Revealing the Physics of R-modes in Low-Mass X-ray Binaries

Wynn Ho

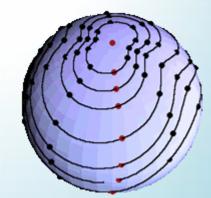
University of Southampton

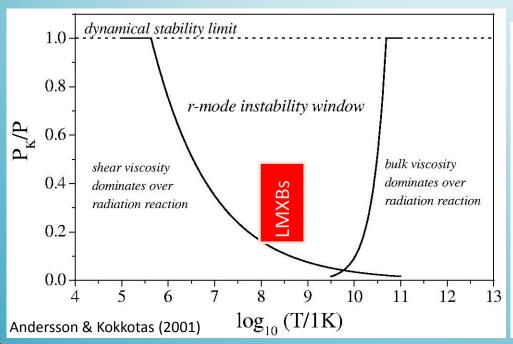
Nils Andersson

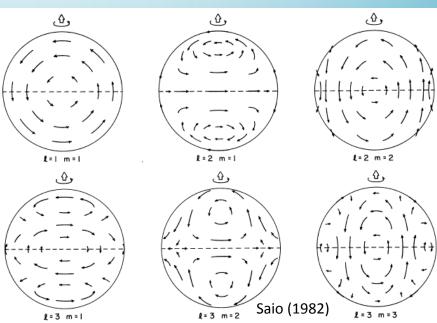
University of Southampton

Nathalie Degenaar

University of Michigan, USA

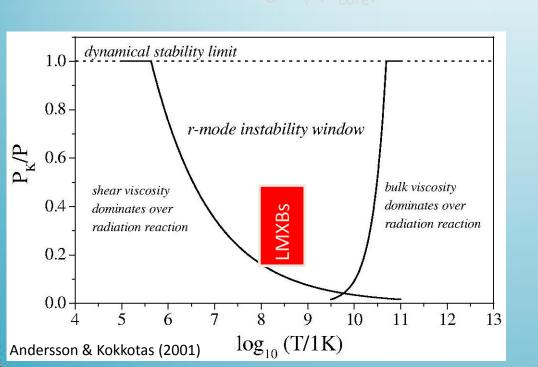

Brynmor Haskell

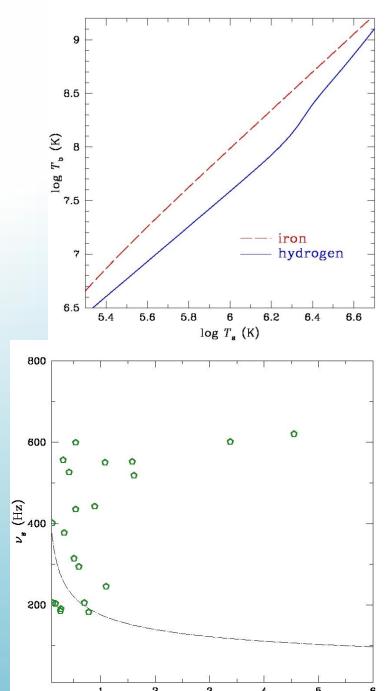

University of Amsterdam, Netherlands



- Fluid oscillations in rotating stars
- Generically unstable:
 - Gravitational waves drive r-mode growth
 - Viscosity damps r-mode
 - shear viscosity at low temperatures
 - bulk viscosity at high temperatures
 - ightharpoonup R-mode evolution: $t_{gw}(v_s) = t_{visc}(v_s, T)$

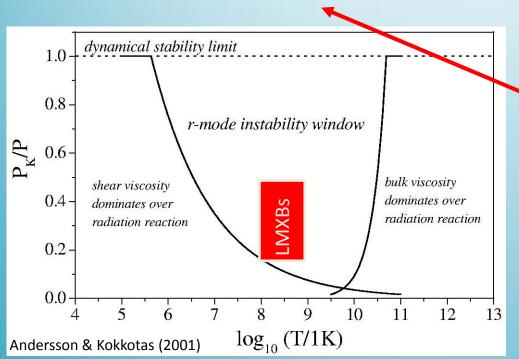
R-mode Oscillations and Instability

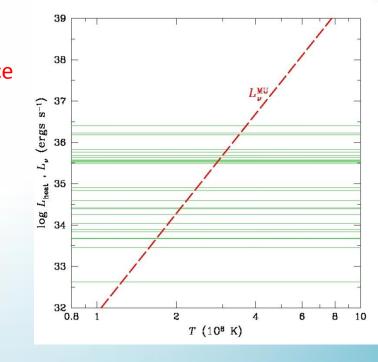




- Quiescent Low-Mass X-ray Binaries (LMXBs)
 - \triangleright surface temperature T_{surface} from spectrum
 - \succ from envelope composition: T_{core} ($T_{surface}$)

r-mode/accretion heating: $L_{\text{heat}} \propto v_{\text{s}} \times L_{\text{acc}}$



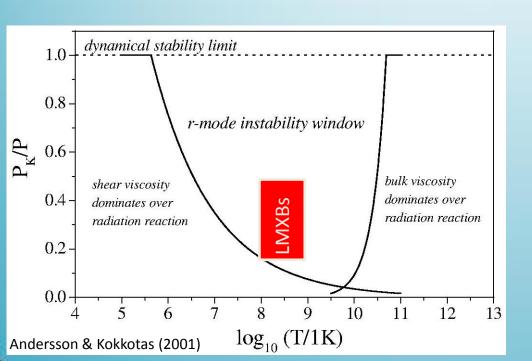

 $T (10^8 \text{ K})$

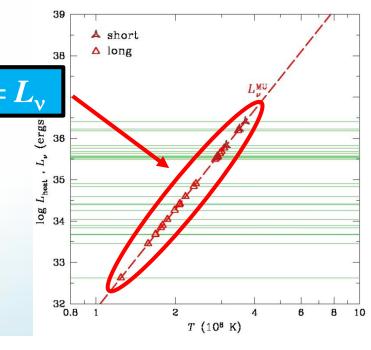
• Quiescent Low-Mass X-ray Binaries (LMXBs) . surface temperature T_{surface} from spectrur rom envelope composition: T_{core} ($T_{surface}$)

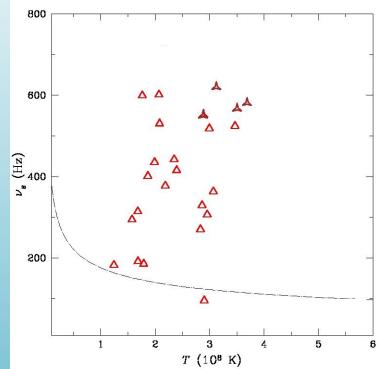
Accreting LMXBs

- \triangleright measure accretion luminosity $L_{acc} = 4\pi d^2 F_{x}$
- > accretion spin-up balances GW spin-down
- > from heating = cooling, where
 - o r-mode/accretion heating: $L_{\rm heat} \propto v_{\rm s} \times L_{\rm acc}$
 - o neutrino cooling: $L_v(T_{core})$

standard/slow cooling (by modified Urca):

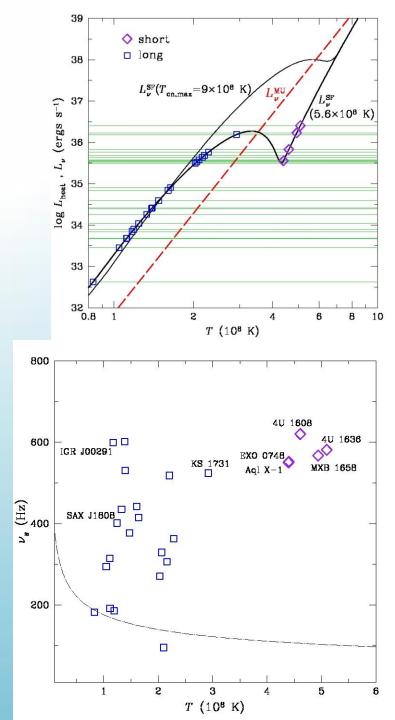

 $L_{\nu}^{MU} \propto T^{8}$



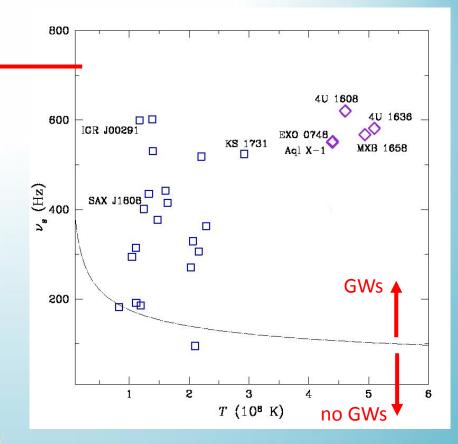

• Quiescent Low-Mass X-ray Binaries (LM) L_{he} > surface temperature T_{surface} from spectrum > from envelope composition: T_{core} (T_{surface})

Accreting LMXBs

- \triangleright measure accretion luminosity $L_{acc} = 4\pi d^2 F_X$
- > accretion spin-up balances GW spin-down
- \triangleright from heating = cooling, where
 - o r-mode/accretion heating: $L_{\text{heat}} \propto v_{\text{s}} \times L_{\text{acc}}$
 - o neutrino cooling: $L_v(T_{core})$



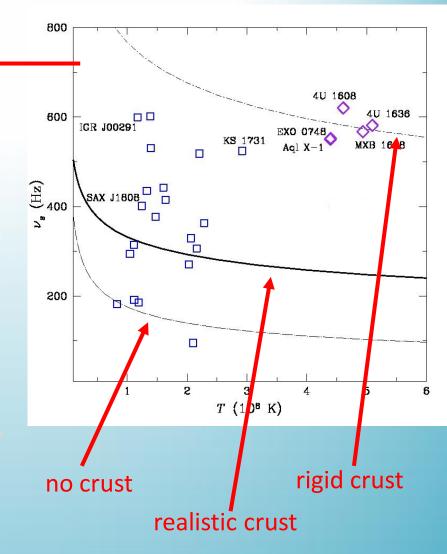
- Quiescent Low-Mass X-ray Binaries (LMXBs)
 surface temperature T_{surface} from spectrum
 from envelope composition: T_{core} (T_{surface})
- Accreting LMXBs
 - \triangleright measure accretion luminosity $L_{acc} = 4\pi d^2 F_X$
 - accretion spin-up balances GW spin-down
 - \triangleright from heating = cooling, where
 - o r-mode/accretion heating: $L_{\text{heat}} \propto v_{\text{s}} \times L_{\text{acc}}$
 - o neutrino cooling: $L_v(T_{core})$


superfluid cooling [Cas A NS: $T_c \approx (5-9) \times 10^8 \text{ K}$]

R-mode Instability vs Observations

716 Hz

- Unstable r-mode
 - > spin-temperature limit cycle
 - large amplitude: short time in window
 - small amplitude: not deep in window
 - \triangleright cannot produce high v_s
 - > spin-down by magnetic dipole w/o GWs
- Stable r-mode
 - crustal physics
 - viscous boundary layer
 - mode resonance with elastic crust
 - \triangleright magnetic field shortens τ_{VBL} $B > 10^{11}$ G to stabilize
 - high viscosity at high T superfluid-suppressed hyperon bulk viscosity but spin-down vs. $v_s = 716$ Hz
 - ➤ superfluid mutual friction e⁻ scatter off superfluid vortices (too weak) but (strong enough?) friction from vortexfluxtube interaction

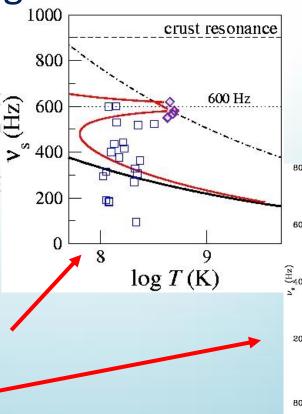


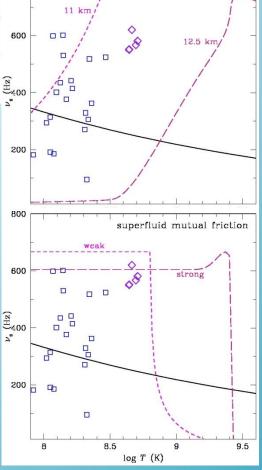
Closing the Window? (Crust-Core Boundary)

Unstable r-mode


spin-temperature limit cycle
 large amplitude: short time in window
 small amplitude: not deep in window

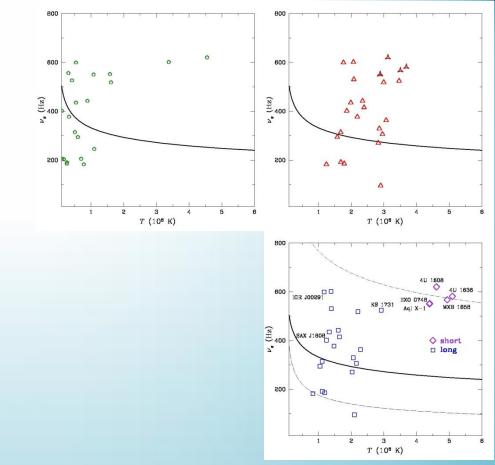
- cannot produce high v
- spin-down by magnetic dipole w/o GWs
- Stable r-mode
 - > crustal physics
 - viscous boundary layer
 - mode resonance with elastic crust
 - \triangleright magnetic field shortens τ_{VBL} $B > 10^{11}$ G to stabilize
 - ➤ high viscosity at high T superfluid-suppressed hyperon bulk viscosity but spin-down vs. $v_s = 716 \text{ Hz}$
 - ➤ superfluid mutual friction e⁻ scatter off superfluid vortices (too weak) but (strong enough?) friction from vortexfluxtube interaction





Closing the Window

- > spin-temperature limit cycle
- o large amplitude: short time in wing small amplitude: not deep in wind
- \triangleright cannot produce high v_s
- spin-down by magnetic dipole w/o
- Stable r-mode
 - > crustal physics
 - viscous boundary layer
 - o mode resonance with elastic crust
 - \triangleright magnetic field shortens τ_{VBL} $B > 10^{11}$ G to stabilize
 - high viscosity at high T superfluid-suppressed hyperon bulk viscosity but spin-down vs. $v_s = 716 \text{ Hz}$
 - > superfluid mutual friction
 - e⁻ scatter off superfluid vortices (too weak) but (strong enough?) friction from vortex-fluxtube interaction



superfluid hyperons

Status of R-mode Instability

- Window for gravitational radiation not well-understood
- Some systems should be GW emitters but counter to expectations
- Relevant astrophysics/physics
 - > core temperature estimates:
 - envelope composition
 - o neutrino emission
 - LMXB distances
 - window shape:
 - crust elasticity
 - superfluidity (critical temperature, hyperons, mutual friction)
 - magnetic field (damping and estimates from LMXBs)

