1
[imm. :DALU H

Memory L _ |
IR align u

| |SL |

L] S |

Registers ;D» | |s2 shift u
T

MDRout

T

Addr

Data
Memory

MDRin

DEST

137

5 Stage Pipeline Operation

Clock /o[L o L o LI L J °r L+’ ’L_JI ’1I 1.1
Instructioni | |F ID |EXE|MEM| WB
Instruction i+1 |F ID |EXE|MEM| WB
Instruction i+2 IF ID |EXE|MEM| WB
Instruction i+3 I= ID |EXE|MEM| WB
Instruction i+4 |F ID |EXE|MEM| WB
Instruction i+5 IF ID |EXEMEM| WB

¢ A new instruction is fetched on every clock cycle.

e The machine completes five part instructions every clock cycle giving an aver-
age of one c.p.i.

138

SPARC

A simple control unit provides control signals to all units

—l —l

3 — Decoder —:r %
: -
3 imm.
L.] |align
IR | | |
‘ ID control EXE control ‘ MEM control ‘ WB control

Note that the registers block must receive control signals from ID, EXE and WB
since its four ports are connected to different pipeline stages.

139

Pipeline Hazards

The requirement to start a new instruction every clock cycle cannot be met where
the modified order of execution will affect the final outcome. Such a situation is
described as a pipeline hazard

e Control Hazards arise from the pipelining of control transfer instructions which
modify the Program Counter.

e Structural Hazards arise from resource conflicts where the hardware cannot sup-
port the requirements of two overlapping instructions.

e Data Hazards arise when an instruction depends on the result of a previous in-
struction which has not yet completed due to the overlapping of instructions.

140

Control Hazards

e Let us consider the effect of a branch on our pipeline SPARC.

Since the PC is modified at the end of the MEM stage we fetch three additional
unwanted instructions before the branch destination is known.

Clock Lo 1. [L o 17+’ 17 ’+-’ 17I 1.1
i-4 SUBcc R5, 201, RO IF | ID |EXE|MEM| WB
[BE +n IF | ID |EXE|MEM| WB
i+4 | NST (unwanted) IF | ID |EXE f_I_u_s_h_j
i+8 | NST (unwanted) IF | ID [flush;
I+12 | NST (unwanted) IF | flush!
I+n | NST (destination) IF | ID |EXEMEM
PC i4 [I+4 +8 i+12 i+n

— must flush pipeline of unwanted instructions

— these instructions have no effect since they are caught before the MEM and
WB stages.

— where a conditional branch is not taken, no flush occurs and execution con-
tinues as before.

141

Control Hazards

¢ Reducing the branch penalty

One of the simplest ways to reduce the branch penalty is to calculate the desti-
nation address earlier.

With the addition of a dedicated Branch Calculation Unit adder for PC relative
control transfers (CALL and Bicc), we can calculate the branch address in the
ID stage.

Clock /1o L o0 1 [L o L [L [1L [L 1 L[
iI-4 SUBcc R5, 201, RO IF | ID |EXE|MEM| WB
i BE +n IF | ID |EXE|MEM| WB
I+4 | NST (unwanted) IF |flush!
I+n | NST (destination) IF | ID |EXEMEM| WB
PC i4 [i+4 i+n

142

SPARC

DEST

ALU

shift
—/

a 2
a oO 2
<< AM Q
= 2
£2 g
|
e
C
o 2
m =

nPC

143

Control Hazards

This technique of flushing instructions when a branch is taken is actually a simple
form of branch prediction:

e Static branch prediction - predict branch not taken
Two other simple schemes exist:

e Always stall

With this technique we stall instruction fetch until we know the branch desti-
nation. For a conditional branch this will impose an additional delay when the
branch is not taken.

e Delayed branch

The simplest solution of all is to inform the user that we have a delayed branch.
Each control transfer instruction is followed by a delay slot. The instruction in
this slot will be executed before the branch is taken. The compiler must either
fill the delay slot with useful code or with a NOP instruction.

144

Control Hazards

e Branch penalty

branch taken
Without dedicated adder

Predict branch not taken 3
With dedicated adder

Always stall 1

Delayed branch 0-1

Predict branch not taken 1

145

branch not taken

0-1

(NOPs)

Control Hazards

The SPARC specification was designed for pipeline operation - it includes:

e Single delay slot
The instruction following CALL JMPL is always executed.
For unconditional branches it is not difficult to make good use of this delay
slot.

e Optional predict branch taken

Bicc instructions have an annul field.

annul=0 a single delay slot instruction is always executed

annul=1 the delay slot instruction is flushed where the branch is not taken

this is very efficient for short loops which might otherwise dramatically re-
duce pipeline performance.

Since register values are not available until the EXE stage our implementation in-
cludes:

e Additional single cycle always stall for JMPL

146

SPARC

DEST

Addr
Data

ALU
)
shift
—/

|
!
1
|
!
|
|
1
|
|
!
|
!
|
|
!
|
|
!
|
|
!
|
|
!
|
|
!
|
|
!
[
|
!
|
|
!
L
|
—
!
|
!
!
|
[I——
!
|
!
!
|
1

B
Registers ;D»

—+4)
Addr
Instruction
Memory

nPC

147

Control Hazards

e Branch penalties

delay slot filled delay slot empty

CALL 0 1
JMPL 1 2

taken mnot taken taken mnot taken
Bicc 0 0 1 1
Bicc,a 0 1 1 1

The reduction in processor performance due to control hazards will be dependent
on the proportion of executed instructions from the above groups.

The architectural changes we have made have decreased CPI at the expense of
complicating the earlier stages of the pipeline. Careful analysis of critical paths
would be required to see if the clock frequency must be reduced.

148

Structural Hazards

Our Harvard pipeline SPARC has been designed without any possible structural
hazards, we can easily illustrate structural hazards by considering a pipeline ma-
chine based on the Princeton architecture.

e The memory may be required for both instruction fetch and data access in the

same cycle.
Clock /1 L [L [LI L o7 17’7 ’1_J 11

i ST R7,[R4+R1] | IF | ID |EXE|MEM WB
i+4 | NST IF | ID |[EXE|MEM WB
i+8 | NST IF | ID |[EXE|MEM WB
i+12 | NST stalll IF | ID |EXE|MEM| WB
i+16 | NST IF | ID |[EXE|MEM

PC [i+4 i+8 i+12 i+12 i+16

e The data access is given priority and the instruction fetch must be stalled.

149

Princeton SPARC

S1

Registers;D s2

+4 1 B 3 jJ
nPC PC W []
i ADD |
[imm. ALU
IR align

:ShHEJ

I
MDRout
I

H

I
MDRin

DEST

Addr ess

Memory

Pseudo-Harvard SPARC

DEST

ACCESS

SINGLE CYCLE

ALU
Y
shift
_J

Instruction

Cache

ACCESS

Main Memory

MULTI-CYCLE ACCESS

SINGLE CYCLE

151

Data Hazards

Data Hazards are of 3 types; RAW, WAR & WAW.

| WR

o RAW - Read after Write* RDx ‘ Time

A read returns the wrong value since it occurs out of order before a write to
the same location.

Clock

W W W
RE R D

HAZARD X HAZARD X NO HAZARD J

A Read after Write hazard is caused by a True Dependency since the second in-
struction depends on the result of the first.

4note that the name of the hazard indicates the intended order or execution rather than the one
that gives rise to an error

152

Data Hazards

RD x

WR X

Time

e WAR — Write after Read

A read returns the wrong value since it was preceded by an out of order write

to the same location.

WR

WR

o WAW — Write after Write

Time

A value is incorrectly updated since two writes to the location occur out of or-

der.

Write after Read and Write after Write hazards are caused by False Dependencies.
The hazard arises from the re-use of a register rather than any true data depen-

dency.

Since we update registers only at the end of an instruction, our architecture illus-
trates no Write after xxxx hazards. We need only consider occurrences of Read after

Write.

153

Data Hazards

e Read after Write

Consider the following set of instructions:

Clock I~ 1 | | | | | | |
i SUB R1, R3, R2 IF | ID |[EXE|MEM| WB
I+4 AND R2, R5, R12 IF | ID |EXE|MEM| WB
+8 OR R6, R2, R13 IF | ID |EXE MEM| WB
I+12 ADD R2, R2, R14 IF | ID |EXE|MEM| WB
PC i i+4 +8 i+12

The AND, OR and ADD instructions read R2 before it is written by the SUB in-

struction. All three instructions will receive the old value of R2.

These RAW hazards are described as Define-Use hazards since R2 is defined by
the SUB instruction and used by the AND, OR and ADD instructions. We shall
consider the more awkward Load-Use hazards later.

154

Data Hazards

e We must stall the pipeline until the data is available.

A Hazard detection unit keeps track of out of date register values.

Clock 7/ 1 Lo oL [1L I L 7 L /1’17 17T
i SUB RL,R3,R2 | IF | ID |[EXE|MEM WB
i+4 AND R2, R5, R12 IF | "Stall; "Stall: "Stall| ID_| EXE [MEM| WB
i+8 OR R6, R2, R13 stall: "stall: "stall| IF | ID |EXE |MEM
i+12 ADD R2, R2, R14 IF | ID |EXE
PC [i+4 i+8 i+8 i+8 +8 i+12

Since we might reasonably expect an instruction to depend on the result of the pre-
vious instruction, the impact on our CPI is dramatic.

155

Data Hazard Workaround

1. Transparent Register File

The first step is to note that the result is fed into the register file at the beginning of
the WB stage. If we allow the updated register to be transparent then we can feed
the result straight from the WB stage to the ID stage.

Clock 7/ 1 o oL [1L I L 7 L/ 1’17 17T
i SUB R1,R3,R2 | IF | ID |EXE|MEM)WB
i+4 AND R2, R5, R12 IF | "Stall: "Stall EXE |MEM| WB
i+8 OR R6, R2, R13 stall:"stall] IF | ID |EXE |MEM| WB
i+12 ADD R2, R2, R14 IF | ID |EXE |MEM
PC [i+4 i+8 i+8 i+8 i+12

We have reduced the hazard penalty to two cycles.

156

Data Hazard Workaround

2. Data Forwarding

The second step is to note that the result is not strictly required by the subsequent
instruction until the beginning of the execute stage. If we provide an additional
datapath which bypasses the register file and the S1 and S2 registers then we can
feed the result from the beginning of the WB stage to the beginning of the EXE
stage.

Clock 7/ 1 oo L [1L I L 7 L/ 1’17 17T
i SUB R1,R3,R2 | IF | ID |EXE|MEM)WB
i+4 AND R2, R5, R12 IF | ID |“&all MEM| WB
i+8 OR R6, R2, R13 IF |"stall EXE MEM| WB
i+12 ADD R2, R2, R14 stall| IF | ID"|EXE MEM| WB

PC [i+4 i+8 i+8 i+12

We have reduced the hazard penalty to one cycle.

157

SPARC

DEST

[a)
=
>
3 ® E
< N o
=

!
1
|
!
|
|
1
|
|
!
|
!
|
m
!
|
|
!
|
|
!
|
|
!
|
|
!
|
|
!
[
|
!
|
|
!
L
|
—
!
|
!
!
|
[I——
!
|
!
!
|
1
!
|
!
!
|
!
!

Registers ;D»

|
(@)
(@)
<
: 5
E®
|
e
|
c
o 2
@ § 25
+ mv S

nPC

158

Data Hazard Workaround

3. More Data Forwarding

By a similar modification we can forward data from the beginning of the MEM
stage to the new S1 and S2 multiplexors at the beginning of the EXE stage”.

Clock 11 L7 L o L [1 I L I L. 1L [1.1
i SUB R1, R3, R2 IF | ID
I+4 AND R2, R5, R12 IF
+8 OR Ro6, R2, R13 WB
I+12 ADD R2, R2, R14 MEM| WB

PC [i+4

In this case we have no hazard at all.

Sthe diagram also shows an additional multiplexor which ensures the integrity of values stored
to memory

159

SPARC

DEST

|
!
1
|
!
|
|
1
|
|
!
|
!
|
|
!
|
|
!
|
|
!
|
|
!
|
|
!
|
|
!
[
|
!
|
|
!
L
|
—
!
|
!
!
|
[I——
!
|
!
!
|
1
!
|
!
!
|
!
!
T
!
!

B
Registers ;D»

—+4)
Addr
Instruction
Memory

nPC

160

Residual Load-Use Data Hazard®

A feed forward from the beginning of the MEM stage is not appropriate where the
MEM stage is in the critical path. Hence we may still see a data hazard after a LD
instruction.

Clock J \ [\ [\ [\ [\ [\ [\ [\ [\ [
i LD [RL+R3],R2| IF | ID |EXE
i+4 AND R2, R5, R12 IF | ID WB
i+8 OR R6, R2, R13 IF MEM| WB
i+12 ADD R2, R2, R14 EXE [MEM| WB

PC i i+4 i+8

Although some machines support a delayed load, where the new value is unavail-
able for the next instruction, the SPARC requires a single cycle stall in order to
maintain assembly language semantics’.

Swe have now removed all the define-use data hazards
7note that a clever compiler will schedule instructions in order to avoid this hazard

161

Gtalls and Bubbles

Instruction Oriented Pipeline Diagram

In this pipeline diagram, time runs left to right with one row being allocated per

instruction.
CCl CC2 CC3 CC4 CC5 CCe CC7 CC8 CC9 CC10

LD [R1+20],R2 | IF | ID |EXE|MEM| WB

AND R2, R5, R4 IF | ID |“Stall|EXE |MEM| WB

OR R2,R6,R8 IF |"stall| ID |EXE|MEM| WB

ADD R4, R2, R9 stall| IF | ID |[EXE|MEM| WB
SUB R6, R7, R1 IF | ID |[EXE|MEM| WB

= Time

In the 4" cycle the EXE stage is stalled in order to avoid a load-use hazard. In turn
this stalls IF & ID while MEM (& WB) are allowed to continue. The result is a
bubble in the pipe which appears in the MEM stage in the 5" cycle. It is not possible
to show this bubble on an instruction oriented pipeline diagram.®

8Patterson & Hennessy describe bubbles very badly, often using the words stall and bubble in-
terchangeably. Computer Organization & Design (Figure 6.45) attempts to show a bubble on an
instruction oriented pipeline diagram - This is wrong!

162

Gtalls and Bubbles

Stage Oriented Pipeline Diagram
In this pipeline diagram, time runs top to bottom with one column being allocated
per pipeline stage.
IF ID EXE MEM WB

cc1 Key:
cc2 LD | LD [R1+R3],R2
ce3 BNBl AND R2, RS, R12
CC4
cC5 OR| OR R6,R2,R13
cce ADD| ADD R2, R2, R14

SUB|ADD| OR ccr

SUBEBD OR | ccs SUB| SUB R6, R7, RL

cCo (3§3| BUBBLE

CC10

Time
Here it can be seen that the bubble is simply an empty pipeline stage which arises
when the AND instruction is stalled while the LD instruction continues. Once cre-
ated a bubble will usually advance through the pipe until it reaches the last stage as
if it was a normal instruction. In the 6'" cycle we see the bubble in the WB stage.

163

Controller Redesign

e To take account of the pipeline complexities introduced by hazard avoidance,
a redesign of the control structure is required.
We need to re-introduce an element of central control:

— the hazard detection unit is responsible for pipeline flush and stall

— the data forwarding unit controls the data forwarding multiplexors

Hazard Data
Detection Unit Forwardlng Unlt
IF ID EXE MEM WB
Control Unit F Control Unit Control Unit Control Unit Control Unit
IF control ID control EXE control MEM control WB control

164

Pipeline Processor Performance

e Let us compare the performance of a pipelined SPARC with a non-pipelined
version.

— Since the instruction sets are identical we can compare them on instruction
rate alone.

Instruction Ratep;,.

Speedup =
b P Instruction Rateyen pipe

, , Clock Frequency (MH z)
Instruction Rate (M =
nstruction Rate (Mips) Av. Cycles per Instruction

— Since the number of cycles per instruction is not constant we must consider
the frequency of instructions within executed code’.

“note that we are interested in the dynamic occurrence of instructions during execution rather
than their static occurrence within code

165

Pipeline Processor Performance

Frequency of executed instructions for SPARCjnr processor’:

Register register instructions
ADD ADDcc SUB SUBcc ADDX ADDXcec SUBX SUBXcc XOR XORcc
AND ANDcc ANDN ANDNcec OR ORcc ORN ORNce XNOR XNORce 39%

SLL SRL SRA 7%
SETHI 5%
Load store instructions
LD (no data hazard) 14%
LD (with data hazard) 4%
ST 9%
Control transfer instructions
CALL 3%
JMPL 4%
Bicc(,a) (taken) 9%
Bicc (untaken) 3%
Bicc,a (untaken) 3%

Vextrapolated and estimated from available data

166

Pipeline Processor Performance

CPI data for non-pipelined and pipelined SPARCjnr:

non-pipelined pipelined

ADD ADDcc ... 39% 4 1
SLL SRL SRA 7% 4 1
SETHI 5% 4 1
LD (no data hazard) 14% 5 1
LD (with data hazard) 4% 5 2
ST 9% 4 1
CALL 3% 2 1
JMPL 4% 3 2
Bicc(,a) (taken) 9% 2 1
Bicc (untaken) 3% 2 1
Bicc,a (untaken) 3% 2 2
3.78 1.11

167

Non-Pipeline Architecture for Comparison

PC

@

i
K

ﬁ

1

Addr

Instruction

Memory

Registers

ALU
S1
])
shift
s2
—/

MDRout

T

Addr

Data
Memory

MDRin

DEST

168

Pipeline Processor Performance

The instruction rate is calculated using a weighted average of the CPI values over
a set of real programs or benchmarks.

Av. Cycles per Instruction,e, pipe = 4 X 39% +4 X 7% +4 x 5% + 5 x 14% +
5x 4% +4 x 9% 4+ 2 x 3% + 3 x 4% +
2% 9% +2 x 3% 4+ 2 x 3%
= 3.78 CPI

We have assumed that the non-pipe architecture does not waste cycles’.

Av. Cycles per Instructiony,e = 1 x39% +1x 7% +1x 5%+ 1 x 14% +
2X 4% +1x 9% +1 x 3% +2 x 4% +
1x 9% +1x3%+2x 3%
= 1.11CPI

This value is for a pure Harvard implementation. A Princeton implementation
would have a greater CPI due to structural hazards.

UADD completes within 4 cycles since it does not require a MEM cycle

169

Pipeline Processor Performance

e Clock Frequency

For the purposes of this exercise we shall assume that the clock frequencies
of the two machines are the same. In fact we might expect the non-pipelined
implementation to support a faster clock since it doesn’t have the overheads of
the hazard avoidance circuitry.

e Speedup

Clock Frequencypipe . Clock Frequencypnon pipe

Speedup = = :
P P Av. Cycles per Instructiony,. — Av. Cycles per Instruction,e, pipe

Av. Cycles per Instruction,e, pipe

Av. Cycles per Instruction,;,.

3.78CPI

——— =34
1.11 CPI ;

170

Pipeline Processor Performance

e Architecture enhancements

Each time an enhancement is considered it must be remembered that its ef-
fect will be limited by the frequency with which enhanced instructions occur
in real code.

o Amdahl’s Law states that the performance improvement to be gained from
using some faster mode of execution is limited by the fraction of the time the
faster mode can be used.

Fracmfonenhanced

Ezxecution time,e, = Frecution timeyq X (Fractionyenhanced +
Speedupenhanced

Execution timeyy

Speedup = , ,
b p Execution time,, .

1
(1 — Fractionephanced)

4 Fraction,,hanced
Speedupepnhanced

171

Pipeline Processor Performance

Amdahl’s Law - example

e The addition of a MULScc instruction to our SPARCjnr architecture will speedup
multiplication performance by a factor of 4.

— Integer multiply occupies 30% of processor time for vision processing ap-
plication:

=1.29

Speedupwith MULSce =

0% + 39%

— Integer multiply occupies 1% of processor time for wordprocessing pro-
gram:

1

e = 1.008
99% + Lt

Speedupwith MULSce =

This analysis helps us to evaluate the cost/benefit of an enhancement. It may also
rule out some enhancements altogether — consider a MULScc instruction which in-
creases multiply performance by 4 but causes a 2% increase in clock period.

172

Pipeline Processor Performance

e When designing processor hardware a useful rule is:

Make the Common Case Fast

This is the philosophy of RISC computers.

— We have invested significant effort in the speeding up of conditional branch
instructions since they are common (16% of all executed instructions)

— We have provided no specialist hardware for integer division since it is re-
quired very rarely.

Amdahl’s Law helps us to quantify this simple rule.

173

Pipeline Processor Performance

The Compiler

e Create functional code

The compiler must understand the semantics of the available instructions

e Create fast code

The compiler must understand the speed implications of using different in-
structions.

For pipeline architectures the compiler should optimize code to avoid:

— pipeline stall
— pipeline flush
— NOP (in load or branch delay slot)

In all cases instructions are reordered (scheduled) to create the most efficient
code.

174

Pipeline Processor Performance

Scheduling for fast code on SPARCjnr

e schedule useful branch delay slot instructions
consider the impact on performance if all delay slots are NOP:

Av. Cycles per Instructionyy, = 1x39% 4+1x 7% +1x5% +1 x 14% +
2X 4N +1 x9N +2x 3% +3x 4%+

2% 9% +2x 3% + 2 x 3%
= 1.30 CPI

e avoid data hazard after LD

e optimize for conditional branch taken
where annul is used a taken branch is faster than an untaken one.

When writing a compiler for our processor we wish to:

Make the Fast Case Common

175

