Cosmic censorship and the collapse of a scalar field in cylindrical symmetry

Foin Condron

Dublin City University, Ireland

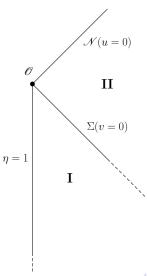
Supported by the Irish Research Council for Science, Engineering and Technology

April 4, 2012

Outline

- The model
- \bullet Summary of solutions to the past of the past null cone of the origin Σ
- Field equations
- Solutions to the future of the past null cone of the origin

Conformal diagram of the spacetime



The Model

• The line element for cylindrical symmetry with self-similarity in double null coords with $\eta=v/u$

$$ds^{2} = -|u|^{-1}e^{2\gamma(\eta)+2\phi(\eta)}dudv + |u|e^{2\phi(\eta)}S^{2}(\eta)d\theta + |u|e^{-2\phi(\eta)}dz^{2}.$$
 (1)

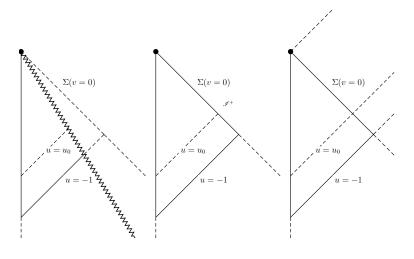
• The energy-momentum tensor for self-interacting scalar field:

$$T_{ab} = \nabla_a \psi \nabla_b \psi - \frac{1}{2} g_{ab} \nabla^c \psi \nabla_c \psi - g_{ab} V(\psi)$$

$$\psi = F(\eta) + \frac{k}{2} \ln|u| \qquad V(\psi) = V_0 e^{-\frac{2}{k} \psi}$$
(2)

- Different values of V_0 and k represent different matter models
- Regular axis provides initial data surface

Summary of solutions in region I



 $V_0 < 0, k^2 \ge 2$

Field equations in region II for $V_0 < 0$

Field equations for $V_0 < 0$

$$x_1'(t) = x_1 - x_2 - x_1^2 (3a)$$

$$x_2'(t) = Lx_2\left(\frac{1}{2} - x_3\right)$$
 (3b)

$$x_3'(t) = \frac{1}{2}x_3 + \frac{1}{2}x_1 - \frac{2}{k^2}x_2 - x_1x_3$$
 (3c)

$$\lim_{t \to -\infty} e^{-Lt/2}(x_1, x_2, x_3) = (a_1, b_1, c_1)$$
(3d)

- L, a_1, b_1, c_1 depend on k^2
- ullet is a singular point, and fixed point, of the equations

Three possible outcomes

Case I

$$\lim_{t\to\infty}\vec{x}=(1,0,1)$$

Corresponds to naked singularity

Case II

$$\lim_{t \to \infty} \vec{x} = \left(1/2 - \sqrt{|\lambda|}/2, k^2/8, 1/2\right)$$

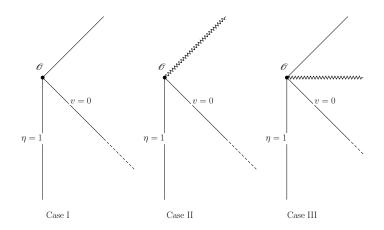
Corresponds to censored singularity

Case III

$$|\vec{x}| \to \infty$$
 in finite time

Corresponds to censored singularity

The three pictures



Some results

Lemma 1

Suppose there exists $t_1 > -\infty$ such that $x_1(t_1) = 0$. Then there exists $t_2 > t_1$ such that $\lim_{t \to t_2} x_1 = -\infty$.

Lemma 2

Suppose there exists t_1 such that $x_1(t_1), x_3(t_1) < 1/2$ and $x'(t_1), x_3'(t_1) < 0$. Then there exists $t_2 > t_1$ such that $x_1(t_2) = 0$.

. . .

Lemma 7

Suppose that for $1 < k^2 < 4/3$ there exists some t_1 such that $x_3'(t_1), x_3''(t_1), x_3'''(t_1), u_1'''(t_1) < 0$, and $Lx_3(t_1)/2 < x_1(t_1) < 2x_2(t_1), x_1'(t_1) < 2x_2''(t_1)$. Then there exists some time $t_2 > t_1$ such that $x_1(t_2) = 0$.

Formal series solutions

$$x_1 = \sum_{n=1}^{\infty} a_n e^{nLt/2}$$
 $x_2 = \sum_{n=1}^{\infty} b_n e^{nLt/2}$ $x_3 = \sum_{n=1}^{\infty} c_n e^{nLt/2}$ (4)

Recurrence relations for coefficients

$$a_n = \left(\frac{nL}{2} - 1\right)^{-1} \left(-b_n - \sum_{j=1}^{n-1} a_j a_{n-j}\right),$$
 (5a)

$$b_n = -\frac{2}{n-1} \sum_{i=1}^{n-1} b_j c_{n-j}, \tag{5b}$$

$$c_n = \left(\frac{nL}{2} - \frac{1}{2}\right)^{-1} \left(\frac{a_n}{2} - \frac{2b_n}{k^2} - \sum_{i=1}^{n-1} a_i c_{n-i}\right). \tag{5c}$$

Field equations in region II for $V_0 < 0$

Field equations for $V_0 < 0$

$$x_1'(t) = x_1 - x_2 - x_1^2$$
 (6a)

$$x_2'(t) = Lx_2\left(\frac{1}{2} - x_3\right)$$
 (6b)

$$x_3'(t) = \frac{1}{2}x_3 + \frac{1}{2}x_1 - \frac{2}{k^2}x_2 - x_1x_3$$
 (6c)

$$\lim_{t \to -\infty} e^{-Lt/2}(x_1, x_2, x_3) = (a_1, b_1, c_1)$$
 (6d)

- L, a_1, b_1, c_1 depend on k^2
- ullet is a singular point, and fixed point, of the equations

Theorem 8

Suppose that $|a_j|, |b_j|, |c_j| \le \kappa \delta^{j-1}/j^2$ for all $j < n_*$, for some n_* , κ, δ . Suppose further that

$$n_* > \frac{2}{L} \left(1 + \frac{2}{k^2} + \frac{\kappa}{\delta} s_{n_*} \right), \tag{7}$$

where

$$s_{n_*} = 2H_{2,n_*-1} + \frac{4}{n_*}H_{1,n_*-1}. \tag{8}$$

Then $|a_{n_*}|, |b_{n_*}|, |c_{n_*}| \le \kappa \delta^{n_*-1}/n_*^2$.

Corollary 9

If theorem 8 holds for some κ, δ, n_* , then it holds for κ, δ and all $n > n_*$.

Uniform convergence & truncation error

Theorem 10

Let $\tau = e^{Lt/2}$. Suppose that there exist κ, δ such that $|a_n|, |b_n|, |c_n| \le \kappa \delta^{n-1}/n^2$ for all $n \ge 1$. Then the series (4) converge uniformly on $\tau \in [0, 1/\delta)$.

Lemma 11

Suppose that there exist κ, δ such that $|a_n|, |b_n|, |c_n| \leq \kappa \delta^{n-1}/n^2$ for all $n \geq 1$, and that the series (4) are approximated by the first N terms. Then the truncation errors e_i for these approximations satisfy the bound

$$e_i \leq \frac{\kappa}{N^2 \delta} \left(\frac{(\delta \tau)^{N+1}}{1 - \delta \tau} \right).$$
 (9)

Numerical data

Let

$$m = \max_{j \in [1, N]} \{ j^{2}(|a_{j}|, b_{j}|, |c_{j}|) / \kappa \delta^{j-1} \}$$
 (10)

k^2	δ	κ	Ν	m	$ au_1$	$ar{x}_1(au_1)$	$e(au_1) <$
0.01	10 ⁶	10^{5}	412	0.796	9×10^{-7}	-2.4×10^{-5}	10^{-24}
0.02	10^{5}	25,000	224	0.792	9×10^{-6}	-3.04×10^{-4}	10^{-14}
						•	
						•	
0.32	90	80	80	0.846	0.008	-0.0527	10^{-13}
0.33	80	80	80	0.976	0.01	-0.0832	10^{-9}
						•	

Thanks for listening. Any questions?