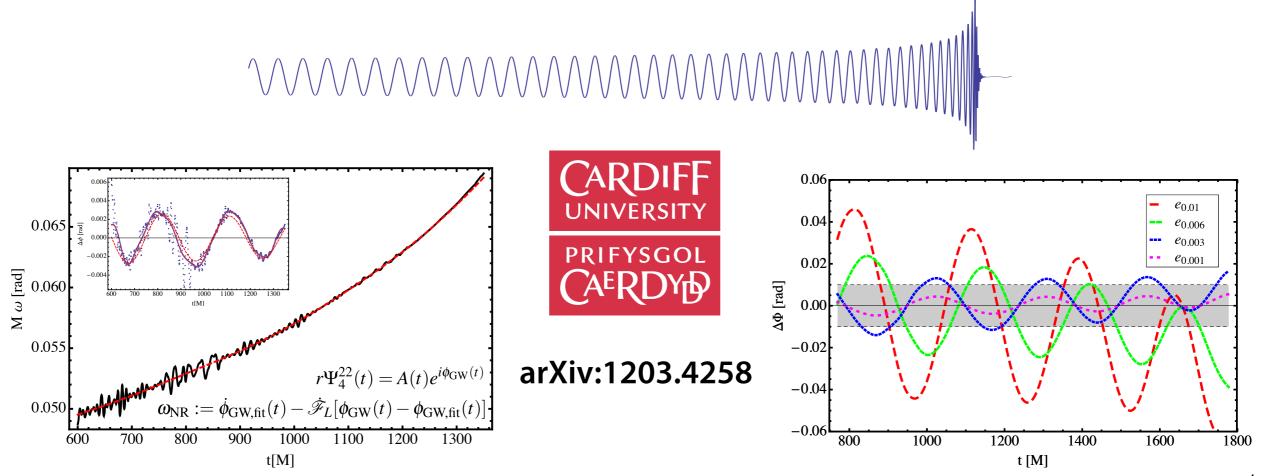
An efficient iterative method to reduce eccentricity in numerical-relativity simulations of compact binary inspiral

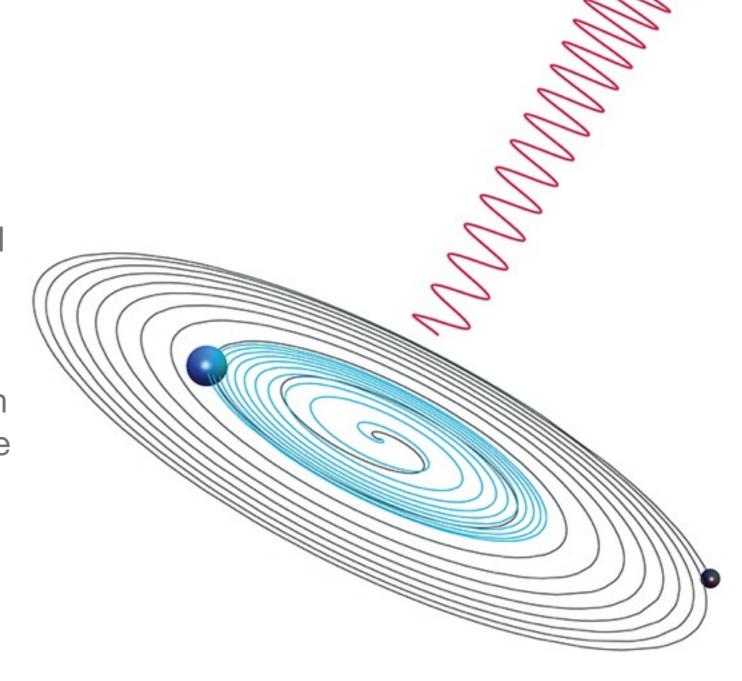
Michael Pürrer¹, Sascha Husa², Mark Hannam¹

¹Cardiff University, UK ²Univ. de les Illes Balears, Spain



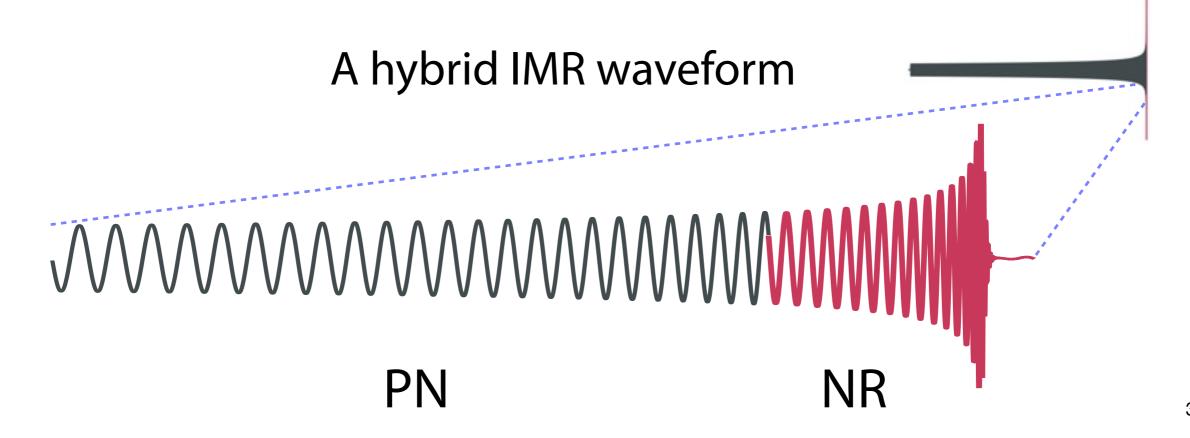
Binary black-hole inspiral

- Binary black-holes (BBHs) inspiral under the emission of gravitational-waves (GW).
- We need to know the GW signal over the BBH parameter space (mass-ratio, spins).
- Post-Newtonian theory (PN) can be used as long as the holes are far enough apart.
- Numerical relativity (NR) simulations are necessary for the last ~10-20 orbits and the merger.



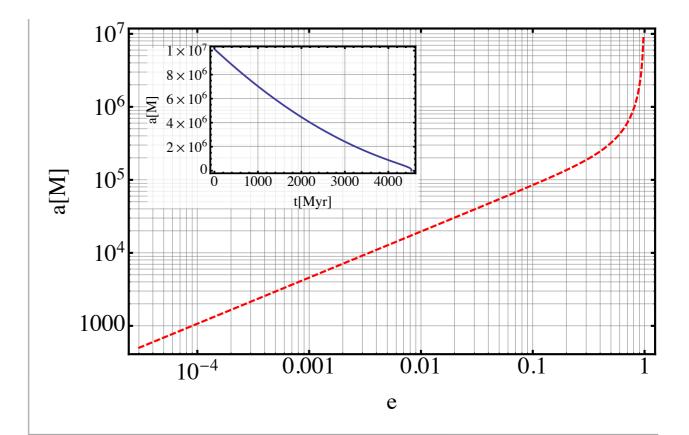
Goal: build waveform models

- A large-scale effort is under way to produce models of GW signals from the late inspiral, merger and ringdown of BBHs calibrated against large numbers of numerical relativity (NR) simulations.
- These waveform models will be essential to locate and interpret black-hole-binary GW signals in the data from second-generation laser-interferometric detectors such as Advanced LIGO.



Why eccentricity is low

- A typical length-scale for the initial separation of stellar-mass BHs in a BBH is the size of a supergiant (~ 0.1-10 AUs).
- These BBHs will in general have large initial eccentricities due to natal kicks from supernova explosions.
- The orbit of isolated solar-mass BHbinaries circularizes before GWs can be detected [Peters].
- Detection: possible once the GW enters the frequency band of ground based detectors.
- Therefore, the most pressing need is for models of binaries that undergo non-eccentric inspiral.



 $10 M_{\odot}$ equal-mass BBH (Newtonian + Quadrupole approximation)

Initial semi-major axis and eccentricity:

 $a_0 = 1 AU$

 $e_0 = 0.98$

Coalescence time:

Tc ~ 4.5 Gyr (~ 30% age of the universe)

Eccentricity at NR starting separations ($\sim 10-15M$): $e \sim 10^{-7}$

Numerical relativity simulations of BBHs

- BBH initial data: need to specify the initial momenta of the BHs.
- Can estimate initial parameters for quasi-circular inspiral of BBHs from post-Newtonian (PN) theory.
- For high mass-ratios and/or high spins PN initial parameters lead to eccentricities ~ 0.01 or higher and need to be decreased.
- We present the first systematic procedure to reduce eccentricity for alignedspin BBH simulations performed using the 'moving-puncture method', which is the most common in the field.
- Instead of using the gauge dependent orbital motion this general method is based on the gauge invariant *GW signal*.

The basic idea

- Start with a short NR simulation that exhibits eccentricity, and a non-eccentric PN/EOB evolution of the same system.
- Adjust the initial momenta in the PN/EOB evolution until it exhibits eccentricity oscillations that agree with those in the NR waveforms, in both amplitude and phase.
- The inverse adjustment is then applied to the NR initial momenta, and a new NR simulation performed, and the process repeated.

Key quantities

Select an approximate PN/EOB model $\omega_{\rm M}(p_r, p_t; t)$ of the GW frequency as a function of the initial radial and tangential momenta (p_r, p_t) .

Choose initial momenta (p_r^0, p_t^0) for a first NR simulation, such that $e_M(p_r^0, p_t^0) = 0$. Then $e_{NR}(p_r^0, p_t^0) > 0$.

Define the GW and model frequency residuals relative to the quasi-circular model $\omega_{\rm M}(t) := \omega_{\rm M}(p_r^0, p_t^0; t)$

$$\mathcal{R}^{i}(t) = \omega_{NR}^{i}(t) - \omega_{M}(t)$$

$$\mathcal{R}^{\lambda}_{M}(t) := \mathcal{R}_{M}(\lambda_{r}, \lambda_{t}; t) = \omega_{M}(\lambda_{r} p_{r}^{i}, \lambda_{t} p_{t}^{i}; t) - \omega_{M}(t)$$

A single iteration step

Choose the momentum scale factors (λ_r, λ_t) so that

$$\mathscr{R}_{\mathrm{M}}^{\lambda}(t) \approx \mathscr{R}^{0}(t)$$

with agreement in both the *amplitude* and *phase* of the residuals.

Produce updated initial momenta for the next NR simulation n^{-1} $n^{0}/2$ 0

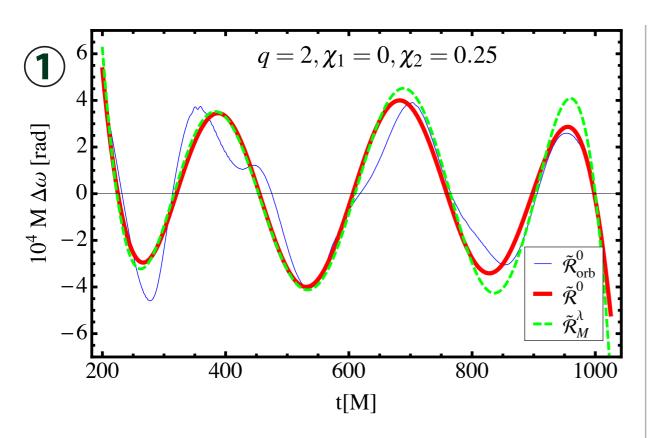
$$p_r^1 = p_r^0 / \lambda_r^0$$

$$p_t^1 = p_t^0 / \lambda_t^0$$

with the expectation that $e_{NR}^1 < e_{NR}^0$.

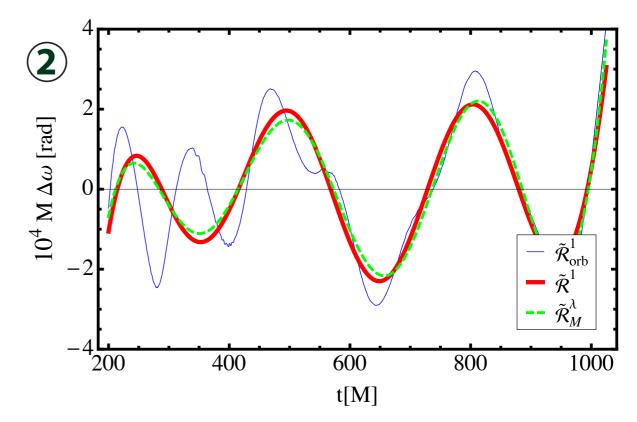
Iterate until eccentricity is below a desired target.

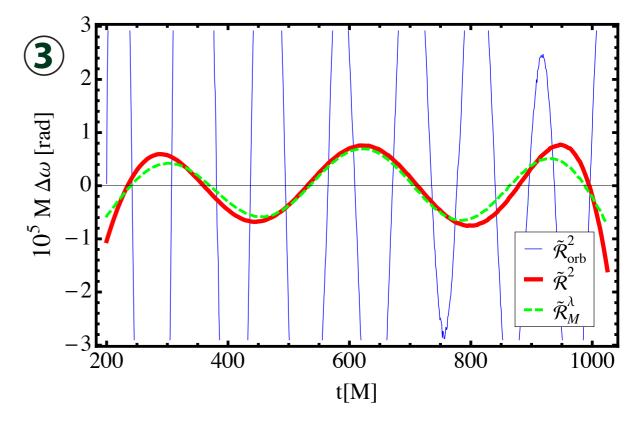
Eccentricity reduction example



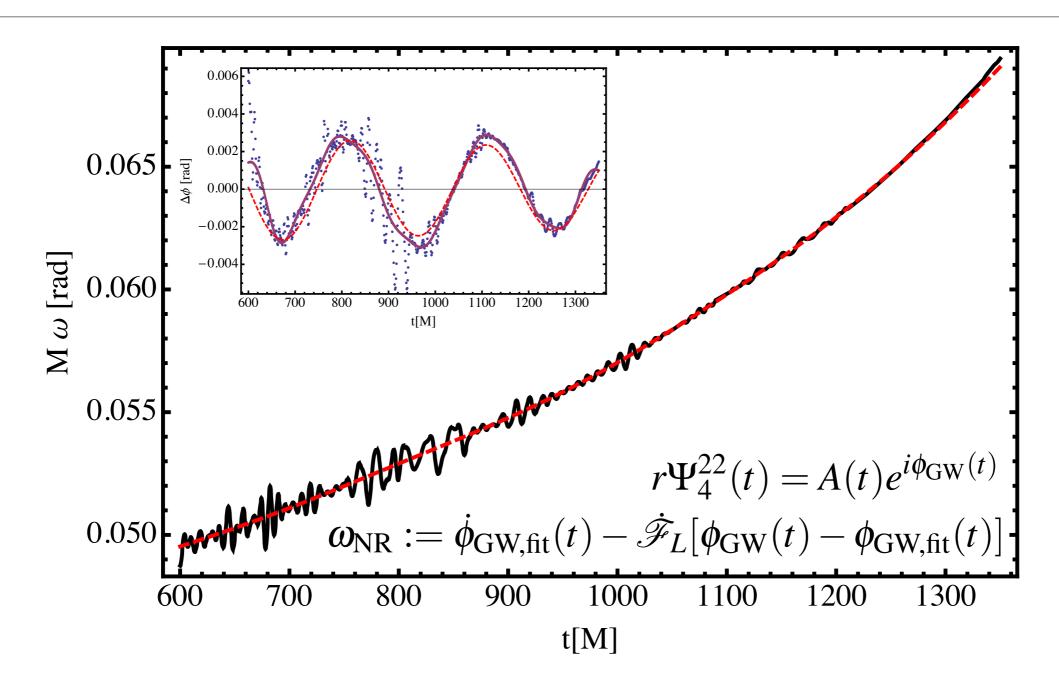
Iteration	p_{r}	p_{t}	$e_{\phi,\mathrm{GW}}$	e_{Ω}	λ_r	λ_t
0	0.000758			0.0045		1.0028
1	0.000758	0.11677	0.003	0.0029	1.15	0.999
2	0.000660	0.11689	0.0003	0.0013		

- At each step the NR residual $\tilde{\mathscr{R}}^i$ is calculated from the filtered GW signal (red).
- The best-match scale factors lead to the residuals $\tilde{\mathscr{R}}_{M}^{\lambda}$ (green, dashed).
- GW phase eccentricities show our progress $e_{\phi,\mathrm{GW}}(t) := \left[\phi_{\mathrm{GW}}(t) \phi_{\mathrm{GW,fit}}(t)\right]/4$ while orbital frequency eccentricities are gauge-limited $e_{\Omega}(t) := \left(\Omega(t) \Omega_{\mathrm{fit}}(t)\right)/(2\Omega_{\mathrm{fit}}(t))$.





Filtering the numerical GW signal



A combination of fitting and filtering methods is used to produce a cleaned GW frequency while preserving the delicate eccentricity oscillations.

How low should residual eccentricity be in practice?

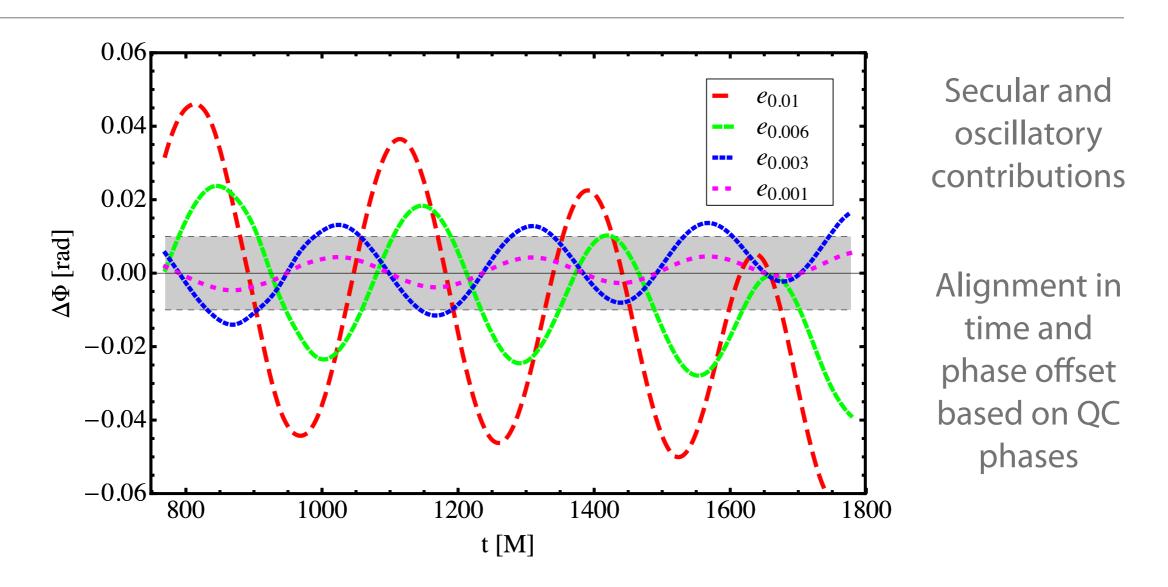
Match

- Study the match (detector-based criterion of how "close" two WFs are) between hybrid PN+NR waveforms with different residual eccentricity in the NR part.
- Have seen no evidence that
 eccentricities as high as 0.01 in the final
 ~10 orbits will have any noticeable
 influence on GW searches or parameter
 estimation in the Advanced detector
 era.
- Somewhat surprising, since at this level the eccentricity is visible by eye in the waveform.

Phase error

- Dominant numerical error that accrues during the inspiral of a BH binary
- Reduce eccentricity to a level where the eccentricity-induced drifts in the GW phase are well below the numerical phase errors in our simulations.
- Choose a tolerance of $e \sim 10^{-3}$.
 - Produces oscillations in the GW phase with an amplitude of 0.01 rad during inspiral.
 - Accumulated phase drift through merger and ringdown is less than 0.2 rad.
 - This is well within our NR phase errors.

Inspiral phase differences



Phase differences from Ψ_4 with respect to the $e_{\phi, \rm GW} = 0.0003$ simulation. A stringent NR phase error requirement of ±0.01 rad is indicated by the shaded region.

Conclusion

- Because our method is applied to the GW signal, it can be adapted to any evolution method, and is not limited to moving-puncture simulations. It could also be adapted to other compact binary simulations, for example neutron-star (NS-NS) binaries, and black-hole--neutron-star (BH-NS) binaries.
- Our method can typically reduce eccentricity below 0.001 in one or two iteration steps using a semi-automated procedure to obtain the scale factors.
- A subset of our method was already presented in previous work [Husa ea, PRD, 77, 044037 (2008), Hannam ea, PRD, 82, 124008 (2010)].
- We will consider an extension of our method to precessing binaries in future work.