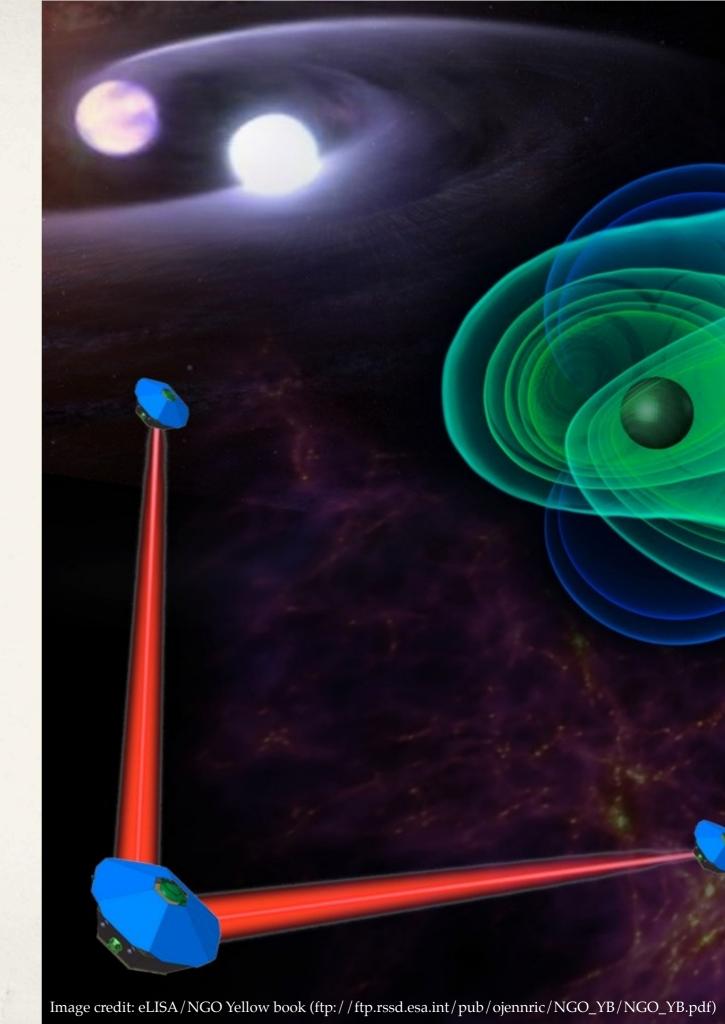
Self-consistent orbital evolution of a particle around a Schwarzschild black hole

Barry Wardell University College Dublin Collaborators: Peter Diener, Ian Vega, Steven Detweiler

EMRIs and eLISA/NGO

- * Extreme Mass Ratio Inspirals have long been a promising source of gravitational waves for the LISA, the space based gravitational wave detector.
- * Accurate models are a critical component of any observation.
- Even more true now that LISA is no more and there are proposals for eLISA/NGO which will have less sensitivity.



Motion of a point particle

- * Solve the coupled system of equations for the motion of the particle and its retarded field.
- * Self-interaction of the particle with its retarded field, Φ^{ret} .
- Φ^{ret} diverges like 1/r on the worldline.
- * "Unphysical" divergence removed by appropriate regularization.

$$\Box \Phi^{\text{ret}} = -4\pi q \int \frac{\delta^4(x - z(\tau))}{\sqrt{-g}} d\tau$$

$$\frac{Du^{\alpha}}{d\tau} = a^{\alpha} = \frac{\bar{q}}{m(\tau)} (g^{\alpha\beta} + u^{\alpha}u^{\beta}) \nabla_{\beta} \Phi^{\text{ret}}$$

$$\frac{dm}{d\tau} = -\bar{q}u^{\beta} \nabla_{\beta} \Phi^{\text{ret}}$$

Effective source regularization

- * Split retarded field into locally constructed field and "regularized" remainder.
- Derive an equation for Φ^R .
- * Always work with Φ^{R} instead of Φ^{ret} .
- * If Φ^S is chosen appropriately, then we can just replace Φ^{ret} with Φ^R in the equations of motion.

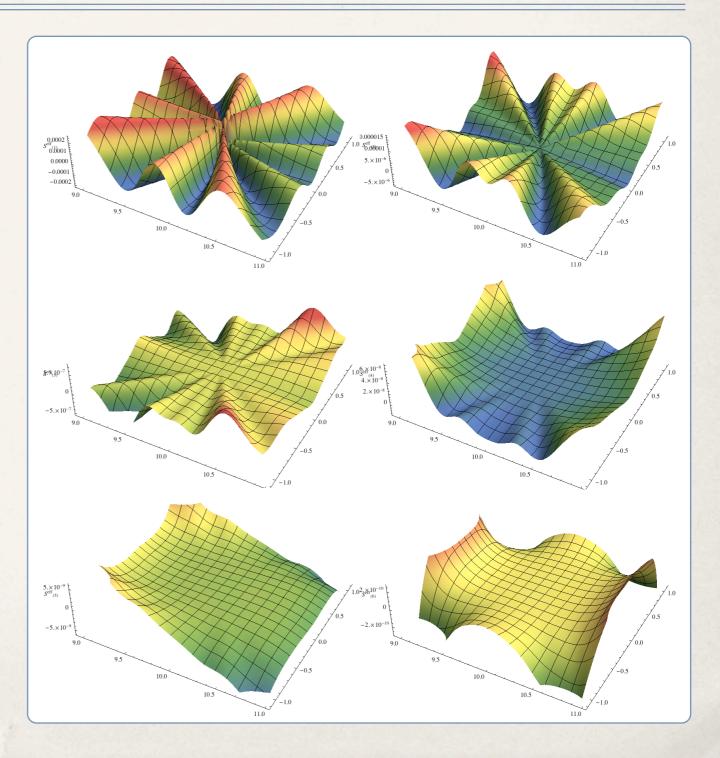
$$\Phi^{\rm ret} = \Phi^{\rm S} + \Phi^{\rm R}$$

$$\Box \Phi^{R} = \Box \Phi^{ret} - \Box \Phi^{S}$$

$$\frac{Du^{\alpha}}{d\tau} = a^{\alpha} = \frac{\bar{q}}{m(\tau)} (g^{\alpha\beta} + u^{\alpha}u^{\beta}) \nabla_{\beta} \Phi^{R}$$
$$\frac{dm}{d\tau} = -\bar{q}u^{\beta} \nabla_{\beta} \Phi^{R}$$

Effective source regularization

- * If Φ^S is exactly the Detweiler-Whiting singular field, Φ^R is a solution of the homogeneous wave equation.
- * If Φ^S is only approximately the Detweiler-Whiting singular field, then the equation for Φ^R . has an effective source, S.
- * S is typically finite, but of limited differentiability on the world line.



Self-consistent Evolution

- * Solve the coupled system of equations for the motion of the particle and its regularized field.
- $\Phi^{R} = \Phi^{ret}$ in the wave zone
- * Φ^{R} finite and (typically) twice differentiable on the world-line

$$\Box \Phi^{R} = S(x|z(\tau), u(\tau))$$

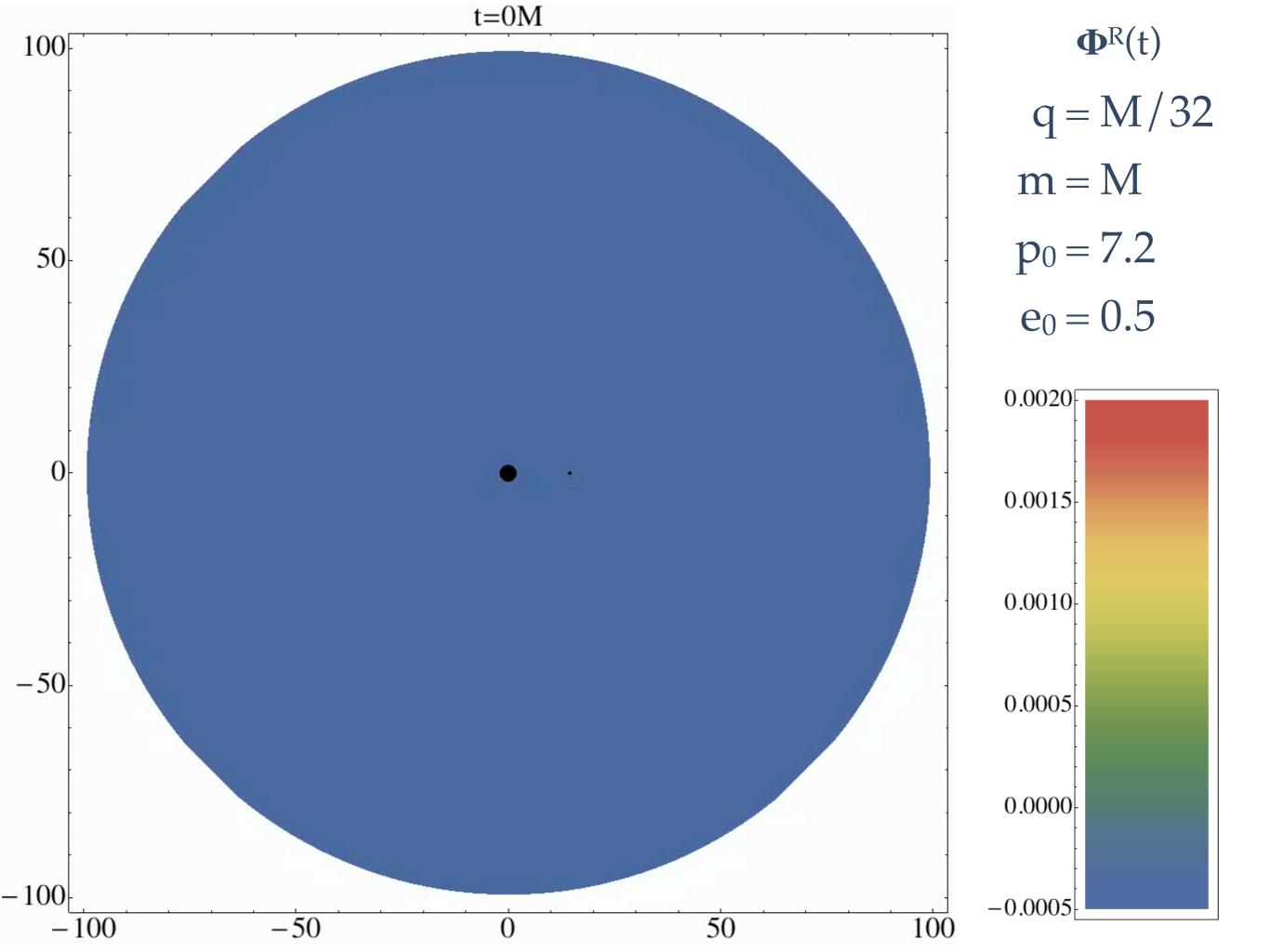
$$\frac{Du^{\alpha}}{d\tau} = a^{\alpha} = \frac{\bar{q}}{m(\tau)} (g^{\alpha\beta} + u^{\alpha}u^{\beta}) \nabla_{\beta} \Phi^{R}$$

$$\frac{dm}{d\tau} = -\bar{q}u^{\beta} \nabla_{\beta} \Phi^{R}$$

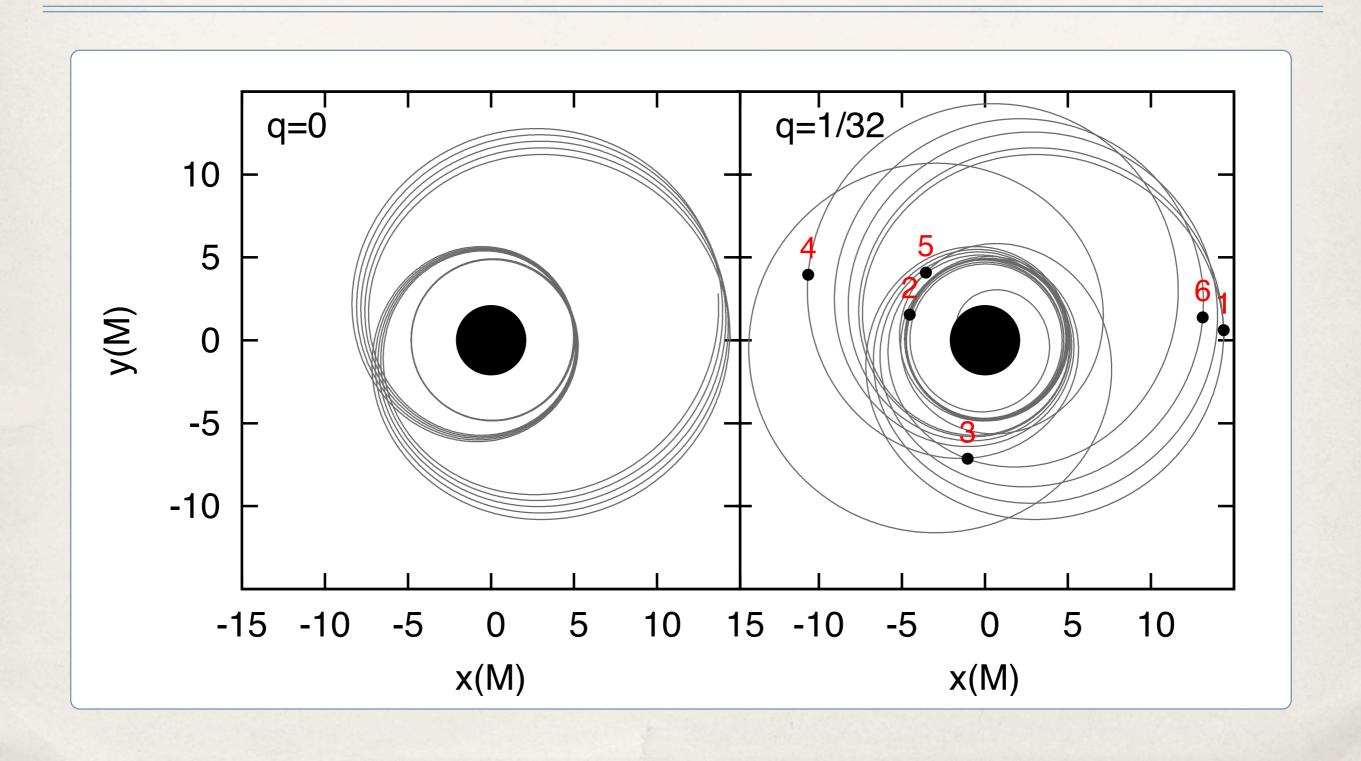
$$\Phi^{R}(t)$$
 $q = M/32$
 $m = M$
 $p_0 = 7.2$
 $e_0 = 0.5$
 0.0020
 0.0015
 0.0010
 0.0005

0.0000

-0.0005



Orbital motion



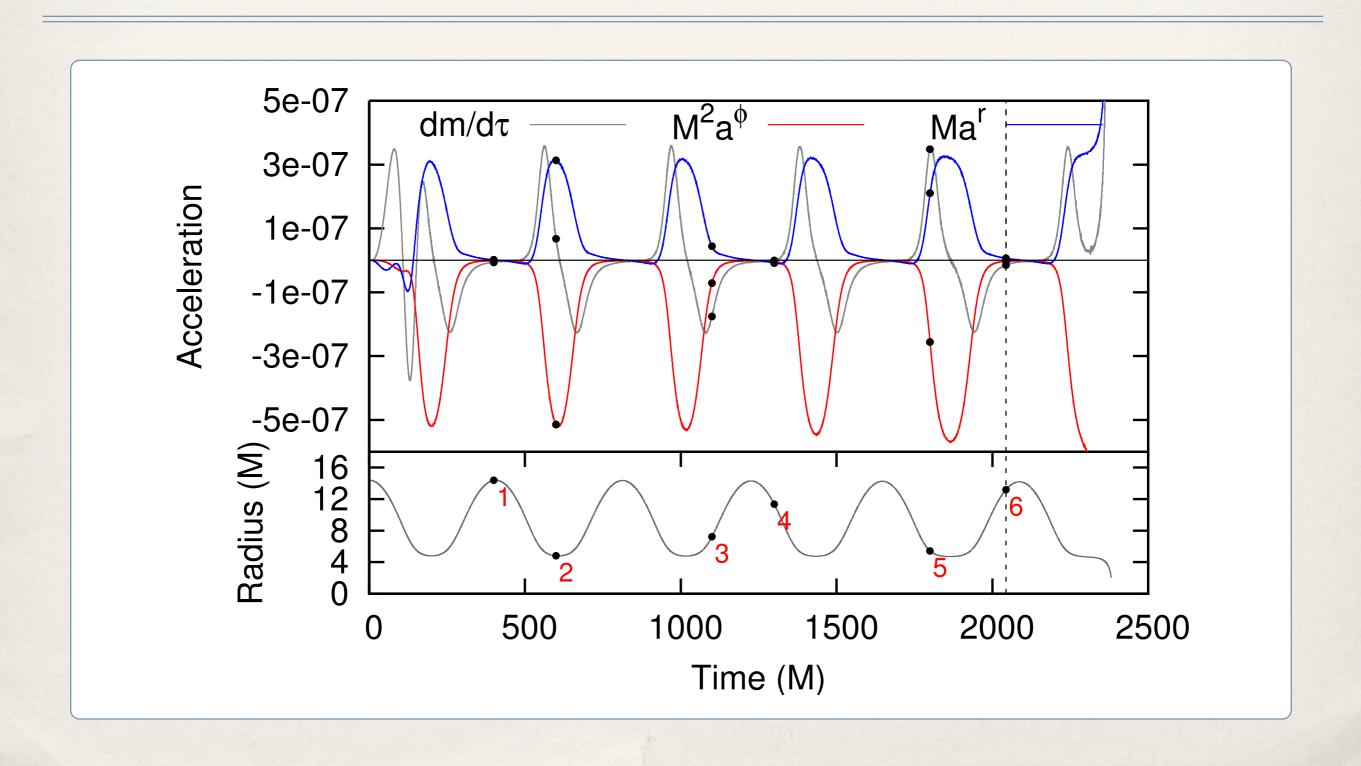
Orbital motion

- * Parametrize orbits in terms of a dimensionless semilatus rectum p and eccentricity e, such that $r_{\pm} = Mp/(1 \mp e)$.
- * Separatrix, p = 6 + 2e, corresponds to unstable circular orbits and represents the boundary in p–e space separating bound from plunging orbits.

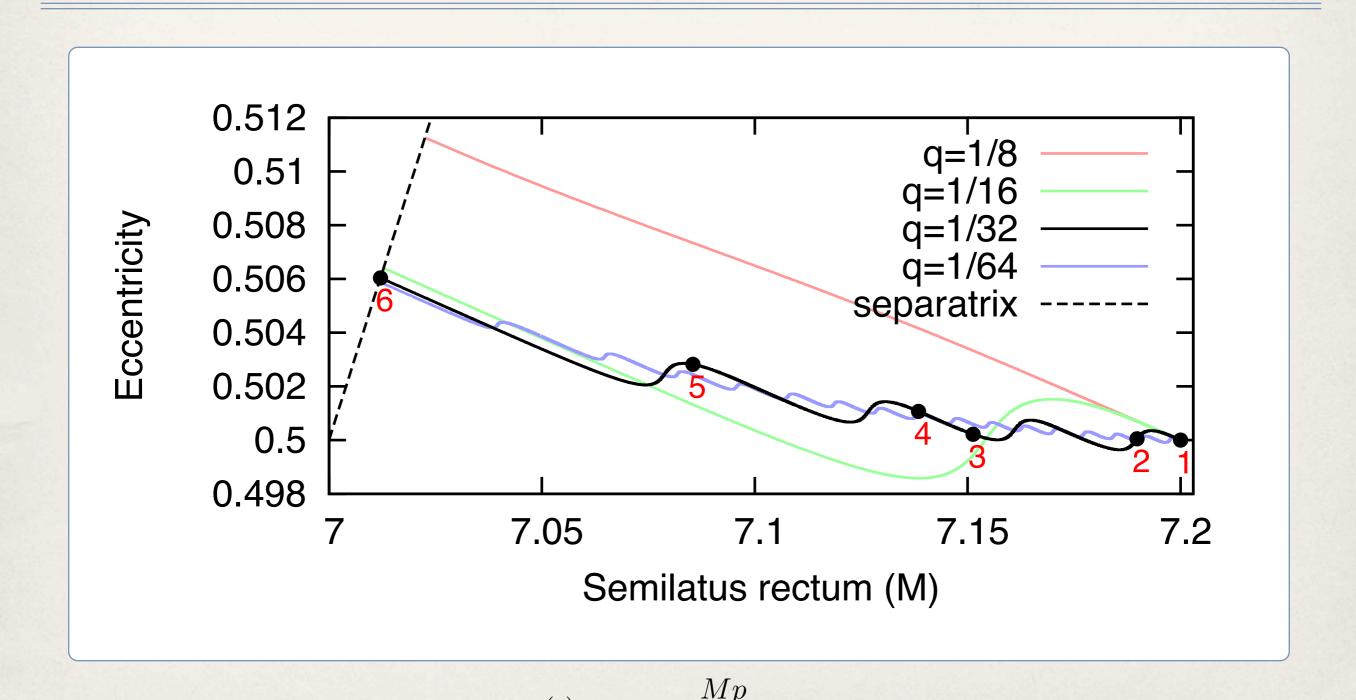
$$r(t) = \frac{Mp}{1 + e\cos(\chi - w)}$$

$$\frac{d\phi}{dt} = \left[1 - \frac{2Mr'}{r - 2M}\right] \times \frac{[p - 2 - 2e\cos(\chi - w)][1 + e\cos(\chi - w)]^2}{M\sqrt{p^3[(p - 2)^2 - 4e^2]}}$$

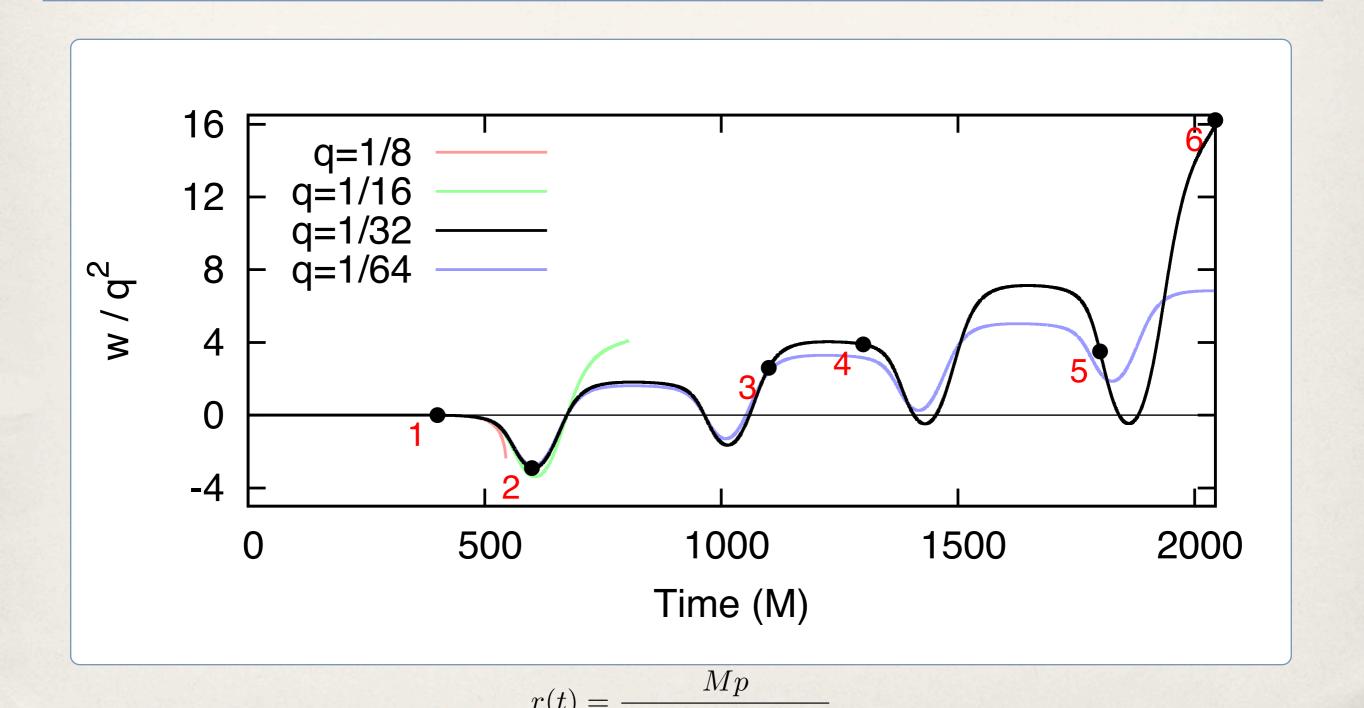
Orbital evolution



Orbital evolution - "dissipative"



Orbital evolution - "conservative"



Waveforms at 4+

