
Cross-Site Request Forgery Attack and Defence:
Literature Search

Chaohai Ding
School of Electronics and Computer Science,

University of Southampton
Email: cd8e10@ecs.soton.ac.uk

Abstract—This literature search presents a summary of the
Cross-Site Request Forgery (CSRF) attacks and some existing
defences related to this intrusion. Section One mainly sketches
an introduction of CSRF attacks while Section Two enumerates
some current intrusion methods of CSRF attacks and distinctive
threat models. Some countermeasures related to these attacks are
briefly described in Section Three. Then Section Four presents
the further information about this area and recommends some
effective defences to detect and prevent CSRF attacks.

A detailed description about preventing CSRF is not included
in this literature research and more details related to defences
will be presented in the technical report.

I. INTRODUCTION

Cross-Site Request Forgery (CSRF or XSRF, also known as
Session Riding or Confuse Deputy) is an attack that tricks the
victim to load a web page that contains malicious codes and
forces the victim to send a request to the honest web site. If
the victim has not logged out the website or the session is still
active, the attacker could forge the victim as an authenticated
user to perform specific operations that the victim would not
want[1] [2]. Alexenko et al. pointed out that this attack also
occurs in social networking applications or emails and it is
not restricted to vulnerable websites [3].

Compared with other intrusion means such as Cross-Site
Scripting (CSS or XSS) or SQL injection, few effective
defences are available for CSRF attacks. Zeller et al. [4]
presented that CSRF attacks are more vulnerable than CSS
because of the lace concern on CSRF and the administrators
are uneducated about risks of CSRF, Therefore the CSRF
attack is listed among the top ten web application security
risks in 2010 by the Open Web Application Security Project
(OWASP) [5].

II. CSRF ATTACKS RESEARCH

In recent research, both Lawton [6] and Mao [7] provided
some background information of what CSRF attacks are while
Johns et al. explained the reason why there is the existence
of CSRF vulnerabilities in [2]. Moreover, a particular scenario
is presented in [4], which describes how an attacker exploits
the authentication mechanisms of the target website. Both
Gollmann [8] and Lin et al. [9] divided CSRF attacks into
stored and reflected, which will be described as follows.

A. Stored CSRF Attacks

In [9] Line et al. presented a principle of stored CSRF at-
tacks and implemented a threat modelling about this intrusion.
Stored CSRF attack means that the target website is within the
same domain with the attacker. Burns [10] also provides a brief
introduction about the stored CSRF. But this intrusion always
succeeds because the session of the victim is still active.

B. Reflected CSRF Attacks

According to [9] [10], more than half percentage of CSRF
attacks are reflected CSRF attacks due to a wide range of
attack methods such as social networkings, blogs or emails.
But this intrusion frequently fail because the victim is not
logging into the target website.

III. EXISTING CSRF COUNTERMEASURES

Currently,the Same-Origin Policy has become the primary
method to defend CSRF intrusions. Jackson et al. [11] de-
scribed a comprehensive introduction about the Same-Origin
Policy as well as the Session Block. Adida [12] reviewed the
current approaches to secure users’ sessions such as digesting
authentication, locking sessions to IP address. Furthermore
he implements a method to block sessions, which is an
effective way to defend CSRF attacks. But the limitation of
this application is the requirement of JavaScript. Barth et al.
[1] reviewed the existing CSRF defences and pointed out
the limitation of current CSRF defences such as the secret
validation token and the referrer header. There are several
defences to detect and prevent CSRF attacks, but few of them
could automatically defend this intrusion.

A. Server-side Countermeasures

The countermeasures in server-side mainly concern on
CSRF attacks. Jovanovic et al. [13] proposed a server-side
proxy called NoForge, which could be pluged into the existing
system to detect and prevent CSRF attacks and it is transparent
to users and applications. This proxy primarily detects and
protects PHP applications against CSRF attacks. Zeller et al.
[4] enumerated the characteristics of server-side precautions
to protect users. They also developed a plug-in in server side
for preventing users from the attacks.



B. Client-side Countermeasures

Most of client-side countermeasures propose a way to
extend the function of web browser. Mao et al. [7]proposed
a browser-based mechanism that infers whether an authen-
tication token is sensitive and implemented it as a Firefox
extension to detect CSRF attacks. Similarly, Johns and Winter
[2] developed an application in client-side to defend CSRF
attacks called RequestRodeo, which works as HTTP proxy to
examine the URLs of the request and response. Also, Maes et
al. [14] analysed some crucial requirements to prevent from
CSRF attacking in client-side and implemented a stand-alone
application to detect and prevent this intrusion.

C. Other Countermeasures

There are also other countermeasures not only in one side
but combining the both. Jayaraman et al. [15] exploited a Web
DFA model to build a web application which would analyse
the users’ intent and effectively defend the intrusion of CSRF
attacks by combining with non-sensitive GET/ sensitive Post,
Secret Token Validation and Intent Verification. Barth et al. [1]
implemented a special HTTP header called Origin Header to
prevent the leak of sensitive information caused by CSRF login
attacks and submited it to W3C. Guha et al. [16] recommended
a tool to defend CSRF and CSS attacks in Ajax.

IV. FURTHER READING

In recent years, CSRF is increasingly concerned by security
experts and related reports about this topic are becoming
popular according to the analysis of Christey and Martin
[17]. Moreover the Open Web Application Security Project
(OWASP) [5] has listed CSRF attacks into top ten security
risks from 2006 to 2010. Mansfield-Devine [18] points out the
risks of CSRF vulnerabilities in social networking according
to the dramatic development of Social Networking Services
(SNS). Other areas such as cloud computing related to CSRF
attacks are mentioned in [6] [19] [20]. Although an effective
and automatic defence to guard CSRF attacks is not available
now, some countermeasures are still effective to detect and
prevent these intrusions such as the model based application in
[15], the session authentication based application in [1] which
is still processing in W3C organization and a client plug-in
extension in [2]. Particularly, the application based on defence
model in [15] presents an innovative way to prevent CSRF
attacks. There are also some projects available for protecting
CSRF attacks, such as CSRF Guard Project which based on
unique request tokens [21] and JSCK Project which focused
on random code blocks with Javascript [22].

REFERENCES

[1] A. Barth, C. Jackson, and J. Mitchell, “Robust defenses for cross-
site request forgery,” in Proceedings of the 15th ACM conference on
Computer and communications security. ACM, 2008, pp. 75–88.

[2] M. Johns and J. Winter, “RequestRodeo: client side protection against
session riding,” in Proceedings of the OWASP Europe 2006 Conference,
refereed papers track, Report CW448. OWASP, 2006, pp. 5–17.

[3] T. Alexenko, M. Jenne, S. Roy, and W. Zeng, “Cross-site request forgery:
attack and defense,” in Consumer Communications and Networking
Conference (CCNC), 2010 7th IEEE. IEEE, 2010, pp. 1–2.

[4] W. Zeller and E. Felten, “Cross-site request forgeries: Exploitation and
prevention,” 2008.

[5] OWASP. (2010, April) Top 10 for 2010. OWASP. [Online]. Available:
http://www.owasp.org/index.php/Category:OWASP Top Ten Project

[6] G. Lawton, “Web 2.0 creates security challenges,” Computer, vol. 40,
no. 10, pp. 13–16, 2007.

[7] Z. Mao, N. Li, and I. Molloy, “Defeating cross-site request forgery
attacks with browser-enforced authenticity protection,” Financial Cryp-
tography and Data Security, pp. 238–255, 2009.

[8] D. Gollmann, “Computer security,” Wiley Interdisciplinary Reviews:
Computational Statistics, 2010.

[9] X. Lin, P. Zavarsky, R. Ruhl, and D. Lindskog, “Threat Modeling
for CSRF Attacks,” in Computational Science and Engineering, 2009.
CSE’09. International Conference on, vol. 3. IEEE, 2009, pp. 486–491.

[10] J. Burns, “Cross Site Reference Forgery: An introduction to a common
web application weakness,” Information Security Partners, LLC, 2005.

[11] C. Jackson, A. Bortz, D. Boneh, and J. Mitchell, “Protecting browser
state from web privacy attacks,” in Proceedings of the 15th international
conference on World Wide Web. ACM, 2006, pp. 737–744.

[12] B. Adida, “Sessionlock: securing web sessions against eavesdropping,”
in Proceeding of the 17th international conference on World Wide Web.
ACM, 2008, pp. 517–524.

[13] N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing cross site request
forgery attacks,” in Securecomm and Workshops, 2006. IEEE, 2007,
pp. 1–10.

[14] W. Maes, T. Heyman, L. Desmet, and W. Joosen, “Browser protection
against cross-site request forgery,” in Proceedings of the first ACM
workshop on Secure execution of untrusted code. ACM, 2009, pp.
3–10.

[15] K. Jayaraman, P. Talaga, G. Lewandowski, S. Chapin, and M. Hafiz,
“Modeling User Interactions for (Fun and) Profit: Preventing Request
Forgery Attacks on Web Applications,” in Proceedings of the 16th
Conference on Patterns Language of Programming (PLoP10), 2010.

[16] A. Guha, S. Krishnamurthi, and T. Jim, “Using static analysis for Ajax
intrusion detection,” in Proceedings of the 18th international conference
on World wide web. ACM, 2009, pp. 561–570.

[17] S. Christey and R. Martin, “Vulnerability type distributions in CVE,”
V1. 0, vol. 10, p. 04, 2006.

[18] S. Mansfield-Devine, “Anti-social networking: exploiting the trusting
environment of Web 2.0,” Network Security, vol. 2008, no. 11, pp. 4–7,
2008.

[19] ——, “Danger in the clouds,” Network Security, vol. 2008, no. 12, pp.
9–11, 2008.

[20] A. Kapadia, S. Myers, X. Wang, and G. Fox, “Secure cloud computing
with brokered trusted sensor networks,” in Collaborative Technologies
and Systems (CTS), 2010 International Symposium on. IEEE, 2010,
pp. 581–592.

[21] OWASP. (2008, June) Owasp csrfguard project. [Online]. Available:
http://www.owasp.org/index.php/Category:OWASP CSRFGuard Project

[22] G. Heyes. (2007, October) Javascript cross site request forgery protection
kit. [Online]. Available: http://www.thespanner.co.uk/2007/10/19/jsck/

BIBLIOGRAPHY

[23] A. Barth, C. Jackson and I. Hickson.(2009, September) The HTTP Ori-
gin Header. [Online].Available:http://tools.ietf.org/id/draft-abarth-origin-
03.html

[24] A.van Kesteren.(2010,July) Cross-Origin Resource Sharing. W3C Work-
ing Draft. [Online]. Available:http://www.w3.org/TR/cors/

[25] J. Grossman. WhiteHat Website Security Statistics Report. WhiteHat
Security, October, 2007.

[26] Fielding, R. and Gettys, J. and Mogul, J. and Frystyk, H. and Masinter,
L. and Leach, P. and Berners-Lee, T. (1999, June). Hypertext transfer
protocol–HTTP/1.1, RFC 2616.


