Effect of Temperature on Oscillations in Young Neutron Stars

Christian Krüger

University of Southampton

April 3, 2012

Final Aim

- Construct neutron star based on realistic, modern equation of state
- Take temperature, composition, crust, superfluids, etc. into account
- Calculate oscillations on this model
- Finally do successful asteroseismology

Equations to solve

Einstein equations

$$G_{\mu\nu} = 8\pi T_{\mu\nu} \,, \qquad
abla_{\mu} T^{\mu\nu} = 0$$

- Schwarzschild-type metric
- Neutron star modelled as perfect fluid

$$T^{\mu\nu} = (\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu}$$

 Then derive equations for first-order perturbations on a static background (lengthy & messy)

APR Equation of State

- allows for $2 M_{\odot}$ neutron stars
- constructed from realistic quantum many-body calculations
- can be obtained from analytical expressions
- we know how to extend for superfluidity and two-fluid systems

Mode classification

A non-rotating neutron star exhibits the following mode classes:

mode class	cause	affected by temperature
f-mode	surface of the star	no
p-mode	pressure	slightly
w-mode	spacetime	no
g-mode	gravity/buoyancy	yes
i-mode	density jump	no

f-modes are due to surface of the star

p-modes are due to variation in pressure

w-modes are due to spacetime curvature

$$ilde{g}_{\mu
u}=g_{\mu
u}+h_{\mu
u}$$

f-modes are due to surface of the star

p-modes are due to variation in pressure

w-modes are due to spacetime curvature

$$ilde{g}_{\mu
u}=g_{\mu
u}+h_{\mu
u}$$

f-modes are due to surface of the star

p-modes are due to variation in pressure

w-modes are due to spacetime curvature

$$\tilde{g}_{\mu\nu}=g_{\mu\nu}+h_{\mu\nu}$$

Composition g-modes

- slow reaction
- \bullet composition of moving fluid element does not change \rightarrow frozen composition
- composition enters through adiabatic index

$$\Gamma_f = \frac{\rho + p}{p} \left(\frac{\partial p}{\partial \rho} \right)_{n, T}$$

 differs from background which is assumed to be in β-equilibrium

$$\Gamma_{\beta} = \frac{\rho + \rho}{\rho} \left(\frac{\partial \rho}{\partial \rho} \right)_{\beta}$$

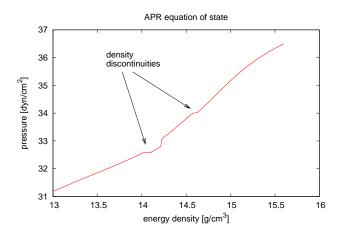
Composition g-modes

- slow reaction
- \bullet composition of moving fluid element does not change \rightarrow frozen composition
- composition enters through adiabatic index

$$\Gamma_f = \frac{\rho + p}{p} \left(\frac{\partial p}{\partial \rho} \right)_{n, T}$$

• differs from background which is assumed to be in β -equilibrium

$$\Gamma_{\beta} = \frac{\rho + p}{p} \left(\frac{\partial p}{\partial \rho} \right)_{\beta}$$


g-modes due to a temperature gradient

Thermal pressure is added on top of cold EOS:

$$p = p_0(\rho) + \frac{p_{th}}{n}(n, T)$$

- $p_0(\rho) = APR$ equation of state (cold)
- $p_{th}(n, T) = \frac{\pi^2}{6} nkT \frac{kT}{E_F}$
- separate thermal pressure for different particles

i-modes due to density discontinuities

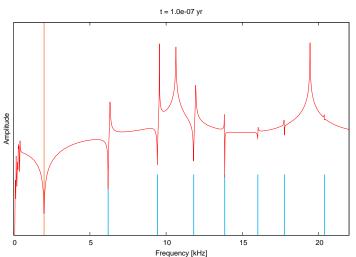
Neutron Star Models

Calculate mode evolution for two different neutron stars:

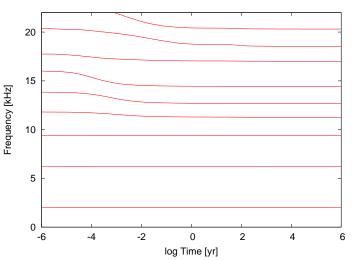
- Star #1 with $M=1.4~M_{\odot}$, R=11.47~km, $ho_c=1.0\cdot 10^{15}~\frac{g}{cm^3}$
- Star #2 with $M=2.0\,M_{\odot}$, $R=10.96\,$ km, $ho_c=1.6\cdot 10^{15}\,\frac{\rm g}{{
 m cm}^3}$

Neutron Star Models

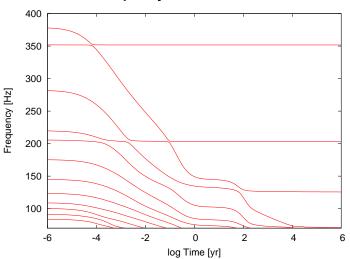
Calculate mode evolution for two different neutron stars:


- Star #1 with $M=1.4\,M_\odot$, $R=11.47\,$ km, $ho_c=1.0\cdot 10^{15}\,\frac{g}{cm^3}$
- Star #2 with $M=2.0~M_{\odot}$, R=10.96~km, $\rho_c=1.6\cdot 10^{15}~\frac{\rm g}{cm^3}$

Supercomputer crashed last week... calculation for star # 2 not possible at the moment



High Frequency Domain


Movie: High Frequency

High Frequency Domain in Time

Movie: Low Frequency

Low Frequency Domain in Time

Summary

- Investigated effect of temperature on different mode classes
 → main effect on g-modes
- Neutron star model as well as temperature profiles are calculated using modern equation of state and cooling codes
- Next steps: Take crust and superfluidity into account