Pad Ring and Floor Planning

- The core of the chip (made up of one or more top level blocks) is surrounded by a ring of pads.
- The design of the blocks and the arrangement of blocks and pads can significantly affect the overall chip area (and hence the cost/yield).

Pad Ring

Pad Limited: small core and/or many pads minimum pad to pad distance – gaps around core

Core Limited: large core and/or few pads gaps between pads¹

¹these gaps will be filled with special filler cells

Floor Planning

- Re-arrange and re-orient blocks to:
 - create a minimum number of major routing channels²
 - reduce block to block and block to pad routing

At top of the hierarchy, chips should be near square, other constraints exist at lower levels.

 $^{^2}$ for multi layer metal processes (≈ 5 metal layers or more) it should be possible to route over the blocks allowing closer placement

Block Design for easy Floor Planning

• Block shape

Where blocks share a common width, efficient placement is much easier.

• Block ports

If possible arrange the ports on a block for ease of routing to pads and other blocks.

Floor Planning for Standard Cell Layout

Automatic layout:

- Flatten hierarchy.
- Placement is controlled by algorithms designed to minmize routing.
- Aspect ratio easy to control, also control number of columns and rows.

Manual layout:

- Placement based on layout hierarchy (essential for managing complexity).
- Aspect ratio and port position must be considered early as there is seldom time for iteration.

Global Routing

Route critical signals first.

- Buffer global and time critical signals.
- Clock distribution should be arranged to avoid skew across the chip³.

³buffering may actually increase delays while reducing skew

VLSI – Pad Ring and Floor Planning

• Pad ring pre-defined^a

-divider

<xsize> <ysize>

- Two blocks in core
 - Bitslice Datapath
 - Synthesized Control
- Pad limited
- Clock distribution built in to cell library

Datapath will be designed and placed to permit easy wiring of Operand and Quotient+Remainder buses to left and right hand pads. Control will be designed and placed to permit easy wiring of control signals to the datapath.

^adesign blocks to reduce routing since pads can't be moved

VLSI – AMS $0.35\mu m$ CMOS Pads

- Large buffers on output pads allow for drive of very large external loads.
- Separate "dirty power" supply pads are provided for the main pad drive transistors to reduce switching noise in the core.
- Bi-directional pads require three connections to the core.

Input / Output

• I/O Pads

– A brief look at a selection of simple digital CMOS I/O pads

Output Pads

• Output pad driver

- ratioed inverters are used to provide appropriate drive capability
- final drive transistors are carefully designed to avoid latch-up
- pad rings are frequently powered separately (dirty power) to confine switching noise

Input Pads

• Input protection

- must protect floating transistor gates from permanent damage via electrostatic discharge

Bidirectional Pads

• Simple bidirectional pad

- bidirectional pad is a tristate inverter output driver combined with an input pad^4
- even when ${\tt IN}$ and ${\tt OUT}$ are connected internally, we need buffering and an enable control signal

⁴note input protection is not shown here

Bidirectional Pads

• Bidirectional pad with increased drive capability

– redesign to avoid series output transistors

Bidirectional Pads

• Advanced bidirectional pad design

- logic gates are merged
- output transistors act as diodes when not enabled
- low value diffusion resistor completes input protection circuit