Phase Transition and Anisotropic Deformations of Neutron Star Matter

Susan Nelmes

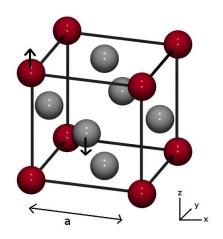
Durham University

BritGrav 12

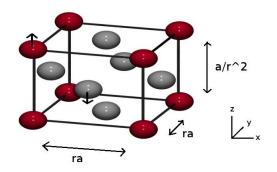
Based on a forthcoming paper with Bernard M. A. G. Piette, Durham University

Neutron Stars

- Large mass: 1-2 Solar masses.
- Small radius: 10-15km
- Modelling requires knowledge of:
 - General Relativity,
 - Dense neutron matter Effective theory for QCD.
- In this talk we show how we can combine GR with the Skyrme model of neutron matter to produce a good neutron star model.


The Skyrme Model

The Skyrme Lagrangian


•
$$\frac{F_{\pi}^2}{16} Tr(\nabla_{\mu} U \nabla^{\mu} U^{-1}) + \frac{1}{32e^2} Tr[(\nabla_{\mu} U) U^{-1}, (\nabla_{\nu} U) U^{-1}]^2$$

- The Skyrme field, $U(\mathbf{x}, t)$, is a SU(2) valued scalar field.
- $U(\mathbf{x}) \to \mathbb{I} \text{ as } |\mathbf{x}| \to \infty.$
- $U: S^3 \mapsto S^3$ has homotopy group $\pi_3(S^3) = \mathbb{Z}$.
- Topological charge → baryon number.
- An approximate low energy effective field theory for QCD.
- Successful in modelling small nuclei.
- Model large astrophysical objects such as neutron stars with $B \approx 10^{57}$?

The Skyrme Crystal

The Skyrme Crystal

- Skyrmion size in the radial direction $\lambda_r \propto \frac{a}{r^2}$.
- Skyrmion size in the tangential direction $\lambda_t \propto \mathit{ra}$.

The Skyrme Crystal Energy Dependence

• $E = E(\lambda_r, \lambda_t)$

The TOV Equation

The Stress Tensor

• $T^{\mu}_{\nu} = \operatorname{diag}(\rho(r), p_r(r), p_{\theta}(r), p_{\phi}(r))$

Tangential Stresses

$$\bullet \ p_{\theta}(r) = p_{\phi}(r) = p_{t}(r)$$

The Metric

• $ds^2 = e^{\nu(r)}dt^2 - e^{\lambda(r)}dr^2 - r^2d\theta^2 - r^2\sin^2\theta d\phi^2$

The TOV Equation

$$\bullet \frac{dp_r}{dr} = -(\rho + p_r) \left(\frac{m(r) + 4\pi r^3 p_r}{r(r-2m)} \right) + \frac{2}{r} (p_t - p_r)$$

The Equations Of State

The Equations Of State

- ullet $p_r=p_r(
 ho)$ and $p_t=p_t(
 ho)$
 - Neutron star temperature $\approx 0.1 \text{keV}$, experimental α -particle excitation energy $\approx 23.3 \text{MeV} \implies \text{zero temperature assumption}$.

Calculating The Equations Of State

•
$$p_r = -rac{1}{\lambda_t^2}rac{\partial E}{\partial \lambda_r}$$
 and $p_t = -rac{1}{\lambda_r}rac{\partial E}{\partial \lambda_t^2}$

Calculating The Mass Density

$$\rho = \frac{E}{c^2 \lambda_r \lambda_t^2}$$

Physical Properties

Boundary Conditions

- m(r) o 0 as $r o 0 \implies p_t(0) = p_r(0)$
 - Radius of the star, R at $p_r(R) = 0$.
 - Exterior vacuum Schwarzschild metric can always be matched to our metric if $p_r(R) = 0$.

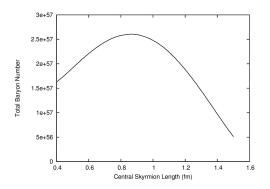
Total Gravitational Mass

• $M_G = m(R) = m(\infty) = \int_0^R 4\pi r^2 \rho(r) dr$

Stars Made of Isotropically Deformed Skyrme Crystal

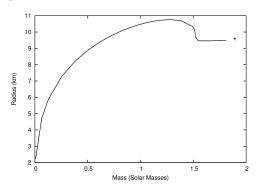
Isotropic Skyrme Crystal

- $\lambda_t(r) = \lambda_r(r)$
 - \bullet We find results up to a baryon number of 2.61 \times $10^{57},$ equivalent to 1.49 solar masses.


Theorem,

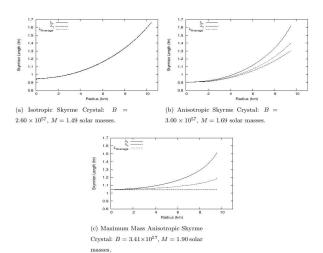
• For a given total baryon number, if there is a locally isotropic, stable (minimum energy) solution to the generalised TOV equation with mass M, then all locally anisotropic solutions will have a mass greater than or equal to M.

Stars Made of Isotropically Deformed Skyrme Crystal


Central Skyrmion Length

•
$$\lambda_t(r=0) = \lambda_r(r=0) = L(r=0)$$

Stars Made of Ansotropically Deformed Skyrme Crystal


- We find results from energy minimisation up to a baryon number of 3.25×10^{57} , equivalent to 1.81 solar masses.
- The maximum mass solution is found at a baryon number of 3.41×10^{57} , equivalent to 1.90 solar masses.

Stars Made of Ansotropically Deformed Skyrme Crystal

- Allowing anisotropically deformed Skyrme crystal solutions we have increased the maximum mass by 28% from the maximum mass found in the isotropic case.
- So we should not take isotropic deformation of matter as an assumption.
- The recent discovery of a 1.97 \pm 0.04 solar mass neutron star, the highest neutron star mass ever determined, makes our result of a maximum mass of 1.90 solar masses very encouraging.
- Including the effects of rotation into our model will increase the maximum mass found, by up to 2% for a star with a typical spin period.

Neutron Star Configurations

Conclusions

- The Skyrme model is an approximate low energy effective field theory for QCD.
- We have used a Skyrme crystal to construct neutron star configurations.
- We have found masses up to 1.90 solar masses, and found appropriate radii.
- There is a phase transition between stars composed of isotropically and anisotropically deformed matter at a critical mass of 1.49 solar masses.
- By allowing anisotropically deformed Skyrme crystal configurations the maximum mass is 28% more than the maximum mass in the isotropically deformed case.